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ABSTRACT

It is well known that snowflakes tend to distribute exponentially with respect to their melted diameter.
This fact is used to formulate an approximate analytical model of the deposition and aggregation growth
of snow in stratiform clouds. The model predicts the height evolution in a steady-state, vertically hetero-
geneous cloud of the slope and intercept parameters, N (k) and A(k), of the size distribution of snowflakes
which is assumed to be given by #(D,k) =N (k) exp[ —~A(k)D], where & is the height in the cloud and D
the snowflake diameter. Solutions for N(f) and A(#) for a time-dependent spatiaily homogeneous cloud
are also presented. Results from this technique compare well with numerical integrations for the case of
perfect geometric coalescence of raindrops. This stratiform snow model predicts the existence of radar
reflectivity-snowfall rate relations although, for this first-order model, there is fair agreement between
theoretical and observed values. The model suggests that “equilibrium” snow size spectra owe their existence
to the counteracting effects of deposition and aggregation growth,

1. Introduction

The measurement of precipitation size distributions
in clouds by means of radar and aircraft sensing
techniques has become almost routine in the past
decade. However, the interpretation of these mea-
surements in terms of particle growth processes has
lagged behind the recent technological advances. The
basic physics of precipitation growth are fairly well
known, but the resulting equations are complex and
usually solved by numerical integration. This proce-
dure is expensive and the results of model calculations
are often as difficult to interpret as is Nature herself.
Thus it is advantageous to develop simple analytical
models whenever possible.

As part of the University of Chicago’s study of
winter storm microphysics, snow size spectra are
measured at various levels in Midwest extratropical
cyclones. These storms are characterized by weak
updrafts and supercooled liquid water contents which
are typically at or below our level of detection.
Snowflake growth is due primarily to vapor deposi-
tion and crystal aggregation. What is desired is a
technique by which the rate of snowflake growth via
these two mechanisms can be deduced from measure-
ments of the precipitation size spectra in locally
steady precipitation. This paper describes a simple
analytical model for approximating the vapor deposi-
tion and aggregation growth of snow in stratiform
precipitation.

Past measurements of snow size spectra show that
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they are almost always exponential in form such that
#(Dp) =Npne*nPm  where 7(Dn)dDn is the concen-
tration of particles of equivalent melted diameter D,
in the size interval Dy, to Dp+dDn and N, and An
are the distributional parameters (e.g., Gunn and
Marshall, 1958). Numerical integrations of the col-
lection show that when initially exponential particle
size distributions evolve by gravitational, geometric
collection, they tend to retain their exponential form
and that initially narrow spectra obtain an expo-
nential tail (e.g., Srivastava,-1967).

These findings suggest a parameterization of the
deposition and aggregation growth of snow which is
based on the exponential form of snow size spectra.
By assuming at the outset that the size distribution
is exponential, the distributional parameters can be
found as functions of time or height by solving moment
conservation equations which are derived from the
stochastic collection equation. For a general discussion
of the collection equation and its moments see Drake
(1972).

The technique of constraining the size distribution
function and solving moment equations for the col-
lection process is not new. The first application for
gravitational geometric collection was probably due
to Schumann (1940), although it is not readily ap-
parent that this is what he intended. He used the
asymptotic solution to the collection equation for a
constant kernel as his solution form [#(D)~e¢ 2]
and the total concentration and mass moments to
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estimate the effects of coalescence on fog droplet
distributions. Enukashvili (1964a) utilized the method
of moments to derive an approximate form for the
size distribution function which he then used to
investigate cloud droplet coalescence in vertically
heterogeneous clouds (Enukashvili, 1964b). Both of
these authors used geometric kernels employing
Stokes’ fall velocities since their studies were con-
cerned with cloud droplet coalescence. They did not
include the effects of condensation in their models.
Srivastava (1978) has formulated a parameterization
of raindrop coalescence, mass deposition and drop
breakup based on the assumption that the drop size
distribution is exponential with respect to the drop
diameter. His resultant differential equations are based
on the moment equations for the total mass and drop
concentration and must be solved numerically.

The approximate analytical technique presented
here was developed to model the evolution of snow
size spectra in stratiform clouds. The size distribution
of snowflakes is assumed to be exponential such that
n(D)=Ne>?, where D is the snowflake diameter.
Snowflake growth by vapor deposition and aggrega-
tion is considered. A gravitational, geometric collec-
tion kernel is used in which the fallspeeds are specified
by an arbitrary power law relation. For the case of
steady stratiform precipitation in a vertically hetero-
geneous cloud, a system of two, nonlinear, first-order,
ordinary differential equations in N and A are derived
from the moment conservation equations for the total
mass and radar reflectivity. Solution of these equa-
tions yields expressions for N and A as functions of
height below a reference level. Solutions for NV and A
as functions of time are also presented for the case
of spatially homogeneous clouds and these are com-
pared with results of numerical integrations of the
collection equation for the special case of no conden-
sation growth. The stratiform snow model is then
used to derive an “equilibrium” relationship between
the distributional parameters which is analogous to
empirically derived precipitation rate-radar reflectivity
relationships.

2. Theory
a. The moment conservation equations

The governing equation for ice crystals growing by
vapor deposition and aggregation in a horizontally
homogeneous cloud may be written

i) a a
—"n(x;tah) = ---—[:&n(x,t,h)]—-—{[w-—vr (x)]n (xat;k)}
ot ox ok .
1 z
+E/ n(x—yr ¢ k)”(%t,h)k(x“y, y)dy
0

—— / O hey)dy, (1)
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where #n(x,,%) is the number density of particles of
mass x at time ¢ and height %, w is the vertical air
velocity and vr(x) the particle fallspeed. The collec-
tion kernel for particles of mass x collecting those of
mass vy is k(x,y) and & is the time rate of change of
mass of a particle of mass x due to deposition growth.
The terms on the right side of (1) represent the time
rate of change of the number density due to deposi-
tion growth, advection in a vertically heterogeneous
cloud, the creation of particles of mass x due to ag-
gregation of particles of masses x—y and y, and the
destruction of particles of mass x due to their aggre-
gation with any other particle.

The rate of change of the mth moment of the size
distribution can be found by multiplying both sides
of (1) by x™dx and integrating over all x. The deposi-
tion term can be integrated by parts very simply if
it is assumed that

lim x™&n(x,t,h) = lim x™in(x,2,4)=0. (2)

-0 T—>0

The moment conservation equations for the total mass
(m=1) and the total “radar reflectivity factor” (m=2)
are given by

ax 4 "
—+— (X —X;) =

En(x,th)dx, 3)
at ok 0
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where
X= j i xn(x,_t,h)dx, (5)
X;= / ) vp (x)an (2,1, k) dx, (6)
Z= [o ) e oh)d, (7)
Z;= /0 ) v (@i (8)

Here X, Z, Xy and Z; are, respectively, the total mass and
what shall be called the radar reflectivity (although
this quantity is really proportional to the radar re-
flectivity factor for Rayleigh scatterers) and the
downward fluxes of these quantities due to the particle
fallspeeds.

The primary reason for not using the zeroth moment
(the total concentration) in the formulation of the
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problem is that the exponential distribution may not

be a good approximation to the distribution of small

particles. Typically, the total concentration is strongly

weighted by these small particles. The reported ob- -

servations of exponential snow size spectra have been
made with a view toward predicting the behavior of
higher order moments such as the snowfall rate and
radar reflectivity. Thus these moments were selected
to formulate the problem of predicting the behavior
of exponential distributions.

b. Simplifying assumptions

It is desirable to express the moment conservation
equations in terms of the snowflake diameter rather
than the mass. It is well known that ice crystals
occur in a variety of crystal habits and degrees of
elaboration depending on the environmental condi-
tions. However, in view of the current state of knowl-
edge about crystal aggregates, it seems acceptable
to assume spherical symmetry such that

x=mup;D*/6, ©)

where D is the actual snowflake diameter and p; the
bulk density of the aggregate.

The rate of particle growth by vapor deposition
can be expressed as

&=f(t,n)D’, (10)

where classically §=1 and f(f,h) depends on the
crystal type and environmental conditions. The col-
lection kernel, in terms of snowflake diameters, is
assumed to be gravitational and geometric, i.e.,

where D, and D. are the snowflake dié,meters cor-

responding to the masses x and y, E is a mean col-

lection efficiency assumed independent of particle size,
and where the particle fallspeeds are given by an
arbitrary power of law of the form

“op=aD?, (12)
where ¢ and b depend on the particle type.

Based on the observations and numerical work
which were cited in the Introduction, it is assumed
that the size distribution is given by

aD
n(x:l;h) =N(t)k) eXP[“)\(t,h)D]:i“; (13)

where N(¢,k) and A(f,k) are the distributional parame-
ters for the snowflake size spectrum. Note that the
exponential distribution satisfies (2) for 8=1 for the
total mass and reflectivity equations. To ¢onvert to
the melted diameter spectrum one can use (9) and (13)
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to find that
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where pyz, is the density of water.
Inserting (9), (10), (11) and (13) into (3)-(8)
yields

X 9 Nf@t,mT (»+1) .
57+;971(wx—-x,)=-————~——~——>\5+1 ) (15)
éeZ 9 2(wp:s/6)N f(8,h 4
92 2 wz—z)= (wpi/6)N f(¢,)T (6+4)
ah AGH
+(1rp,-/6)2(1r/4)aEN2/ / D13D23(D1-'[‘l)2)2
X | D} — D3| exp[ —\(D1+D1)1dD:dD,, (16)
where
X = (mp;/6)NT (4)N=*, (17)
Xy=(mp;/6)aNT (4+b)\"*-2, (18)
Z=(mp;/6)*NT (T)\7, (19)
Z;=(mp:/6)%aNT(T+b)\"7"0, (20

The double integral in (16) can be scaled by \ so
that the last term becomes

(m>2 wa Bl (5)N?
6

s (21)
I(b)%/w /‘“’ 2y (x+9)?| b —yb| e~ =tuidady.  (22)

where

Evaluating I yields

F(1,p;8—1;%
I(b)=l‘(p)21"’ i Cl[u N N
= J—1
F(1,p;4+b+4;8)7
_ 1,9 4 2):|, (23)
34041

where F represents Gauss’ hypergeometric function
p=104b, C1;=C3=1 and C;=2. The series repre-
sentation for F converges quite rapidly for these
arguements {10-® in 20 terms). Note that for p=0,
I is identically zero which illustrates that there can
be no aggregation without dispersion in the particle
fallspeeds.

For the case of stratiform snow, the moment con-
servation equations (15) and (16) can be further
simplified in two ways. The first is to assume that
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the vertical fluxes of mass and reflectivity are due
primarily to the particle fallspeeds. This is a good
assumption when one considers that mean vertical
air motions in stratiform clouds are of the order of
a few centimeters per second. The second assumption
which can be made for stratiform clouds is that pre-
cipitation is steady. Aside from eliminating time
derivatives in the moment conservation equations,
this constraint requires the convergence of the flux
of water vapor due to the weak vertical air motions
to be balanced by an increase in the downward flux
of mass due to precipitation fallspeeds. Thus in (15)
and (16), rather than specifying the crystal growth
function f(k), the rate of change of the total mass
flux can be found from the dynamic and thermo-
dynamic properties of the cloud, i.e.,

2 0Xy

—(wpss) =—, (29
ok

where p,, is the water vapor density. One can con-

sider f(k) to be forced by the rate at which moisture

becomes available in the weak updraft.

c. Solution of moment conservation equations for strati-
form snow

Applying the weak updraft and steady state as-
sumptions, combining (15) and (16) through elimina-
tion of f(%), letting X',(k) denote the height derivative
of the mass flux, utilizing (18) to eliminate reference
to N, and reversing the sign of the height coordinate
yields, after some manipulation,

a}\ 8 _x}(h))\(k)l-l 2P(4+b)1‘(5+4)]
ok X3 L TO+HTEFD)
7 EX (RN (k)

- . (25)
12T (7+4-8)T (4+b) (wp:/6)a

This equation is the governing equation for the size
distribution slope parameter A(%k), where % is the
height below a reference level; X,(h) and X'(h) are
assumed to be known functions of height. The first
term on the right is the contribution due to deposi-
tion growth and will be positive for 6=1, the classical
value. Therefore, deposition will act to increase the
slope of the size distribution. The aggregation term
will always act to decrease the slope of the size
distribution.

Although (25) is nonlinear, it is a Bernoulli equa-
tion with solution

AR (Y =Ng 1 [X 10/ X 5 (B) J5>
K,
x5 (k)

/ X5+ ()dh,  (26)
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where

20 (6+4)r@E+ b)]

JR.
K1=[1+b][1

3 r'(6+1)r(7+5)

= EI(b)

Kz:’[ljb:‘[4ar(7+b)r(4+b)(m/s)]’ =

(27)

Here Xzo and Ao are the initial conditions at height
h=0; N(k) can be found from (26) and (18) for
a known Xs(%).

The analogous solution to (15) and (16) for a spa-
tially homogeneous cloud is found in the identical
manner. Assuming that X(#) and its time derivative
are known functions of time yields the solution

xb—l(z)=>\3"[x,,/x(t)]°x+—x%2(t5 / xtd,  (29)
where
1-3 2r(4)r(6+4)
= — [ t————= 30
‘ [ 3 ][ r(7)r(a+1)] (30)
1-% raBI(b
C2=[ ][ «BI ) ] 31)
3 4T (7T (4) (wpi/6)

The initial conditions in (29) refer to ¢=0. N(f) is
found from (29) and (17) for a known X(¢).

Thus for either the weak updraft, steady cloud or
the homogeneous cloud, the size distribution parame-
ters V and A can be found as functions of height or
time, respectively. To do this of course requires
knowledge of the updraft and temperature structure
of the cloud [i.e., X;(%) or X(¢) must be known func-
tions]. The bulk density of the aggregates and the
collection efficiency must also be known along with
the fallspeed relation constants.

3. Comparison with numerical integration

To assess the accuracy of this approximate ana-
lytical technique, the solution for the homogeneous
cloud can be compared to results from Srivastava’s
(1971) numerical integration for the case of perfect,
geometric coalescence of raindrops in a constant liquid
water content cloud (x=1 g m™). Under these con-
straints Eq. (29) becomes

)\b—x(,)_m—q[l—b_l wal ()Xt )
- 3 dirar@ere ¢
where

N () =M@/ (nps). 33)

The mean collection efficiency was taken as unity for
perfect, geometric coalescence, and p; is the density
of water. For raindrops, ¢=1420 and b=0.5 (Spil-
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Fic. 1. Comparison between the approximate analytical technique (solid) and
Srivastava’s numerical integration (dashed) for perfect geometric raindrop

coalescence.
N

haus, 1948), and from (23), I=1610 so that (32)
becomes

AH()) =g T 1.32X107% (cgs units).  (34)

The slope tends to zero asymptotically as time goes
to infinity.

Raindrop size distributions calculated from (33)
and (34) are shown in Fig. 1 along with those cal-
culated by Srivastava by numerical integration for
the same initial condition. At 400 s the comparison
is quite good, but at 1000 s a significant mode starts
to develop in the numerically modeled spectrum.
However, the agreement is still fair for drops >0.2 cm.
At 2000 s the mode becomes very pronounced and
the agreement between the two techniques is rather
poor. .

The exponential distribution probably would be a
better approximation if either nucleation or particle
breakup were acting to renew the number of small
particles and thus reduce the mode. However, nu-
cleation rates in stratiform snow and the extent of
crystal breakup are not known. For the case of rain,
breakup has been shown to be important in main-
taining the exponential form of drop size distribu-
tions (Srivastava, 1971; Young, 1975; List and
Gillespie, 1976).

It is important to note that the total mass and
reflectivity moments were used to find N(¢) and A ()
because past measurements of exponential size dis-
tributions were made with a view toward predicting
the behavior of these higher order moments. If, in-

stead, the total concentration and total mass were

used, Eq. (34) would have the same form and the
constant would differ by only 2%,. Thus for no depo-
sition growth, the choice of moments (concentration-
mass or reflectivity-mass) is not critical for the
homogeneous cloud case.!

4. “Equilibrium” snow size spectra

The solutions for the steady-state, vertically het-
erogeneous cloud can be evaluated by assuming
something about the dynamic and thermodynamic
properties of the atmosphere. Under the constraint
that the cloud is moist adiabatic, the vapor density
will decrease logarithmically with height above cloud
base so that for a constant updraft in a steady,
balanced cloud Eq. (24) can be integrated to yield

Xf(h) = XfoeAhi (\1)5)

where 4 is a constant. The balance condition requires
that the upward flux of vapor be equal to the down-
ward flux of precipitation mass. Using (35) to evaluate
the integral in the slope equation, Eq. (25) yields

Kgxf
A(Ky+1)
X {1—exp[— 4 (K14 DiJ}.

For snow growth by vapor deposition (6=1), K;>0
so that in the lower regions of the cloud, the expo-

N0 =\ Y exp(—AK k) +

(36)

1See Passarelli (thesis in preparation) for a more detailed
discussion.
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nential terms in (36) become small so that

KX,
N~ (37)
A(K1+1)
or from (28) and (18)
124 (K411 (74-8)
N~[ _ ]xa. (38)
r(1+0)I(b)E

This relation may be thought of as an equilibrium
relation between the slope and intercept parameters.
It depends on the fallspeed exponent b, the collection
efficiency E, the deposition growth parameter §, and
the thermodynamic properties of the cloud 4. It is
independent of the fallspeed parameter ¢ and the
bulk density p;. The equilibrium relation does not
depend on the initial conditions.

The equilibrium relation exists because of the
balance between deposition and aggregation growth.
For a given snowfall rate, those spectra which con-
tain a large number of particles relative to equilibrium
evolve primarily by aggregation since the aggregation
rate goes approximately as the square of the particle
concentration. Those with relatively few particles
evolve primarily by deposition since the same amount
of mass is distributed among fewer particles. Thus
a balanced growth occurs when the effects of deposi-
tion and aggregation counteract one another.

This concept of an equilibrium relation for snow
is quite different from that of raindrop equilibrium
size distributions. For rain, coalescence and breakup
are thought to balance such that if a size spectrum
is perturbed from its equilibrium state, it will return
to its initial state (Srivastava, 1971; Young, 1975;
List and Gillespie, 1976). For the case of snow, this
analysis shows that the spectrum does not return to
its precise initial condition, but instead, to the equi-
librium line determined by (38). The net result of
either equilibrium process is that for a given pre-
cipitation rate one expects to observe a particular
spectrum.

This equilibrium growth can help explain the ob-
servations made by many investigators that on the
average the snowfall rate is related to the radar
reflectivity factor by a power law relation (e.g., Gunn
and Marshall, 1958; Sekhon and Srivastava, 1970).
These relations are usually derived from ground mea-
surements of snow size spectra taken from a number
of different storms and, therefore, probably represent
some kind of climatological mean of snow storm
dynamics and microphysics.

Sekhon and Srivastava (1970; hereafter SS) used
snow size spectra data taken from studies made by
a number of different investigators to derive empirical
relationships between N and X;, A and X;, and Z
and X;. However, all of these relations were based

PASSARELLI, JR. 123
10% 7
- ° Gunn & Morshall //’ i
o imai gtal /{,/ .
[ 2 ontoke Py
& Magono /}/‘,/
A
6.0x10 ¢
6.0x10°°
3.0x10°
1072 o [ I RN
10" 10° 1o
X¢ (mm/hr)

F16. 2. Theoretical X,X; relations from (39) for various values
of the fallspeed coefficient ¢ and the vapor density gradient
parameter A, along with Sekhon and Srivastava’s empirical
X,Xs relation. The data points correspond to the measurements
of the various investigators who were cited in the Sekhon and
Srivastava study.

on a power law fit to their plot of the X vs X, data
(their Fig. 8). A theoretical equilibrium X X, relation-
ship can be derived from (17), (18) and (38), i.e.,

2p:A (K1~4-1)T (74-5) 5y 1/ a+on
(1+b)IE :I xGa+o]
al'(4+b)

X=T(4) [

(39)

Sekon and Srivastava’s X,X; plot is reproduced in
Fig. 2 along with X,X; lines computed from (39) for
various values of the vapor density gradient parame-
ter A and the fallspeed coefficient a. The values for
the other parameters in (39) were assumed to be
pi=0.05 g cm™, §=1 (K,=0.292), =031, I(b)=751
and E=1. For a moist adiabatic atmosphere with a
surface temperature between —20 and 0°C, A=6
X108 cm~. Note that 4 does not have to cor-
respond to moist adiabatic conditions since steady
stratiform snow can form in a rising saturated stable
layer. To reflect this, one of the lines in Fig. 2 was
computed assuming A4=3X10"% cm™ which is half
the moist adiabatic value. The values =0.31 and
a=150 were used in the SS study. '

The observations are fairly well bracketed by these
theoretical lines. The middle line fits the data almost
as well as the SS line for precipitation rates >0.5 mm
h~'. Within the scatter of the data the theoretical
equilibrium can explain the observations fairly well.
The scatter of the data can be explained by storm-
to-storm variations in cloud dynamics and micro-
physics which would lead to variations in the physical
parameters in (39).
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5. Summary and conclusions

This type of approximate analytical technique could
~ be used to parameterize precipitation growth proc-

esses in the context of a more complex model of

snowstorm dynamics and microphysics, and to analyze
snow size spectra data from vertical incidence Doppler
radar or aircraft measurements. An application to the
latter is described by Passarelli (1977) where this
analytical technique is used to estimate £ from mea-
surements of snow size spectra which were taken at
different levels in a Midwest extratropical cyclone.

The technique suggests the existence of an equi-
librium relation between N and A which is due to
the counteracting effects of deposition and aggrega-
tion growth. It is possible that observed correlations
between the snowfall rate and radar reflectivity are
due to this type of equilibrium rather than the coales-
cence. breakup mechanism which is thought to occur
for heavy rain.
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