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ABSTRACT

The approximate equations of motion derived by Batchelor in 1953 are derived by a formal scale analysis,
with the assumption that the percentage range in potential temperature is small and that the time scale is
set by the Brunt-Viisili frequency. Acoustic waves are then absent. If the vertical scale is small compared
to the depth of an adiabatic atmosphere, the system reduces to the (non-viscous) Boussinesq equations. The
computation of the saturation vapor pressure for deep convection is complicated by the important effect of
the dynamic pressure on the temperature. For shallow convection this effect is not important, and a simple

set of reversible equations is derived.

1. Introduction

In a recent paper on the behavior of convective
phenomena in the atmosphere, Charney and Ogura
(1960) have used a simplified form of the fundamental
hydrodynamic equations for a perfect gas. For con-
venience and for reasons to be developed later, we will
refer to this simplified set of equations as the anelastic
equations. These anelastic equations are identical with
a set of equations derived by Batchelor (1953) on what
seems to be the simple assumption that the distributions
of pressure and of density are always close to the dis-
tributions of pressure and density in an adiabatically
stratified atmosphere. Charney and Ogura, on the
other hand, were interested in the ‘“elimination” of
sound waves from the hydrodynamic equations, since
sound waves require that a very small time increment
be used in a numerical finite-difference integration.
From this viewpoint, it is clear that an assumption
about the time scale must be made in deriving the
anelastic equations. In this paper we will present a
more systematic scale analysis than was done by either
Batchelor or by Charney and Ogura, and show that
both assumptions are in fact necessary.

2. Basic equations and assumptions

In our analysis, molecular effects such as viscosity
and conduction will be omitted. We will consider
motions limited vertically by two parallel fixed bound-
aries separated by the vertical distance d. This distance
will be used as a length unit and the symbol = will
represent an as yet arbitrary time unit. These units
will be used to scale the velocities and the space and
time coordinates. Instead of using the pressure p as a
variable in the equations, it will prove more convenient

! Research performed under contract G18985 with the National
Science Foundation.

to use the non-dimensional variable 7 :

7=(p/P)", ¢y

where P is a reference pressure, and « is the ratio
R/cp=(cp—c,)/cp. In place of the density (p) the
potential temperature will be used. The symbol 6 will
represent this in non-dimensional form, with the symbol
O representing a constant mean value of the actual
potential temperature. Thus,

T=0-70, )

where T is the absolute temperature, and both 7' and
© are given in degrees Kelvin. The potential tempera-
ture is related to the specific entropy ® by the relation

$ = constant+c, In(©4) 3
=constantc¢, Ind, @

while T, p, and p are related by the usual equation of
state:

p=pRT. @

The basic equations can then be written in non-
dimenstonal form as follows:

a? \dv
( )——= ~0Vr, 5)
72,9/ dt
d? \dw onr gd
(L) o
T2,®/ di 3z \c,®
d[l a+(1 1)1 ] it
—! In —_—— =V. —_—
7 . nwr v+ P )
dé
—=0. ®)
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All symbols except the constants d, =, ¢, ©, and g
in these equations are non-dimensional. v is the hori-
zontal velocity and V is the (non-dimensional) hori-
zontal gradient operator. In (8) we have assumed
adiabatic motion. This will later be generalized to
include heating of the air by the release of latent heat
under certain conditions.

Other than the assumption of adiabatic motion and
neglect of the irreversible molecular processes, no
physical assumptions have yet been made. The first
assumption we make is that 68, the non-dimensional
potential temperature, is almost constant. This may
be expressed as

6=1+0(e). )

The small number e thus represents the percentage
variation of potential temperature in the region.

e=A0/@=A%/c,. (10)

Our second assumption will be a choice of the time
scale, r. For this we refer to the theory of small oscil-
lations in a resting, isothermal atmosphere (Bjerknes
et al., 1933; Eliassen and Kleinschmidt, 1956; Eckart,
1960). This theory shows that two types of wave motion
can exist under these circumstances, acoustic waves and
gravity waves. The acoustic waves in general have high
frequencies, while the gravity waves have low fre-
quencies.? The frequency separating these two classes
of wave motion is the well known Brunt-Viisdld
frequency, NV:

N2=gd Inf'/a7". ¢5))

(Everything in this equation is dimensional.) In our
analysis of deep convection we will assume that we are
interested only in motions whose time scale is similar to
that of gravity waves, and attempt to eliminate the
high-frequency acoustic waves by an appropriate
choice of the time unit, 7. The correct choice is clearly

r~N-1~ (d/ge)k. (12)

For d~10 km, and e~0.1, 7 is about 100 sec. If our
derivation of a set of approximate equations is correct,
our final equations (when linearized) should only
contain oscillations whose frequency is less than .
This is verified in section 4.

It will be convenient to introduce the symbol 8 for
the non-dimensional ratio appearing in (6):

B=gd/c,O0=d/H. (13)

H=¢,0/g is the depth of an isentropic atmosphere
with a uniform potential temperature ® and a value

2 The “Lamb waves’ are an exception to this. They represent
a degenerate type of acoustic wave with no vertical motion. They
propagate horizontally with a constant velocity, so that their
frequency is proportional to the horizontal wave number. The
perturbation analysis in section 4 will show that these waves are
not present in our modified system of equations.
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of x equal to 1 at 2=0. H is about 30 km for values of
® typical of the troposphere. (9), (12), and (13) may
now be introduced into (5)-(8):

eBdv/dt=—gVr, (14)
eBdw/dt=—00r/dz—, (15)
d 1 dw
~l:]m9+<1——> lmr]=V-v+——-, (16)
dt K Jdz
dé/dt=0. 17)

3. The anelastic equations

The basic approximation we will now apply is that

e is a small quantity, while all other variables, parame-
ters, and differentiations are of order unity. We expand
all dependent variables as a power series in e:

V=Votevi+evet-- -

w=wo+ ewr+ wat - - -

7r=1ro+€1r1+ emat- -

0=1+4ef+ €0t - - -.

(18)

The special first term for # is taken from (9). Sub-
stituting these expressions into (14) and (15) and
equating terms of zero order in ¢, we get

Vmro=0. (19)
dmwo/ dz=—4. (20)

Together these show that mo must be of the form
wo(2,8) =m0 (0,1) ~Bz. (21)

This is the distribution of 7 in a hydrostatic atmosphere
of uniform potential temperature equal to ® and a
variable surface pressure given by 7o(0,¢). The density
in such an atmosphere is given by

po= (P/R@)ro(”“)—l. (22)

The zero-order terms from the continuity Eq (16) may
now be collected, and with the help of (21) and (22)
can be condensed into the equation

dpowy
9z

dpo
;ﬁ—-f"v'po\’o"f' =0, (23)

If we now require that w, vanish at 2=0 and z=1, and
that the horizontal average of V-povo also vanish (e.g.,
by requiring the normal component of vy to vanish at
fixed lateral boundaries) it can be readily shown that
dpo/dt must vanish in (23) and that mo(0,) in (21) must
be a constant. This constant can be conveniently set
equal to 1, by selecting a fixed value of po at z=0 and
using this for the reference pressure P. 8<1 then in-
sures that po and o are everywhere positive.
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The continuity equation is therefore

V- poVot+ 8puwo/ 92=0, (24)
with po determined by (22) and the relation
mo=1—0z. (25)
Introducing (25) into (2) we find that
To=Omy= 00— (g/c,)7, (26)

with 2’ in dimensional units.

The equations necessary to complete the anelastic
system are obtained by collecting the first-order terms
in e from (14), (15), and (17).

Bdvy/dt=—Vr,, (27N
Bdw,/dt= — o1/ 8208, (28)
d6:/di=0. (29)

To avoid excess subscripts in these and other equations,
the individual derivative d/dt is now understood to be
evaluated with vy and w,:

d/di=9/dt4vy- V+w,d/ 2.

The anelastic system then consists of (24) together
with (27)-(29). The relation of 7y to §; and =y is
obtained by expanding (2):

(Tl/To) =01+ (7!'1/7!'0). (30)

This relation will be important in the discussion of the
saturation vapor pressure.

The following energy conservation equation is satis-
fied by this system:

ad :
5; /pg[—% (V02+'I/Uo2)—201]dV=0. (31)

The only restriction on 8y is that it is not greater than 1
in magnitude. In particular, the horizontal average of
61 need not vanish. (31) then shows that for adiabatic
motion, the kinetic energy will increase only if 8,
decreases at small values of z and increases at larger
values of 2, ie., if the average static stability is
increased.

If dimensional variables are introduced into (31),
the term —26; becomes — gz’ (ef)), where 2’ is the actual
height. On the other hand, if the usual expression
o(c,T+gs') for the internal and potential energy per
unit volume is expanded in ¢, we obtain the following
expression

p(csT+g2') = po(c,To+g5")
+€P0[Cv®(171/170)—gz'91]+ s

The term (p:1/po) appearing here has evidently been
eliminated in (31) by our choice of r.
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Eckart and Ferris (1956) have considered the
“external energy density,” E, of small linearized
perturbations on a resting stratified atmosphere. £
consists of kinetic energy, “thermobaric” energy, and
“elastic” energy. The elastic energy is proportional to
the square of the pressure perturbation. If the set of
Eq (24)-(29) are subjected to the same linearization,
they yield the same form for E except that the elastic
energy is missing. For this reason, it seems appropriate
to use the adjective “anelastic” to describe them.?
“Sound-proof” might also be appropriate, as will be
demonstrated in the next section.

Another important point concerning the anelastic
system is that the variables v, wo, 71, and 6; are not
completely independent; the distribution of #; must
always be such that the accelerations in (27) and (28)
continue to satisfy the continuity Eq (24). This is
pointed out by Batchelor (1953) and is also encountered
in the theory of incompressible flows. The net result is
that =y must be determined by the solution of an elliptic
equation:

6 61r1
V- poV7rl+——(po-—)
dz\ 9z

dpf; vy
=g-———p3V- [po(vo . VVO+ZUO~):|
0z 0z

0 3'&00
- ﬂ‘"[Po(Vo‘ Vwo'*"wl)"‘“)jl‘ (32)
03 dz

Boundary conditions for r; are given by the vanishing
of Vry at lateral boundaries and of (dw1/dz—B0:1) at
the top and bottom boundaries. These boundary con-
ditions determine r; except for an arbitrary constant.

4. Perturbation solutions of the anelastic equations
We consider small perturbations—vy’, w', =/, and
8y, superimposed on a basic state given by 8:
01=03, o=constant.
According to the scale analysis, the size of ¢ is at most
=+1.

Let the disturbance quantities be of the following
form:

vwW=[U(2),V(5)]¢

wo' =W (z) ¢

7y =pU(z)-¢

/=5(2)-¢.
Here ¢ =exp i(kx+ly+vt). The linearized perturbation
" 5 Suggested by J. Charney.
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equations may then be written as

wlU=—kll,

wV=—1lll,

wW=—dIl/dz+S,
wS+ocW=0

ipo(RU-+IV)+d(poW)/dz=0.
The following differential equation for W is readily

obtained 4
dri dpoW
——|:—— :|+>\2W=O,
dzlpy dz

(33)

where A= (k2+412) (¢ —»2)»~2. The same equation is also
satisfied by W*, the conjugate of W.

We require that W and W* satisfy the boundary
conditions

W and W*=0 at z=0 and 3z=1.

Multiplication of (33) by psW*, followed by integration
from z=0 to 1, then produces the following equality :

11 |dpoW |2
/ — dz=)\2/
Jo po 0

Both integrands are positive definite, showing that A2
is positive. Solving for »%, we obtain

= (BHP)/ (B+P-HAD).

Since ¢ is at most equal to 1 in magnitude, the positive
nature of A2 ensures that the magnitude of » is less than
or equal to 1, as was implied by our choice of time scale

(12).

1
p()l W \ 2dZ.

dz

(34)

5. Comparison with the analysis of Batchelor

Batchelor’s form of the anelastic equations
(Batchelor, 1953) is given by his Eq (22), (23) and
(24). They are formally identical with our Eq (24)-(29)
if the following relations hold between our variables
and those of Batchelor:

0= Pa,

P0=Pa,
epr=p— P
€01= (p*—pa*)/pa*‘

These relations can be readily verified by first rewriting
our system in dimensional units and then expanding
the variables 7; and 6y in terms of $ and p by means of
(1), (2), and (4).

Our analysis has definitely required two assumptions,
namely the restriction of e=A6/® to small values,

(35)

¢ The special case W=0 corresponds only to steady horizontal
rotational motion, with »=0. Lamb waves are therefore absent.
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and the selection of the time scale 7 as that given by
the reciprocal of the Brunt-Viisili frequency. It might
appear from Batchelor’s derivation of his Eq (22)-(24)
that he had made only one assumption—the closeness
of p and p to p, and p,—and that no assumption about
the time scale was necessary in his development. It
can be shown, however, that there is an implicit
assumption about the time scale present in his analysis.

Batchelor’s time unit is equal to the quotient of a
typical length L, divided by a typical velocity, U. In
the derivation of his continuity Eq (23),

from the original equation
V-v+ 9w/ dz= —p\dp/dl,

it is necessary to expand the right side of the latter
equation in the form
p—pa\"" d /p—pa
“r) 50
Pa AN

1 dp.
e (1
pa dt
The essential part of Batchelor’s argument might seem
to be simply that (o—pa)/pa is small and that therefore
the last term in (36) can be neglected. But this term
can really be neglected only if

d /p—pa d /p—p\ U/p—pa

_(p P )N U*(p p >~’(p p )) 37)

AN EAN M L\ p,
is small. At this point it is necessary to interpret
Batchelor’s general assumption about small Mach
number as signifying not only the fact that the velocities
are smaller than the speed of sound, but also the im-
portant restriction that there are no frequencies larger
than U/L.

This restriction is equivalent to the implicit assump-

tion we have made that the velocities become of order
unity when multiplied by r/d. Thus we can write

U U u
—~—=—=uN,

L d =

(36)

(38)

showing that an assumption that frequencies are
limited by U/L is equivalent to the two assumptions
that frequencies are limited by the Brunt-Viisild
frequency N and that #~1. If a Richardson number
is defined by (Nd/U)% our scaling assumptions are
equivalent to assuming a Richardson number of order
1 in magnitude (rather than 0.1 or 10, say).

6. Shallow convection

So far we have treated 8 as a parameter which, while
it is not greater than 1, is also not small. In this section
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we will consider the case of small 8:
d<<H=¢,8/g.

Considering still the case of dry-adiabatic motion, we
take the anelastic system of section 3, where the
variables are o, po, Vo, o, 71, and 6;. We expand each
of these as a series in 3:

mo=moo+Brort---,
mi=mw+prut-- )
and collect terms of equal powers of 8. [ Note that (9)

implies that 6, is zero.]
We first find that

(39)

o= 1, Y= —2
poo=P(R@)'=constant,

w10=constant.

(40)

(It is convenient to take w1 equal to zero.) The fol-
lowing system of prediction equations is then obtained

V- Voot dwoo/dz=0, (41)
dvoo/dt=— Vs, (42)
dwoo/dt-= — 3111/ 92610, (43)
d610/dt=0. (44)

The operator d/dt is now equal to
a/at-l"Voo' V+7,U003/3Z.

We note that these equations already possess the
general form of the incompressible Boussinesq system,
which has found extensive use in analyzing small-scale
convection in liquids. [In many of those problems,
however, the effects of viscosity and heat conduction
must be retained. See Spiegel and Veronis (1960).]
The interpretation of wy; and 60 is more readily seen
if (1), (2), (4) and (9) are expanded in terms of e and
B. The relevant results are

T00= @,
Toy=— @Z,

45
T10= by, (45)

w11= (72/d?) (e8) (p11/poo).

Comparing the last of these with (42) and (43), and
noting that the factor (7?/d%) can be used to put voo,
oo, 4, V and 8/9z back into dimensional form, we see
that ;1 represents the deviation of the pressure from
that of an adiabatic atmosphere wo+-Bmo;. The tem-
perature distribution to the first order in e and 8 can
be expressed as

TootBT o+ €T10= O— (g/cp)7 + @b,

where 2’ is in dimensional units. ;o therefore represents
the deviation of the lemperature from that in an adia-
batic atmosphere. This is to be contrasted with the

(46)
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case of deep convection, where (30) shows that 6;
represents the deviation of potential temperature.

The partial analysis of the equations given by
Jeffreys (1930) is equivalent to the former interpre-
tation of 6. Batchelor (1953) has also derived the system
(41)—(44) as representing the most general system in
which the Richardson number was the only physical
similarity parameter. Here we point out that according
to (46), his variable (p*—p,*)/ps* is (for small depth)
even simpler than his Eq (31) indicates.

7. Release of latent heat

The specification of the saturation vapor pressure e,
(a function of T) is important for both reversible and
non-reversible descriptions of the condensation process.
We consider T expanded in the form T'o+6T+8T o+
etc., where § is some small parameter, and examine the
error in e, resulting from truncation of this expansion
for T. To do this we use the Clausius-Clapeyron
equation, assuming water vapor to be an ideal gas and
liquid water to be incompressible:

1de, L

es dT R,T?

(IL~2.5X 108 kj ton™ is the latent heat, and R,=462kj
ton—! deg™! is the gas constant for water vapor). We
obtain for ¢, the formula

ool t52)
ts=e, exp, —
L R TAT,

8L Ty T:1\?
(= f == () J#} @

R, To/ LTo \T,
The first order term in § has been deliberately retained
in the exponential because the size of the non-dimen-
sional ratio Lo/R,To must be considered in making this
expansion. For typical atmospheric temperatures this
ratio is about 19.

If 6 is identified with the e of the anelastic system,
it has a value of about 0.1 for deep moist convection
(d~10 km). Under these conditions, (8Lo/R,Ty) is
about 2, so the exponential form must be kept. Con-

sidering then the case where the series for ¢, is truncated
at T, we have

@ e (2]
€s=¢€;g ex — .
VP RTAT,

Sample calculations with this formula show that the
percentage error in e, is of the order of ¢, i.e., 1/10.
However, a more serious complication in the case of
deep convection is introduced by the fact that according
to (30), T, can be computed from 6, only if 7, is known.
71 is given by the elliptic Eq (32), whose solution
presumes that 6; is already known. But 6; is now no

(48)
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longer given simply by the adiabatic Eq (29), but can
be computed only if the rate of release of latent heat is
known. This in turn requires a knowledge of e,, re-
sulting in a highly implicit relation between the
thermodynamic variables.

The writers have attempted to simplify the treatment
of deep moist convection by considering an alternate
expansion about a saturated moist-adiabatic atmos-
phere in place of the anelastic expansion about a dry-
adiabatic atmosphere. The advantage of this is that
Ty would now correspond to a moist-adiabatic lapse
rate and § would be of the order 0.01 (i.e., corresponding
to about 3 deg deviation in temperature) for most
cases of interest. The very simple approximation
es~es(Tp) might then be employed with some justifi-
cation, eliminating the need to know T';. However, we
have been unable to develop a satisfactory expansion
of this type, primarily because of the complications
introduced by precipitation, freezing, and the heat
content of liquid water (Saunders, 1957). These effects
are negligible if a 10 per cent error is made in the
hydrodynamic equations, but are not negligible if an
error of only 1 per cent is made in the hydrodynamics.

We will therefore limit our further presentation to
the case of small 8 (d~3 km, say), where (45) shows
that the first-order temperature does not involve the
dynamic pressure ;.

Considering for simplicity a reversible process, it is
easily demonstrated that the (variable) entropy may
be approximated to order e by the expression

¢ = 010+Brv,

where B=L(¢,Twe) ! and 7, is the mixing ratio of
water vapor to dry air (the density of which is pgo= con-
stant). (41)-(43) remain as the hydrodynamic equa-~
tions,® but (44) is replaced by the statement

de/dt=0.

(49)

(30)

This equation predicts the variation of ¢ in space and
time, allowing 650 to be determined from (49) if 7, is
specified.

We define r as the combined mixing ratio of total
water (vapor and liquid) to dry air. For a reversible
process

dr/dt=0; r=r+r. (51)

The saturation mixing ratio 7,, is defined using (48)
for e,:

Yos=

R
Pes(To) exp(4610)

(52)

Here the constant A is equal to eL/R,0, and the
symbolic Ty appearing in e,(To) in (48) has been inter-

=7 (3) exp(A4010).

s The effect of the drag of liquid water may be added to (43)
if desired.
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preted as representing Too-+B8T 0. Z(3) is a monotonic
decreasing function of 2.
Saturated and unsaturated conditions are defined by

Saturated:
Unsaturated: 7 <#u,;

7>fva; To=Tygy TI=V—Tys.

ro=r, r1=0.

Considering ¢ and r to be specified by the conservation
Eq (50) and (51), it is then easily shown that a particle
is saturated if and only if

Z(z)<r exp[A(Br—o¢)]. (53)

This result shows that in this greatly idealized con-
densation model each particle has a characteristic
condensation level z., which is specified as a function
of r and ¢ for that particle by the implicit relation
Z(z;)=rexp[4(Br—¢)]. For z<z, the particle is
unsaturated, and we have

(54)

When the particle is at a higher elevation, 610 is given
by the implicit relation

G100+ BZ(2) exp(4610) =, (55)

and increases monotonically for that particle with
increasing z. 650 is therefore a unique function M (2)
for each particle, the function M varying from particle
to particle. We then define N(z) for each particle by
the integral relation

810=¢— Br=constant.

1
N ()= f Mis. (56)

The energy equation for shallow moist reversible
convection may then be written

d
‘(_;; f[% (volr+woe?) +N]dV =0, €1

showing that energy is conserved in this system. A
schematic picture of the variation with z of M (i.e., 610)
and N is shown in Fig. 1.

8. Concluding remarks

In this section we will draw attention to several
general implications of our analysis which might other-
wise be overlooked in the details of the preceding
sections.

Many investigations have been made of the ascent
of “bubbles” and other simplified cloud models. [See,
for example, Mason and Emig (1961).] While our
analysis of the equations has been based on a very
simple condensation process and laminar motion, it
indicates how the accuracy with which the hydro-
dynamics is treated has an effect on the accuracy with
which the thermodynamic relations should be ex-
pressed. The analysis further suggests that deep con-
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F16. 1. Schematic indication of the dependence on z of the
potential temperature M and potential energy function N for a
particle whose condensation level is z,.

vection may differ qualitatively from shallow con-
vection; in the latter case the saturation vapor pressure
is not appreciably affected by the dynamic pressure,
while in deep convection the dynamic pressure may be
large enough to have a serious effect on the saturation
vapor pressure. (The conventional practice of using a
hydrostatic pressure field to compute e, from the local
value of the entropy is therefore justified for shallow
convection, but would seem to be suspect for deep
convection.)

Several authors have recently used the Boussinesq
system as a basis for numerical computation experi-
ments (Malkus and Witt, 1959; Fisher, 1961), and
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stated that this involves an implicit assumption of
hydrostatic balance. It is clear from our analysis (and
from that of Batchelor) that this is a misinterpretation;
the only limit on the acceleration is that set by the
depth and the Brunt-Viisild frequency.

Finally, we point out that non-adiabatic heating (Q)
by processes other than latent heat may be introduced
into (29) or (44) without violating the scale analysis
if Or(ec,T)™ is of order unity.
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