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ABSTRACT

The transient linear response of a quiescent, two-dimensional, nonrotating atmosphere to prescribed heat
sources and sinks is investigated. Analytical solutions of the hydrostatic Boussinesq equations are obtained for
a rigid lid and for a semi-infinite region. For the rigid lid solution, vertically trapped gravity waves propagate
away from the source with a speed that depends on the Brunt-Viiséli frequency and the vertical wavenumber
of the heating. The amplitude of the disturbance field in the region of the forcing approaches a constant value.
Two modes are of particular interest: 1) a deep fast-moving mode which is responsible for subsidence warming
through the depth of the troposphere; 2) a slower moving mode which corresponds to midlevel inflow and
lower- and upper-level outflows. A solution is also obtained for a semi-infinite region. Although gravity wave
energy can now propagate upward, the structure of the low-level fields still shows many similarities with the
rigid lid solution.

An analytical solution is also obtained for the rigid lid case for a pulse forcing function. This solution shows
that when the heating is turned off the disturbance separates into two parts moving in opposite directions. The
structure of these propagating disturbances is similar to gravity waves produced in two-dimensional numerical
simulations of Florida convection. A term analysis is presented that confirms the predominantly linear character
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of the numerically simulated gravity waves.

1. Introduction

In this paper, we investigate the linear response of
a quiescent atmosphere to heating profiles characteristic
of convective and stratiform regions of mesoscale cloud
lines. This simple model appears to have relevance to
convective lines forming in environments without sig-
nificant shear and possibly to certain aspects of systems
forming in sheared environments. A solution for a
heating function, which is turned off at some time, has
similarities to gravity waves produced in a simulation
of an orogenic convective system ( Tripoli and Cotton
1989a,b) and in two-dimensional simulations of Flor-
ida convection (Nicholls et al. 1991).

The transient linear response of the atmosphere to
prescribed heat sources and sinks has recently been
investigated by Lin and Smith (1986), Raymond
(1986), and Bretherton ( 1988). In these studies the ba-
sic state is a moving stratified flow. They find that
downward motion can develop within the heat source
region, which is consistent with observations of flow
past “heat islands” (Garstang et al. 1975; Mahrer and
Pielke 1976). However, if heating is due to the release
of latent heat and condensation occurs because air rises,
there may be a constraint that the heating is to a large
degree in phase with the vertical velocity in convective
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systems. Hence, in this study we investigate the simpler
situation where the atmosphere is initially motionless
relative to the prescribed thermal forcing. This work
can be regarded as a special case of Lin and Smith
(1986) with no mean flow, who obtained numerical
solutions for vertical displacement in the case of a
maintained heat source. In this study, analytical so-
lutions are found for the case of a rigid lid and for a
semi-infinite region for heating profiles characteristic
of both convective and stratiform regions. The analyt-
ical linear model gives insight into the structure and
evolution of some of the features seen in mesoscale
convective lines. Connections are drawn between linear
solutions and the gravity waves generated in a numer-
ical simulation of transient convection over the Florida
peninsula.

Observational studies of squall lines have shown the
presence of a surface mesoscale high with mesoscale
lows both to the front and rear of the system (Fujita
1963; Hoxit et al. 1976; Zipser 1977; Johnson and Ni-
cholls 1983; Johnson and Hamilton 1988). LeMone
(1983) and LeMone et al. (1984 ) identified a mesolow
approximately 2 km above the surface mesohigh within
tropical convective lines. Modeling studies by Nicholls
(1987) and Nicholls et al. (1988) have successfully
replicated these features of the pressure field. They show
that they are associated with significant horizontal ve-
locity perturbations at large distances from the con-
vective region of the squall line. The mesolow that de-
velops above the surface is intimately related to the



1870

formation of the rear inflow jet, which has been the
focus of observational studies (i.e., Smull and Houze
1987). The high pressure at the surface is a conse-
quence of low-level cooling that produces a cold pool.
The release of latent heat causes the air above the cold
pool to be warmer than the surrounding environment,
which hydrostatically accounts for the presence of the
mesolow above the surface. Compensating subsidence
outside the convective region occurs on either side of
the system producing warming and the associated
broad surface mesolows. Observational studies of per-
sistent large amplitude gravity waves by Lin and Goff
(1988) and Bosart and Simon (1988 ) suggest that they
were initiated by convective systems. Numerical sim-
ulations of an orogenic mesoscale convective system
by Tripoli and Cotton (1989a,b) and of Florida con-
vection by Nichollsetal. (1991 ) produced deep rapidly
moving gravity waves as the systems decayed in inten-
sity. The goal of this investigation is to explain using
a simple model how some of these features develop
and evolve.

The model presented in this paper is idealized. The
solution, found for a quiescent environment and par-
ticular prescribed heating functions to be described
later, takes the form of a symmetrical disturbance
propagating away from the heat source. Intense squall
lines, on the other hand, typically have a pronounced
asymmetry since the updraft flows from front-to-rear
and the downdraft from rear-to-front. The importance
of shear for the development of intense squall lines has
been emphasized by Hane (1973), Thorpe et al
(1982), Rotunno et al. (1988), Nicholis et al. (1988),
and Schmidt and Cotton (1990). There are, however,
instances when convective lines form in environments
without appreciable shear; for example, the slow mov-
ing tropical cloud lines studied by Barnes and Sieckman
(1984) and the majority of Florida convective lines
(Blanchard and Lopez 1985). Furthermore, in the nu-
merical modeling studies by Thorpe et al. (1982), Du-
dhia et al. (1987), Rotunno et al. (1988), and Nicholls
et al. (1988), environments were considered that had
strong low-level shear, but throughout most of the tro-
posphere shear was absent or weak. In some cases the
interaction of the cold pool with the low-level shear
produced a vertically oriented jet, which fed deep con-
vective cells that were stationary with respect to the
quiescent environment aloft. The model presented in
this paper may have some relevance to the compen-
sating subsidence outside the convective region for this
case. Even for complicated environmental wind profiles
a symmetrical response can at times be found, such as
in the simulation by Nicholls ( 1987) of a tropical squall
line that developed in a low-level jet. In the early stages
of development a pronounced symmetrical response
was evident, especially exterior to the convective region.
(Figs. 17, 18, and 19 of that paper).

Within the convective region, the linear and hydro-
static assumptions are clearly violated. Although the
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focus of this study is on the circulation outside the

convective region for which these approximations are

more reasonable, the relevance of a solution that ne-

glects the nonhydrostatic and nonlinear effects within

the region of large latent heat release is certainly ques-

tionable. It appears that to some extent the linear hy-

drostatic solution has similarities with the fields of ob-
served and numerically simulated systems, especially
exterior to the convective region. Even in the convec-
tive region some of the broad characteristics of the lin-
ear hydrostatic solution are retained. A linear nonhy-
drostatic model of a supercell storm (Lin and Li 1988)
also appears to replicate some of the features of a highly
nonlinear system. Within stratiform regions the linear
and hydrostatic approximations are more reasonable.
We present a term analysis for the gravity wave pro-
duced in a two-dimensional numerical simulation of
Florida convection, which shows that it is predomi-
nantly linear in character, even though within the con-
vective region nonlinearities are significant.

The heating profiles used in this study are based on
results of Houze (1982) and Johnson and Young
(1983) who emphasize the differences that exist be-
tween convective and stratiform regions. They find that
for convective regions of tropical mesoscale systems
the heating profile has warming at all levels with a
maximum at midlevels, whereas in stratiform regions
there is a warming peak in the upper troposphere and
a cooling peak at low-levels. In this study, we do not
attempt to use a spatially distributed heat source having
the characteristics of a narrow convective region with
a larger trailing stratiform region, which is often the
case for squall lines, but instead look at the response
to these individual components.

In section 2, an analytical solution is derived for a
rigid lid. In section 3, we extend these results by ob-
taining a solution for a semi-infinite region. In section
4, an analytical solution is found for a pulsed heating
function. In section 5, a term analysis is presented for
a gravity wave produced in a two-dimensional simu-
lation of Florida convection.

2. Solution for a rigid lid

The two-dimensional incompressible hydrostatic
Boussinesq equations are

o i%w (1)
i%pz—l:b (2)
%?+WN2=Q (3)
2%, 4)
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where u, w are the velocities, p’ is the perturbation
pressure, b is the buoyancy, N is the buoyancy fre-
quency per mass unit, and Q = g0,/ c,T is the thermal
forcing with Q,, the heating rate per unit mass. For
subsequent derivations the prime on p is dropped. For
po constant, these equations can be manipulated to ob-
tain an equation for the perturbation pressure,
2

i} ]

S0t NDu=——

a2 D: Dixx 310z (p0Q).
For this solution we set po to a constant equal to 1 kg
m~3. The form of the thermal forcing used is

Q= Qo(

where Qo is the magnitude of the thermal forcing, a is
the half-width, and [ = n« / H is the vertical wavenum-
ber of the heating between z = 0 and z = H. The mag-
nitude of the heating rate is Q0 = Qoc,T/gJ kg ™' s
(when values of Q,, are given it will be for an assumed
value of 7= 273 K). Since the heating is not a function
of time, the rhs of Eq. (5) is zero. Taking the Fourier
and Laplace transforms of Eq. (5) we obtain

(5)

2

e )sm(lz), (6)

. d . .
Szpzz i 2 (t = 0) - kzsz = 0:

ot
where () indicates the Fourier transform and () in-
dicates that both the Fourier and Laplace transforms
have been taken. From Egs. (2) and (3) we find

(7)

a
_pzz(t =

% 0) = Q.. (8)
Therefore, Eq. (7) becomes
—ak
BN = P2 teosi, (9

where A = kN/s. From Egs. (2), (3), and (6) the ap-
propriate boundary condition at z = 0 and z = H, the
height of the rigid lid, is df/dz = 0. The solution to
Eq. (9) is found to be

Qoae ™ cos(lz)

P= s+ (kN/D?Y (10)
The inverse Laplace transform gives
. _ _ Qoae™™ . ( kNt
p= N cos(/z) sm( ) (11)

Taking the inverse Fourier transform and using Egs.
(1)-(4) to derive the other variables, the following
equations are obtained:

__ Qoa cos(lz) 1 _
p(x,z,t)= ———-———N 3 [tan

+ tan_‘(———Nt/i_ x)] (12)

N+ x
a
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bix. 2. 1) = Qoal sm(lz) 1 [ (Nt/l + x)
+ tan (Nz/l )] (13)
_ Qosin(lz) a?
wix, 2, 1) = N? { x2+ a?
{ 1 + 1
1 2 _ 2
5 | +(Nt/l+x) : +(Nt/l x)
a a
(14)
Qoal cos(iz) 1 Nt/ + x
u(x, z, t)=—£—ﬁz——-§{tan 1(——;—)

- tan“(—]\ﬂé—:ﬁ) -2 tan"(g)] . (15)

The solution can also be derived for a forcing that is
switched on at ¢ = T, thus having the form of a step
function. The solution is identical except translated in
time and becomes exactly identical when T = 0. The
solution for the perturbation pressure [Eq. (12)] is
comprised of two waves moving in opposite directions.
The arctangent form of these two waves [i.e., bracketed
term in Eq. (12)] is shown in Figs. 1a and 1b. Initially
the arctangent curves sum to give zero. At a later time
the curves have moved in opposite directions and sum
to give a net perturbation shown by the dashed line in
Fig. 1b. The negative of this curve shows how the sur-
face pressure field evolves in response to warming ( Qg
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FIG. 1. Arctangent curves: (a) initially; (b) later. The dashed
curve shows the summation of the two waves.
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F1G. 2. Solution for vertical velocity: (a) initially; (b) later.

positive, n = 1). The equation for vertical velocity is
a little different. Figures 2a and 2b show that initially
the upper curve a?/(x? + a?) is negated by the sum
of two lower curves. These lower curves move in op-
posite directions leaving upward motion in the center
if Qy sin(/z) is positive. The scale of the moving sub-
sident regions depends on a, the half-width of the heat-
ing function. The amplitude is directly proportional to
the heating rate and inversely proportional to N2, These
two outgoing waves have also been found in the studies
by Lin and Smith (1986), Bretherton (1988), and
Bretherton and Smolarkiewicz (1989).
The speed of the waves is given by

c=—.
nw

(16)

Hence, the speed at which the waves travel depends
on the Brunt-Viisild frequency and the vertical wave-
number of the forcing. That the speed of internal grav-
ity wave modes depends on their vertical scale is well
known and emphasized in an early study of sea-breeze
circulations by Geisler and Bretherton (1969). The
amplitude of the response approaches a constant value.
For instance, Fig. 1 for the horizontal variation of pres-
sure shows that, once the region of the arctangent curve
having the largest gradient passes a point, the two curves
sum to slowly approach . The time taken for the am-
plitude of the response to reach 90% of the maximum
value attainable is given approximately by ¢ ~ 6nwra/
NH.Forn=1,a=10km, N=0.01s"',and H = 10
km, we find ¢ = 0.5 h. This behavior can also be de-
duced from the solution for the displacement, deter-
mined by Lin and Smith (1986).

Figures 3a-d show fields of u, w, p, and b, respec-
tively, at ¢ = 2 h, for n = 1 and @, positive. The values
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of Qmois 2 J kg™! s™!, which, for H = 10 km and a
=10 km, gives a net heat input of 2Hap,Qo = 4
X 108 J s7' m™! (where p, is taken to be 1 kg m™3).
This would correspond to a precipitation rate over a
region of width d = 20 km of (4 X 10 J s™' m™')/
(pwLld) ~ 30 mm h™', where p,, is the density of water
and L is the latent heat of condensation. The heating
profile is a half-sine wave in the vertical. Note that
since the solution is symmetrical about the x = 0 axis,
results for this and subsequent figures are only shown
for x > 0. The horizontal velocity field shows low-level
inflow and upper-level outflow. Compensating subsi-
dence outside the updraft leads to deep warming. The
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FIG. 3. Rigid-lid solution for the n = 1 mode. Q0 = 2.0 J kg™!
s, a=10km, H=10km, N=0.01s"!, and s = 2 h. (a) Horizontal
velocity. The contour interval is 0.4 m s ™', (b) Vertical velocity. The
contour interval is 6 cm s™!, (¢) Perturbation pressure. The contour
interval is 12 pascals. (d) Perturbation buoyancy. The contour interval
is 0.006 m s~2, and the label scale is 100.
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pressure perturbation is negative below H/2 and sym-
metrical with a high above H/2.

The n = 2 mode is not shown, but is easy to picture,
since it can be thought of as similar to the n = 1 mode
but with one full cycle of sinusoidal oscillation in the
vertical and one-half the propagation speed [ this is dis-
cussed by Gill (1980) for a similar type of problem].
For Q, negative, the heating function is a sine wave in
the vertical with cooling at low levels and warming
aloft. Hence, there is midlevel inflow with outflow at
upper and lower levels. At x = Q, there is upward mo-
tion aloft and downward motion below. A low pressure
occurs at midlevels with symmetrical highs above and
below. The buoyancy perturbation is positive above
H/2 and negative below.

Cloud lines often consist of a narrow region ~20
km wide of active convection and a larger trailing
stratiform region. Johnson and Young (1983) in a
study of winter MONEX (International Winter Mon-
soon Experiment) systems emphasize the differences
in the apparent heating profiles (Yanai et al. 1973)
between these regions. In the convective region, the
heating profile has a warming at all levels with a peak
in the midtroposphere. In the stratiform region there
is a warming peak in the upper troposphere and a cool-
ing peak at lower levels. The heating profile for the n
= 1 mode is similar to the situation in the convective
region. To obtain a heating profile similar to that found
by Johnson and Young (1983, see their Fig. 6) the two
modes are superimposed as shown in Fig. 4. Note that
sine functions are not capable of representing the weak
surface cooling indicated in the observations. These
sum to give a region of warming above a weaker low-
level cooling. Figures 5a—d show fields of #, w, p and
b, respectively, at 1t = 2 h. For each mode Q,,,0 = 1]
kg~! s™!. The individual modes are quite apparent.
The deep, fast moving # = 1 mode produces subsidence
warming at large distances from x = 0. Associated with
this mode is flow towards the source at low levels and
away from it aloft, which is evident for large x. The
broad surface low is due to this mode. The n = 2 mode
contributes to upward motion aloft and downward
motion at low levels at x = 0. It is associated with
midlevel inflow and upper- and lower-level outflows.
The low-level outflow from the second mode and the

n=2

FiG. 4. Vertical distribution of the thermal forcing for » = 1 and
2 and their sum. Q, is the same magnitude for each mode, positive
for n = 1, negative for n = 2.
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FI1G. 5. Rigid-lid solution for superposition of n = 1 and 2 modes.
The magnitude of Q,0is 1.0T kg™'s™', a=10km, H = 10 km, N
=0.01s"'and = 2h. Asin Fig. 3.

low-level inflow from the first mode results in a surface
gust front at x ~ 115 km.

The fields of u, w, p, and b show some similarity to
those that occur in both simulated and observed me-
soscale convective systems. For example, Figs. 17, 18,
and 19 of Nicholls (1987) show the early stages of
the development of a numerically simulated tropical
squall line that developed in a low-level jet. The basic
pattern of the pressure field corresponds fairly well to
the analytical solution (Fig. 5c). Observational studies
of convective lines also indicate the presence of a sur-
face mesohigh with surface mesolows on either side
(Fujita 1963; Hoxit et al. 1976; Zipser 1977; Johnson
and Nicholls 1983; Johnson and Hamilton 1988) and
the existence of a mesolow above the surface mesohigh
(LeMone 1983; LeMone et al. 1884). The analytic
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FIG. 6. Solution for a semi-infinite region. As in Fig. 3, except the contour intervals for u, w, and b are 0.6 m s~', 12 cm s, and 0.008

m §~2, respectively.

buoyancy field (Fig. 5d) does not show the density
current that occurs in the Nicholls (1987) simulation
but does portray the symmetrical regions of deep
warming on either side of the convection. A noticeable
difference is that the simulated squall line shows a tilted
front-to-rear flowing updraft and rear-to-front flowing
downdraft. However, the n = 1 modal response is
clearly seen in the perturbation horizontal velocity field
outside the convective region, which shows low-level
flow towards the system and upper-level flow away.
The simulated vertical velocity field shows subsidence
at the leading edges of the deep warm regions. Vertically
propagating gravity waves are evident in the numerical
simulation and the convective-scale updraft mass flux
appears to be balanced mainly by the convective-scale
downdraft. Hence, for this case the main similarity be-
tween the numerical simulation and the analytic model
is exterior to the convective region for which the n = 1
mode is the dominant response. The » = 1 modal re-
sponse is also seen outside the region of active con-
vection for the case of weak shear aloft simulated by
Nicholls et al. (1988, Figs. 3 and 4). This system formed
in an environment with moderate low-level shear and
had a vertically oriented updraft for the first three hours
of its lifetime. By two hours of simulation time the
deep fast moving subsident warming regions had al-

ready exited the 300-km wide domain (Fig. 3d of that
paper). Also noticeable in that simulation was that a
waterloading effect significantly modified the pressure
field within the precipitation shaft and a low-level
warming occurred above the cold pool. The systems
simulated by Nicholls et al. (1988) produced surface
cold pools which are very likely highly nonlinear in
character. Furthermore, the spatial distribution of the
heating in those simulations was more complicated
than for the analytic model discussed in this paper since
the updraft is often tilted from the vertical.

The winter MONEX systems studied by Johnson
and Kriete (1982) begin as clusters of cumulonimbus
clouds but transformed into a mesoscale cloud system
characterized by a large stratiform cloud layer. Figure
6 of Johnson and Kriete (1982) shows a system with
midlevel inflow on either side of the system feeding
upper and lower level downdrafts, which is a feature
of the simple model presented here for the stratiform-
type heating profile. Certain environments may be
more likely to show the modal responses found for this
simple model. The convective lines that form over the
Florida peninsula usually occur in an environment that
is only weakly sheared (e.g., Blanchard 1985) and they
do not produce an extensive stratiform region. Hence,
it might be expected that the » = 1 mode would be the
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dominant response. The solution found for the strat-
iform-type heating profile (n = 1 and » = 2 mode com-
bined ) may be more applicable for rainbands forming
in weakly sheared environments that have a deep layer
of convectively unstable air (allowing midlevel air to
enter the updraft circulation) and are not conducive
to the formation of strong cold pools. The spatial dis-
tribution of the prescribed heating function is fixed.
This may be reasonable for the convective region of a
cloud line, but stratiform regions typically undergo a
lengthy growing stage. Hence, the spatial distribution
of heating can depend on the evolutionary stage of the
convective line as well as environmental influences
controlling the type of system that develops.

Although idealized, some interesting dynamical re-
sults emerge from this model. For a stratiform-type
thermal forcing of fixed spatial extent, deep tropo-
spheric subsidence warming occurs in response to the
n = 1 component of heating, which rapidly propagates
away from the system. A midlevel inflow develops in
response to the n = 2 component of heating which
grows outward from the source at half the speed of the
n = | mode. Associated with this » = 2 mode is warm-
ing in the upper troposphere and cooling in the lower
troposphere. This cool region also expands outward
far beyond the strong source region due to adiabatic
cooling produced by low-level compensating uplift, in
much the same way as compensating subsidence causes
warming to extend far beyond the strong heat source
region for the » = 1 mode.

3. Solution for a semi-infinite region

Consider the case where heating is confined below
H; then for a semi-infinite region the equations for
perturbation pressure in transformed space become

/
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—ak
Pr — N = Q"‘jj lcos(lz), for z<H, (18)
and
P=—Ap=0, for z>H. (19)

The boundary condition at z = oo is assumed to be
0p/9dz = 0. The solutions are

p = A cosh(Az)

_ Qoae 1 cos(Iz)

ore o i<H (0

and

p=Be ™™, for z>H.

(21)

Requiring that p and dp/dz are continuous at z = H,
the constants 4 and B can be determined. We find

. Qoae—ak COS(IH) ekN(z—H)/s+ e—kN(z+H)/s
P== [ 2 [ % + (kN/D)? ]
——Zﬁ@——} for z<H, (22)
I[s* + (kN/1)?) ’
and
. Qoae—ak COS([H) e—kN(z+H)/S _ e—kN(z—H)/S
P== 2 [ 5%+ (kN/1)? ]

for z>H. (23)
Using the convolution integral, the inverse Laplace

transform of Eq. (22) can be written:

—ak t -7
Bk, z, 1) = Q"“Ie {msgm)fo COS[M]-[JO(ZVkN(H— 2)7)

1

+ Jo(2QVKN(H + z) +7)]d7 — évcos(!z) sin(@)] , for z<H. (24)

The inverse Fourier transform of Eq. (24) can be written

p(x, 2, 1) = —Qova cos(lz).l [tan"(M/l + x) 4 1an"(Nt/l - x)] + Qoa cos(/H) J“"’ pmak
a a 2 0

N 2

0

Similarly for z > H, we find,

/

X {f cos[i(;—v(t - 7)]-[10(2VkN(H - 2)7) + Jo(2VKN(H + z)‘r)]d‘r} cos(kx)dk, for z< H. (25)

p(x,z,t)= —Q—;g Sﬁg—lﬂ J;w e"“"{J; cos[mt—_—‘r—)]- [Jo(QVEN(H + z)7)

l

— Jo(2QVKN(H — z)‘r)]dr} cos(kx)dk, for z>H. (26)
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Solutions for the other variables are given in the Ap-
pendix. For z < H they have the form of a sum of the
rigid-lid solution and another part involving the zero-
order Bessel function. The double integrals can be
evaluated numerically using Simpson’s rule and ap-
proximate expressions for the Bessel function.

If the anelastic continuity equation is used instead
of the incompressible continuity equation, the equation
for pressure is identical to Eq. (5). It is not necessary
to consider po a constant as long as it is understood
that po(z)Q(x, z) has the form given in Eq. (6).
Therefore, the heating rate is weighted by the factor 1/
po(z) compared to the case where po is assumed con-
stant. The variables u, w and b are also multiplied by
a factor of 1/po(z). This complication is necessary since
the solution for large z is required. The density variation
with height is taken to be po(z) = po(0) exp(—z/Hy),
where H, is the scale height. A term

&P
Cp Do

has been neglected from the vertical equation of motion
that should be retained for deep vertical scales ( Dutton
and Fichtl 1969). This approximation is made in order
to obtain an analytic solution.

Figures 6a~d show u, w, p and b, respectively, at 2
h for Q.0 = 2J kg™! s7! and the # = 1 mode. Com-
paring this figure with the rigid-lid case (Fig. 3), it can
be seen that the structure of the response is very similar,
in particular, close to the source region. Both solutions
approach a steady state [satisfied by the time indepen-
dent version of Egs. (1)-(4)] in a region that broadens
with time. A cool region develops above the heat source
and upward-propagating gravity waves are present.
Beneath the top of the heat source the magnitude of
the compensating subsidence compared with the mag-
nitude of the upward motion within the source region
is considerably less than for the rigid-lid case. Fur-
thermore, the compensating subsidence occurs over a
broader region, although this is not evident from the
figure due to the contour interval. This appears to be
consistent with the upward propagation of energy and
the necessity of balancing the upward mass flux within
the heat source region. However, even after several
hours the solution for the semi-infinite region still has
many similarities with the rigid-lid case.

It is interesting to compare the upward propagation
of gravity waves for the linear hydrostatic solution for
constant N with that of a nonlinear, nonhydrostatic
solution for a more realistic atmospheric environment.
(Comparison was also made with a nonlinear, non-
hydrostatic solution for constant N and reasonable
agreement was found for moderate heating rates.) Fig-
ures 7a and 7b show the linear hydrostatic solution for
vertical velocity and for Q0 = 2J kg™'s™!, N = 0.01
s!, H=5km, a = 10 km at ¢ = 1200 s and 3600 s,
respectively. .Figures 8a and 8b show the numerical

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 48, No. 16

solution for the same heat source using the Colorado
State University Modeling System (RAMS). The
reader is referred to Nicholls et al. (1991) for a de-
scription of the model. This latter solution is nonlinear,
nonhydrostatic and includes an eddy diffusion param-
eterization. The thermodynamic environment is a
Florida summertime sounding (Nicholls et al. 1991,
see Fig. 1). The horizontal resolution is 4 km and the
vertical resolution is 500 m. The upper boundary con-

-|
2.5 —— " cm s7)

L
75 100

12.5 T 7T 7T
10.0

7.5

z{km)

5.0

2.5

0.0

00

X (k)
(b)

FIG. 7. Linear hydrostatic solution for a semi-infinite region for n
=1,0m=20Jkg™"'s7', a =10 km, and H = 5 km. (a) Vertical
velocity at 1200 s. (b) Vertical velocity at 3600 s. The contour interval
is0.06 ms™".
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FIG. 8. Numerical simulation for the same heating function as in
Fig. 7. (a) Vertical velocity at 1200 s. (b) Vertical velocity at 3600
s. The contour interval is 0.04 m s,

dition at z = 28 km is a rigid lid. A weak dissipative
layer 5 km in depth is included at the top of the domain
to reduce reflection of gravity waves from the upper
boundary.

The linear hydrostatic solution shows a region of
upward motion extending in a jetlike flow from the
top of the heat source. This upward motion, which is
evidently a wave front, began with an almost vertical
orientation and tilted with time. The downward prop-
agation of phase lines with time indicates an upward
propagation of wave energy. The center of the com-
pensating subsidence moves from x = 20 km at 1200
s to x = 60 km at 3600 s. Regions of weak downward
motion occur both behind and ahead of the jetlike up-
ward directed flow. The numerical simulation at ¢
= 1200 s (Fig. 8a) shows a similar upward motion oc-
curring in a jetlike flow on e¢ither side of the heat source
(note that the magnitudes are not the same since w is
very sensitive to N which varies from ~0.012 s™! in
the lower troposphere to ~0.009 s™! in the upper tro-
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posphere). However, the upward motion appears to
be more vertically oriented in the upper troposphere.
Above the tropopause at 13.5 km the wave front be-
comes more tilted. Comparison of the linear hydro-
static solution with the numerical simulation at ¢
= 3600 s shows some significant differences. The main
region of upward motion slanting away from the top
of the heat source is apparent for both solutions. How-
ever, significant reflection is occurring at the tropopause
where there is an abrupt change in stability. It seems
as if the source is being projected onto the natural har-
monics that occur between the surface and the tro-
popause. For instance, downward motion occurs at x
= +160 km corresponding to an » = 1 mode for a
rigid-lid solution and H = 13.5 km. The compensating
subsidence seen in the linear hydrostatic solution at x
~ 60 km is also seen in the numerical model. However,
above this occurs strong upward motion, and this is
like an n = 2 mode. Trailing this at x = 40 km is a
slower moving n = 3 mode. As time goes on, more
wave fronts become evident above the heat source. In-
terestingly, the solution not only reaches a steady state
in a continuously expanding region beneath the top of
the heat source, but also above it, where an everwi-
dening undisturbed region forms. The regions where
compensating subsidence occurs outside the heat
source in Fig. 8b is evidently dependent to some extent
on the partially trapped gravity wave modes.

It is reasonable to conclude that a significant fraction
of the gravity wave energy is trapped by the change in
stability at the tropopause, but further investigation is
required to determine the actual amount. A detailed
analysis of the upward propagation of gravity wave en-
ergy is beyond the scope of this study. The effects of
vertically varying buoyancy frequency and wind shear
on the structure and propagation of gravity waves are
discussed by Lindzen and Tung (1976), Tripoli and
Cotton (1989a,b), Crook (1988), Schmidt and Cotton
(1990), and others.

A numerical simulation was also carried out for a
stronger heat source having a smaller horizontal scale
(a = 4 km), which led to vertical velocities in excess
of 10 m s™'. Nonlinear terms become important in
this case. Nevertheless, comparison with an identical
simulation but for a much reduced heat source showed
that the wave fronts away from the source had the same
phase.

Simulations by Schmidt and Cotton (1990) devel-
oped flattened layers of lower stratospheric cooling and
upper tropospheric warming. The linear hydrostatic
solution for the buoyancy field at 1 = 7200 s (Fig. 6d)
also shows a flattened layer of cooling above the level
of the heat source. This cooling develops due to upward
motion in the jetlike flow which tilts with time. Figures
6b and 7b indicate that downward motion occurs be-
hind the upward motion at upper levels which prevents
a persistent cool region developing aloft. However, just
above the level of the heat source downward motion
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does not occur behind the region of upward motion:
Mass balance is achieved by large-scale weak subsi-
dence ahead of the region of upward motion. The
magnitude of the cooling that develops just above the
heat source is larger than the warming beneath. John-
son and Kriete (1982) in an observational study of
Borneo systems found significant cooling in the lower
stratosphere. The results presented here show that lin-
ear dynamics can produce cooling above the level of
the heat source and that this can be significant even
for a constant V.

If a cooling rate is applied between the surface and
z = 5 km, then the solution is the same as in Figs. 7
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and 8, except the signs of the vertical velocities are
reversed. A strong cooling rate that extends to the sur-
face will create a density current for which nonlinear-
ities are important. Nevertheless, the partially trapped
linear modes are still forced. They appear to be an
important component of the response to low level
cooling and require further investigation.

4. Solution for a pulse forcing

Consider a pulse forcing for which the heating is
turned off after some interval 7. The solution for a
rigid lid can be shown to be

_ —Qua cos(lz).l A N(T+ 1)1+ x ANT+ 1) —x
p(x,z,1)= —~ 3 [tan [——————a ]+tan [—————a ]
— tan~l(w) + tan—l(_x;N_t’/_l)] .27
a a
bix, z.1) = Qoal sin(lz).l [tan"‘[N(T+ Y+ x} + tan"[N(T+ /1 — x]
. N 2 a a
— tan_l(w) + tan—l(w!)] . (28)
a a
Qo sin(lz) 1 : + 1
—Qp sin(/z ; .
w(x,z,,)=_°_]\75__.§ 1+[N(T+t)/l+x]2' 1+[N(T+t)/l—x]2
a a
1 1
- ! - _ ’ 2 (29)
1+[x+Nt/l}2 H_[x Nt/l}
a a
__QLa_l 1 JNT+)+x) N(T+1t)Il—x
u(x, z, t) = N2 cos(lz)z{tan [——————a ] tan [—————— P
_ tan"[x + Nt’/l] B tan"[x - Nt’/l” (30)
a a

where ¢’ is measured from the instant the forcing is
switched off (i.e., ¢’ = t — T'). Before the heating is
turned off, the solution is given by Egs. (12)-(15). The

arctangent form of the solution for perturbation pres-
sure (or buoyancy) is sketched in Fig. 9. It consists of
the two dashed curves which are a result of the earlier

Ir
w 2
o
=
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a
=
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2
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X

FIG. 9. Arctangent form of solution for a pulse forcing (see text for explanation).



15 AUGUST 1991

(ms")
'O T T !——_/T-J T
8 )
2.2
€6 \q
=
N 4 )
2
0 1 fad I 1 M 1
o} 100 200 300 400 500 600
X {km}
(a)
W{cms')
{¢] T v —— T T
8
€6
=
~ g
2
[} L i 1 P It -l
(o] 100 200 300 400 500 600
X{km)
(b)
P (Pascals)
1o ' S —— 7
o
E 6 B————————18
~N4 -
2
o] i i i ) e L L
0 100 200 300 400 500 600
X{km)
(e)
b (m 7% 10?)
10 —T — T T
al |.sﬁ
Eof (J
~ 4k
ol J
o] L ! b L
[¢] 100 200 300 400 500 600
X (km)
(d)

FIG. 10. Solution for a pulse forcing. As in Fig. 3,
T=2hand? =2h.

forcing and the two solid curves which negate one an-
other at ¢’ = 0, then subsequently move in the direction
indicated by arrows. As they move apart, the two solid
curves sum in the center canceling the perturbation
produced by the dashed curves, leading to an undis-
turbed region that broadens with time. The solid and
dashed curves move at the same speed producing two
disturbances traveling in opposite directions, similar
to the solution for the perturbed shallow water equa-
tions (see for instance, Gill 1982).

Figures 10a-d show fields of #, w, p and b, respec-
tively, for the same » = 1 heating profile used previously
(see Fig. 3), for T= 2 h and ¢’ = 2 h (i.e., the heating
is turned off at 2 h and these are the fields 2 h later).
The disturbance has separated into two parts moving
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in opposite directions, leaving an undisturbed state in
the region which was initially forced.

The disturbance is a clockwise rotating roll. At the
leading edge, downward motion produces adiabatic
warming, whereas at the back edge, upward motion
leads to adiabatic cooling. A positive pressure pertur-
bation exists aloft with a negative pressure perturbation
at low levels. The propagation speed of the disturbance
is NH/=. If higher-order slower moving modes are
forced, the n = 1 mode will separate from them.

This solution can also be used to build expressions
for a heating rate that is turned on at ¢ > 0 or for a
series of pulses. For instance, if a negative pulse starting
at ¢ = 0 is added to the solution for a positive pulse of
equal magnitude but of longer duration, a pulse starting
at a later time is obtained. In the next section we discuss
a gravity wave produced in a two-dimensional simu-
lation of Florida convection which has a similar struc-
ture to the solution found for a pulse forcing.

5. Term analysis of a numerically simulated gravity
wave

Simulations of convection over the Florida peninsula
were made using the Colorado State University Re-
gional Atmospheric Modeling System (RAMS). De-
tails of the model and simulations are presented in
Nicholls et al. (1991). During the morning, sea-breeze
circulations develop and move inland. By the early af-
ternoon, deep convection starts to develop at the sea-
breeze fronts. The strongest convection occurs during
the late afternoon as the sea-breeze fronts converge.
The subsequent decay of this strong convection pro-
duces two deep, oppositely moving, gravity waves.

Figures 11a-d show fields of horizontal velocity,
vertical velocity, perturbation pressure, and perturba-
tion temperature, respectively, in the region of one of
these waves. The gravity wave is moving from left to
right and was generated two and a half hours earlier.
It has the structure of a clockwise rotating roll. The
central region is warm and a high-pressure perturbation
exists aloft with a low-pressure perturbation near the
surface. Downward motion at the leading edge pro-
duces adiabatic warming, whereas upward motion at
the back edge leads to adiabatic cooling.

In order to compare the numerical model results
with those of the analytical model, the simulated fields
are analyzed in terms of the Boussinesq equations:

du 14dp ou du
o ppox  “ox "oz (3D
1o & __ow  ow
po 0z 0o ot ox
ow
- w— +g(0.61g, —q) (32)
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FIG. 11. Gravity wave produced in a numerical simulation of Florida convection. {(a) Horizontal velocity perturbation from the initial
state. The contour interval is 2 m s™'. (b) Vertical velocity. The contour interval is 10 cm s™'. (c¢) Perturbation pressure. The contour
interval is 0.3 mb. (d) Perturbation temperature. The contour interval is 0.4°C.
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where 6’ is the perturbation potential temperature, ¢/,
is the perturbation water vapor mixing ratio, and g, 1s
the liquid water mixing ratio. The terms on the left of
these equations are linear terms for which we have de-
rived analytical solutions for a prescribed heating
function. In order to verify that the simulated gravity
wave is approximately linear a term analysis is carried
out. Figures 12a-d show results for the four terms in

the horizontal momentum equation for the gravity
wave shown in Fig. 11. It can be seen that the balance

is predominantly one between the local change of u
and the horizontal gradient of the perturbation pres-
sure. A term analysis for the other equations shows the
disturbance is nearly in hydrostatic balance and that
for the thermodynamic equation, the balance is be-
tween the local change in buoyancy and wN?. Hence,
the nonlinear terms are relatively small (the magnitude
of the subgrid-scale turbulence terms used in the nu-
merical simulation are also small).

Within the convective region nonlinear terms are
significant. Nevertheless, the linear terms have a broad
similarity to what they would be in the absence of non-
linear effects and are usually slightly larger in magni-
tude than the nonlinear terms ( not shown). Figure 13
shows the time variation of the net heating occurring
in the convective region during the formative stage of
the gravity wave. There is a large peak at 1630 EST
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FIG. 12. Term analysis of the horizontal momentum equation. (a) du/dt, (b) u(du/dx), (c) w(du/dz), (d) p~'(dp/dx). The contour

interval is 0.001 m s~' and the label scale 10*.

followed by a secondary peak at 1700 EST. The first
peak occurred when the sea-breeze fronts converged
and a cumulus convective cell explosively developed.
The cell then decayed in intensity which was apparently
associated with the fallout of precipitation into the up-
draft. It was at this stage that the two oppositely moving
gravity waves formed. The collapse of this cell is evident
in the sharp decrease in the heating rate that occurs at
1640 EST.

Equations (31)-(34) can be combined into an
equation for the perturbation pressure:

2

9 LNy =38 _9B_ -\ _ 4
at2P”+Np’“_ataz(p°Q ot C) i
(35)

where
A_ o ou
Po ox 0z
B ow ow ow
—=—+4u—+w—+g(06lg, -
o TS, g(0.61q; — qi)

C_ oo\, (¢
o lax\f6) " " az\%%,)

This equation is identical to Eq. (5)if 4 = B = C
= (. The additional terms are only large within the
region of strong convection, so it appears that dB/dt
and C could be considered as resulting in a modified
source term acting on the far field. A similar interpre-
tation is made by Raymond (1983). However, since
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FIG. 13. Time variation of net heating within the convective region.

the term involving 4 is not within the same derivatives
as Q, its effect is likely to be more complicated. The
effects of vertical transports of horizontal momentum
enter through this term so it might be associated with
an asymmetrical response such as seen in many squall
lines where there is a front-to-rear flowing updraft and
a rear-to-front flowing downdraft. Nevertheless, there
is clearly a similarity between the gravity wave pro-
duced in the numerical simulation of Florida convec-
tion and the analytic solution for the pulse forcing.

There is evidence of a less well-defined wave trailing
the main gravity wave. For instance, there is downward
motion at x = 165 km in Fig. 11b. This may be caused
by the second heating peak (Fig. 13). It is not necessary
that the downward mass flux within the first gravity
wave should balance the upward mass flux at its back
edge, since it may be partly compensating for upward
motion within the source region. Certainly, the heating
rate shown in Fig. 13 does not decrease to zero when
the wave forms but only to two-thirds of the peak value.
For this two-dimensional simulation, compensating
subsidence does not simply occur uniformly over a
broad region. It occurs in certain regions within a train
of gravity waves that are forced by cellular convection.
The magnitude of the downward motion within the
main gravity wave (Fig. 11b) is less than the upward
motion at the back edge. However, it occurs over a
broader region. This structure may be a result of gravity
wave energy escaping upwards as discussed in sec-
tion 3.

6. Conclusions

In this paper, a simple model of the forced gravity
wave response to prescribed heat sources and sinks is
developed. The main conclusions are: 1) although the
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model is linear, it reproduces some of the features ob-
served in mesoscale convective lines; 2) the response
propagates away from the source with a speed that de-
pends on the Brunt-Vdisilid frequency and the vertical
wavenumber of the heating; 3) as the wave front prop-
agates past a region, the fields of u, p, and b initially
increase rapidly and then slowly approach a constant
value; and 4) two modes appear to be of particular
interest. The # = 1 mode which is deep and fast moving
(~30 m s™') produces subsidence warming at large
distances from the source. The scale of the subsidence
depends on the half-width of the heating and can be
concentrated in a fairly narrow region. The n = 2 mode,
which is slower moving (~15 m s™'), is associated
with midlevel inflow and upper and lower level out-
flows; 5) for a semi-infinite region, although gravity
wave energy can propagate upwards, the solution still
shows a marked resemblance to the rigid-lid solution;
6) significant trapping of wave energy is produced by
the change in stability at the tropopause; 7) the results
of this linear two-dimensional model suggest that when
systems decay there is not an overshooting in the up-
draft region followed by a subsequent rebound. Nor is
upward motion forced by convergence into the broad
surface mesolows on either side of the system. As in
the case of the perturbed shallow water equations, the
disturbance separates into two parts moving in opposite
directions; 8) the traveling disturbances caused by a
sudden decrease in the forcing have a roll-like structure
and are similar to the gravity waves produced in a two-
dimensional numerical simulation of Florida convec-
tion; and 9) a term analysis of the simulated gravity
wave confirms it is predominantly linear in character.

The rapid extension of the surface mesolows on ei-
ther side of a simulated squall line was noted by Ni-
cholls (1987). The effect of the n = 1 mode, outside
the region influenced by the » = 2 mode, is to create
a broad region of rather uniform low surface pressure
which builds quickly away from the forcing region.
The pressure field can be decomposed into partial
pressures from buoyant and dynamic contributions in
the manner described by Rotunno and Klemp (1982).
In the model presented in this article, dynamic terms
that arise from the inclusion of nonlinear advective
effects have been omitted. Dynamic terms become im-
portant in regions where there is strong shear and large
vertical motions (Rotunno and Klemp 1982; Schiesin-
ger 1984; LeMone et al. 1988; Nicholls et al. 1988).

The studies by Lin and Goff (1988 ), and Bosart and
Seimon (1988) of persistent large-amplitude gravity
waves suggest that they were initiated by convective
systems. The results of this study may be relevant to
this initiation mechanism. The analysis of Lin and Goff
(1988) indicated that the disturbance they observed
was a type of solitary wave (or soliton ) that propagates
along an inversion for which nonlinear and dispersive
effects are predominant, unlike the linear gravity waves
obtained in this study. '
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Clearly there are limitations to a model that is linear,
hydrostatic, uses prescribed forcing, and which has a
nonsheared motionless initial state. However, it does
shed light on a number of features that have been ob-
served and simulated by more complex models. It also
provides a foundation for the stiidy of the energetics
of thermally forced gravity waves. We are currently
investigating how much of the latent heat energy re-
leased in thunderstorms is propagated away by this type
of gravity wave.
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APPENDIX

Semi-infinite solution for the perturbation buoyancy,
vertical velocity, and horizontal velocity:

b(x, z,t)

_ Qoalsin(lz).l L Nt/l+x
- Chelant=) z[m (——-a )

+ tan-! Nt/l—x +Q0acos(lH) J‘°° —ak
a 2 o ¢
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