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Abstract

The interest for spectral forms of the meteorological equations has grown considerably

over the past several years.

Integrations in terms of spherical harmonics provide us with
an interesting alternative to the grid point method.

The results of an extension of the

method to the complete meteorological equations will be presented here.
A model based on five levels and 15 coefficients is integrated for 200 days starting from

an atmosphere at rest and at a uniform temperature.

another 22 days with 45 coefficients.

The integration is then continued for

Cross-sections show a jet stream in each hemisphere
and low level easterlies along the equatorial belt.

1 The amplitudes and the phase speeds of

the planetary waves in the model compare favourably with their atmospheric equivalents.
The results of this integration indicate that spherical harmonics could be used profitably in
general circulation models or in the preparation of extended range forecasts.

1. Introduction

The meteorologist cannot contemplate as a
possibility, any direct experimentation with
the large scale processes of the atmosphere.
This is unfortunate in a sense, because it de-
prives us of the method most commonly used
in physics. It deprives us of a powerful tool
that could have raised meteorology to the
level of an exact science.

An insight into the mechanisms that genera-
te and sustain the large scale flow patterns,
can result also from the study of adequate
analogues. This alternative method contains
serious weaknesses, the conclusions drawn
from studies of the analogue do not necessari-
ly apply to the atmosphere, but it can still
provide us with a considerable amount of
knowledge and useful information. At pre-
sent, it appears to be the best possible al-
ternative to the direct experiment.

Analogues of the atmosphere fall into two
classes: the scale model and the numerical
model. Models of the first type attempt to
simulate the atmospheric circulations in the
laboratory, the rotating dishpan experiments
belong to this category. The numerical model
uses the electronic computer, it represents a

relatively new field of research activity.

The first numerical integrations of the me-
teorological equations using electronic equip-
ment were performed about 15 years ago.
The grid point method was used for these
experiments and other methods of representa-
tion were not seriously considered until recent-
ly. The grid point method requires finite
difference approximations and these by neces-
sity, generate appreciable truncation errors.
This undesirable feature of the grid point
method can seriously corrupt the numerical
integrations. The study of various finite dif-
ference operators and their properties, still
represents a large fraction of the time devot-
ed to the simulation problem in meteorology.

Spectral forms of the meteorological equa-
tions do not use any approximations for the
evaluation of space derivatives. They do not
eliminate entirely the necessity for truncation,
but they permit a rigid control over the result-
ing truncation errors. The integration of
spectral equations may require an excessive
amount of computing power. This would
definitely be true at very high resolution.
This problem will always remain, it might
be serious today but it will likely be trivial
in another generation.



238

The results of the first successful integra-
tion of the barotropic vorticity equation in
terms of spherical harmonics were published
by Baer (1964). The application of this
method to baroclinic models does not present
any additional problems. An experiment
carried out by Li Peng (1965) shows that
spectral baroclinic models can produce useful
results even at very low resolution. An ex-
tension to the primitive equations appears
more problematic and failure to overcome
this difficulty would make the method useless.
It would not be possible to find any merit in
a spectral form that cannot be extended to
the complete meteorological equations.

Fortunately, the work of Kubota (1959) and
a few others indicates that the complete
meteorological equations may be treated in
terms of spherical harmonics. He uses the
differentiated form (vorticity and divergence
equations) of the two equations for horizontal
motion. The divergence equation in particular
contains a large number of difficult terms to
handle. The method appears as extremely
laborious and it can discourage any attempts
towards implementation. A different approach
will be used in the present experiment be-
cause of its greater simplicity.

In order to avoid using the differentiated
form of the meteorological equations it has
been found that the horizontal components of
the wind must be represented by functions
other than spherical harmonics. The func-
tions that must be used do not differ much
in nature from the truncated series of spheri-
cal harmonics used to represent temperature
and vertical motion. Once that the problem
of representing the horizontal components of
the wind has been solved, the differentiated
form no longer has to be used and this eliminat-
es the most serious barrier that prevented
us from integrating the primitive meteorologi-
cal equations.

2. The method

Spherical harmonics are associated Legendre
polynomials of the first kind and the mete-
orological equations may be treated in terms of
the elements that constitute these polynomials
instead of using the polynomials themselves.
This simplifies the multiplication process
significantly and eliminates some of the dif-
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ficulties present in the method of multiplica-
tion described by Silberman (1954). The
basic elements required to generate spherical
harmonics are simple analytic functions.

G, (2,0) =e"* cosMp sin”p

(1)

where 2 and ¢ represent the longitude and
the latitude respectively, M simply represents
the absolute value of m. Both M and n will
be either positive integers or zero. The
number M gives the number of waves along
any given latitude circle while » is only an
exponent and cannot be given any simple
physical interpretation at this stage.

These functions. will be used later to re-
present the meteorological variables. They
are continuous and all their physically sig-
nificant derivatives are continuous, this will
become obvious after a discussion of the pro-
perties of these functions. The evaluation of
the two partial derivatives is straightforward.

G," . ”
By =imG, (2)
cosgoag;m =nG,-"— (M+n)G,+s" (3)

The evaluation of non-linear terms in the
equations of motion involves the product of
functions. For a description of the multipli-
cation we will use two functions with » and
k assigned as upperscripts. The upperscript
with the largest absolute value will be re-
presented by m so that M>K. The product
of two functions is then given by:

Gan[k=Gn+lm+k lf:mk>0 ( 4 )

mi S (Z1IKL
GGl = 2 K =)
In both cases the result takes a simple
form in comparison with the multiplication of
true spherical harmonics. With the multipli-
cation and the two derivatives we have the
basic operations needed for the integration of
the meteorological equations. A few addi-
tional operations involving the horizontal “del”
operator Vg will be discussed in order to
clarify the application to physical processes.

Gn+1+2jm+k if:mk<0 (5)

1
@

— (M+n) (M+n+1)G,m

VHanm= [n(n——l)Gn—{n

(6)
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Here a is the radius of the earth, also:

Ganl

Gt _#t (~1/(K=D!
cos?p

R JHE=1-))!

n+l+27
if: mk<0 (7)
The above identity is valid only when M>
K as in (4) and (5) and it will be used in
the two following operations:

PuGm VGl = ARG, "Gy — (M)

(MK— mk)G

m(}k
(KHDGmGHA+ 5

"G (8)

The last term in (8) vanishes when mk>0.
When mk<0 the division by cos?’¢ may be
carried out in accordance with (7). The next

operation also has the same property

VHGnm X VHGIIZ’I"(: ‘5’2’ (ml—‘kn) Ganl_lk

I(MK—mk)
a? cos?e

GG (9)

The last term in (9) vanishes again when
mk>0. When mk<0, the division by cos?p
may be carried out in accordance with (7).

The operator /'y when applied twice as in
(6), (8) and (9) necessitates a division by
cos?’¢. In all cases the numerator is exactly
divisible by cos?¢ and the results are expres-
sible in terms of the functions selected in (1).

In order to integrate the meteorological
equations, each field will be expressed in
terms of the functions defined in (1)

P(,¢)= I SA G (3, 0) (10)

The vector representing the horizontal
gradient of this field is defined by its two
components :

Po=—r _cT)s 2 A,G,m (11)
oP
Py 3y = cos ¢ %:Z;g[(nﬂﬂl)An-Fl
'__(M—*—n'—l)An—lm]Gnm (12)

Both P, and P, take the same form as P
except for an additional division by cos¢.
This division presents no problem because
the corresponding numerator is always exact-
ly divisible by cos¢. The division is not
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carried out because it would not be possible
then to transform the results back to the
form used in (10). The distinction being
made here is emphasized by calling (10) a
“true scaler” and the expression used in both
(11) and (12) is called a “horizontal vector
component”. The only difference between
the two is a division by cos ¢, but this distinc-
tion is very important. It forms the basis of
the method described here.

When cos¢ appears more than once in the
denominator, the division is carried out with
the formula:

oy TETEASCT 09

When such a division is required in the
meteorological equations as in (6), (8) and
(9), it truns out that the polynomial appear-
ing in the numerator is always exactly divisi-
ble by cos?.

For a complete description of the multipli-
cation we will use the fields: @ with coef-
ficients B,”, R with coefficients C,” and S

with coefficients D,™.

PQ=R+S (14)
R=32 X 2[AMBXGMG X
MK n |
+A,~MB,~kG~MG,~¥] (15)
S=n 0 n2[AMB 5 G,MG,¥]
MK n I
+A,~MB/5G,~ 1G] (16)

When the upperscript is preceded by a
minus sign, the corresponding term is deleted
when the upperscript is made zero. The
coefficients of the results will be determined
from:

CM= 3 BA, M-KBK a7
K=010
M=1 n
M= DA, K-MBK (18)
K=11=0
© o K i ]_)JKV
D=2 & B k=)
[Apeiogf*MBy= KA,y ~ K BE+M] (19)
—M__w o K (» ]_)JK!
D, KZU 0 /20 jJI(K—j)!
[An—l—Zj B~5-M4 A, 4~ ¥-MBX] (20)
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Equations (18) and (20) are not used for
M=0. The upper limits of the first two sum-
mation in (19) and (20) have been left
undefined. @~ The summation ends when it
generates terms which are not part of the
representation.

In the meteorological equations, the various
operations are performed without any trunca-
tion. The calculations proceed until they
generate the partial time derivative of a true
scalar. At this point, the array of coeflicients
is truncated by making the truncation errors
orthogonal with each of the terms retained
for further calculations. This process uses
the functions

(—1)fn!(M+n—j—*%>!

Hr =3 : Goez™ (21)
” 4’<M+n—3~>!jl(n—2j)!

These functions have the following property:

H"H}= if mxk or nx!

H,"H,"*0 (22)

where the “bar” represents the integral over
the entire surface of the earth.

+7/2 (2m
F:S S F cos pd2dep (23)

-zl2 J0

The elimination of a term G,” is achieved
by replacing this term by G,”—H,”. The
highest order term in this last expression is
G,-." as may be seen from (21). This
technique is always applied to the highest
value of n which is then reduced by two
units. It is repeated until all the undesired
terms have been eliminated. It should be
noted that the functions H,” are the spherical
harmonics presented in a different form.

The various operations described in this
section are required for the integration of the
meteorological equations. Each variable is
represented by a truncated double series in
accordance with (10). The derivatives of a
meteorological variable are calculated by using
(11) and (12) and the product of two vari-
ables requires the application of (17), (18),
(19) and (20). Any particular term in the
meteorological equations may be calculated
by using the spectral operations described in
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this section and the result represented by a
double series of the functions G,”. These
functions do not form an orthogonal system
but this is unimportant provided that the
orthogonal functions H,” are used to truncate
any series that contains too many terms.

Since each variable is represented by a
double series of the functions G,” and since
each term in the meteorological equations is
calculated separately and represented by a
double series, this implies that the calculation
of each time derivative requires a long suc-
cession of spectral operations. An advantage
of the successive spectral operations resides
in the fact that they eliminate the need for
an explicit statement of the primitive equa-
tions in their spectral form. Also, this method
permits the calculation of the truncation
errors and this facilitates the assessment of
their relative importance.

3. The modeling equations

The complete meteorological equations must
form the basis from which all studies of
atmospheric phenomena should start. The
physicists discovered these laws and tested
them over a much wider range of applica-
tions than we can expect to encounter in the
atmosphere. It is true that we cannot in-
corporate into these equations all the features
of the atmosphere and its boundaries, but
this has not been the main handicap over the
past few years. Most difficulties stemmed
from the numerical procedures used to in-
tegrate the meteorological equations. The
development of improved finite difference ap-
proximations contributed considerably to solve
the simulation problem.

Functional representations of the mete-
orological variables require different integra-
tion procedures which generate errors of a
different nature. The present experiment
will simply show that the method discussed
in the preceding section works successfully
and gives adequate results. Comparisons
with the grid point method are not possible
at this stage and will have to be delayed to
a later date. The spectral method is applied
to the primitive meteorological equations with
the vertical structure specified by five levels.
In order to avoid the initial value problem,
the model is applied to a rather simple general
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circulation experiment. The model uses the
following set of equations expressed in pres-
sure coordinates.

A 5 sineo— " tan o= i 9 [ )
di 2Qvsin ¢ atango— + p<‘b
(24)
dv W o= 0 (0
“dt +2!2usmgo+ tango oy +a6p< 261))
(25)
ou v ow
ox + — tan gD—l—a—p———-O (26)
aT RT
S pc“’ =r(Ts—T) (7
o9 RT
— = 28
ap » (28)
where :

» and v are the horizontal components of the

wind.
_dp

C=at

T is temperature.

p is pressure.

¢ is the geopotential.

a is the radius of the earth.

R is the gaz constant for dry air.

C, is the heat capacity at constant pressure.

a is an eddy viscosity coefficient.

7 is a net radiative cooling coefficient.

T is a radiative equilibrium temperature.
The following boundary conditions are used

o=0 at p=0

—Z=0 at z=0

W=

(29)

The experiments performed by Mintz (1964)
indicate that the absence of topography will
not affect significantly some aspects of the
results. Topography is not used in the pre-
sent model in order to insure the presence
of transient planetary modes exclusively.
The lower boundary condition adds another
predictive equation to the system.

a¢s 3955 0ps  RTsws
—, s U5 SR
s vs dy bs

=0  (30)

The subscript S designates the lower bounda-
1y assumed to be at 1000mb in the above
equation. Additional boundary conditions are
required for the frictional stresses.
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ou o
p = ap 0 at p=0
/ a% EUs < al) ) Vg
| == - =— 31
Go)=—5e (G)=5e @
where ¢ is a surface drag coefficient. The

following values were assigned to the two
constants related to the eddy viscous stresses.

a=0. 0002 hour-! e=40
us=0.7 u, v5=0.7 vy
Ws=wW1g Ts=Ti, (32)

These values would give a friction layer
with a depth of 800 meters and a drag coef-
ficient representative of a flat land area.

The vertical grid is given in Fig. 1, equa-
tions (24), (25) and (26) are applied at all

_4dp _
o w—rdf—-O —_—
1
2
dw
3 ——— — ¢’1X1¢1“1”171-)~ —
4
5
6 (l)lTl gﬁ
7
8
9
dz
10 w—idt =0
Fig. 1. The vertical grid used for the representa-

tion of the meteorological variables. The
evenly spaced levels are 100 millibars apart.

the odd levels, equations (27) and (28) are
applied at all even levels except the top of
the atmosphere. Centered finite difference
approximations are used to evaluate the verti-
cal derivatives whenever possible. If a
variable is required at an intermediate level,
it is obtained by simply averaging the level
immediately above with the level immediately
below.

The calculation of the cooling rates is based
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on the following parameters

y==0. 002 hour-?
(T'g);=203—sin ¢—7 sin’p
(T'g) ¢=251—7 sin ¢—51 sin%p
(Tz)¢=279—18 sin ¢—67 sin’p
(Tg)s=295—26 sin ¢—73 sin’p

(T'g)10=315—32 sin ¢—86 sin?p (33)

Because of the presence of dissipative
terms the ordinary integration using centered
time steps was unstable. A slight modifica-
tion of the procedure was used in this case.

F*(t-4t) = F (t—4f) +2At<%€->* (34)
F(t) = F*(t) 0. OL[F* (¢-4t) 4 F (t— A1)
—2F*(t)] (35)

The star represents a preliminary value
and the absence of a star represents a final
value. As indicated by (34) all time steps
use centered finite differences except the first
one where forward differences are used. The
application of (35) starts after the second
time step. The scheme described above acts
as a weak filter and it was the only filter
used in the model. The properties of (34)
and (35) are discussed in detail in a report
by the author (1965). A time step of 20
minutes was used for the integration.

At the beginning of a time step, only true
scalars are available, namely the stream func-
tion ¢, the potential function X, and then o,
T and ¢. The horizontal components of the
wind are then calculated. For the integra-
tion of (24) and (25) the following relations
indicate that there will be no difficulty with
divisions by cos’p

du uv

1 d
M e g (ecose)  (36)
dv | u? 1 d
dt TP s dt (veos )
2 2
+ 4D (37)

In these equations, #cose and vcose are
true scalars so that (8) and (9) apply to the
non-linear terms of the total derivatives of
the right hand side and the last term of (37)
may be written as
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u2+1)2=VHZ'VHX+VH¢"VH¢’+27H¢XVHX'K
(38)

and here also (8) and (9) apply.

The predictive equations are used to evalua-
te the local time derivatives. The local time
derivatives of vorticity and divergence are
obtained from the local time derivatives of
and ». All local time derivatives of true
scalars are then truncated to their original
size by using the spherical harmonics defined
in (21). Forecasts of vorticity and divergence
are then obtained and finally converted into
forecasts of ¢ and X. This method has the
advantage that it uses the same truncation
process for all the variables. Horizontal vector
components appear at intermediate stages of
the calculations. The attempt made by Kubo-
ta to avoid this occurence produces very
cumbersome equations. Allowing horizontal
vector components to appear at intermediate
stages clearly simplifies the numerical pro-
cedure.

The model described above is sufficiently
elaborate to test the applicability of the
spectral method, but it does not contain, at
present, all the features required for a high
quality general circulatic experiment.

4. Results

The integration was started from an at-
mosphere at rest and at a uniform temperatu-
re of 280°K. All the coefficients with indices
in the following range were used

—2<m<2

0<n <2 (39)

giving a set of 15 permissible coefficients for
each variable. The integration was carried
over a period of 200 days and then at this
point the resolution was increased to

—4Zm<4

0<n <4 (40)

giving a set of 45 permissible coefficients for
each variable. The integration was then
continued for another 22 days. The north
south cross-section of the mean zonal flow
obtained at the end of this period is present-
ed in Fig. 2. The zonal flow has been
averaged around latitude circles only. The
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Fig. 2. The zonal wind in m. sec.”! averaged
around latitude circles as a function of
latitude in degrees and pressure in millibars
at the end of the 222 day integration.

two jet streams and the equatorial easterlies
present reasonably realistic characteristics.
The parameters used in the model represent
the month of January, this is evidenced in
the cross-section with the stronger stream
appearing in the northern hemisphere and at
low latitudes. The mean zonal flow did not
show very significant variations during the
last 10 days of the integration indicating that
the model atmosphere reached a form of
dynamic equilibrium at this stage.

The integration of the meteorological equa-
tions in terms of spherical harmonics is
particularly well adapted for studies of the
behaviour of planetary waves. In the at-
mosphere, these waves are either stationary
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Fig. 3. The coefficients of the terms with M=2
and =2 for the geopotential at 500 mb as
a function of time in days. (a) amplitude
in m? sec™? (b) phase angle in degrees
longitude.

or move very slowly. The work of Eliasen
and Machenhauer (1965) establishes the pre-
sence in the atmosphere of planetary waves
with relatively high phase speeds, but their
amplitudes are not significant.  Barotropic
and baroclinic models require empirical cor-
rections to slow down the retrogression of
the longest waves, but this should no longer

120K

u_w

now 60w

Fig. 4.
is longitude and the ordinate is latitude.

The 500 mb stream function at the end of the 222 day

o "
120€ 90s

The abscissa

66 E
integration.



244

be necessary in primitive equations models.
The time series of Fig. 3 indicate that both
amplitude and phase fluctuate sensibly, but
the wave shows no net tendency to move
either westward or eastward over the period
of 22 days even in the absence of topographi-
cal effects. Other planetary waves gave
similar results. The fluctuations in amplitude
and phase decrease considerably towards the
end of the integration indicating that the
fluctuations were probably caused by the in-
crease in resolution.

The resolution used in the model is not high
enough to give realistic mean meridional circu-
lation cells. Charts of the geopotential or the
stream function (Fig. 4) lack in detail and
because of the absence of topography, they
have no characteristics that could be attribut-
ed to particular regions of the earth. These
shortcomings did not prevent the simulation
from being realistic on the planetary scale
and within the limitations mentioned above
this experiment has been a successful test of
the spectral method.

6. Conclusions

Spherical harmonics or the elements that
constitute these functions may be used suc-
cessfully to integrate the complete meteorologi-
cal equations. There are no serious difficulties
associated with this method. An extension
to a three-dimensional functional representa-
tion should logically follow. A functional re-
presentation in the vertical coordinate would
have to account for the presence of boundaries,
but this does not appear to be a fundamental
difficulty. A completely three-dimensional
spectral representation would require finite
difference approximations in the local time
derivatives only and the truncation errors in
this case would be more easily controlled.

Spectral forms of the meteorological equa-
tions may never compete successfully with
the grid point method for the operational
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production of weather forecasts, but there
are a number of problems that could use
functional representations advantageously.
General circulation experiments and extended
forecasts do not require a very high resolu-
tion and for this reason might be treated
more effectively with spherical harmonics.

In the immediate future, comparisons be-
tween the spectral method and the grid point
method will provide a considerable amount
of information about the relative merits of
each method. It is only after a series of
comparisons that it will be possible to decide
which method should be used for any particu-
lar group of experiments.

The research has been supported by McGill
University, the Meteorological Service of
Canada and the Air Force Cambridge Research
Laboratories under Contract No. AF 19 (628)—
4955.
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