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                     Abstract

   The interest for spectral forms of the meteorological equations has grown considerably 
over the past several years. Integrations in terms of spherical harmonics provide us with 
an interesting alternative to the grid point method. The results of an extension of the 
method to the complete meteorological equations will be presented here. 

   A model based on five levels and 15 coefficients is integrated for 200 days starting from 
an atmosphere at rest and at a uniform temperature. The integration is then continued for 
another 22 days with 45 coefficients. Cross-sections show a jet stream in each hemisphere 
and low level easterlies along the equatorial belt. The amplitudes and the phase speeds of 
the planetary waves in the model compare favourably with their atmospheric equivalents. 
The results of this integration indicate that spherical harmonics could be used profitably in 

general circulation models or in the preparation of extended range forecasts.

1. Introduction 

 The meteorologist cannot contemplate as a 

possibility, any direct experimentation with 
the large scale processes of the atmosphere. 
This is unfortunate in a sense, because it de-

prives us of the method most commonly used 
in physics. It deprives us of a powerful tool 

that could have raised meteorology to the 
level of an exact science. 

 An insight into the mechanisms that genera-

te and sustain the large scale flow patterns, 
can result also from the study of adequate 

analogues. This alternative method contains 
serious weaknesses, the conclusions drawn 

from studies of the analogue do not necessari-

ly apply to the atmosphere, but it can still 

provide us with a considerable amount of 
knowledge and useful information. At pre-
sent, it appears to be the best possible al-

ternative to the direct experiment. 
 Analogues of the atmosphere fall into two 

classes : the scale model and the numerical 
model. Models of the first type attempt to 

simulate the atmospheric circulations in the 
laboratory, the rotating dishpan experiments 

belong to this category. The numerical model 
uses the electronic computer, it represents a

relatively new field of research activity. 

 The first numerical integrations of the me-
teorological equations using electronic equip-

ment were performed about 15 years ago. 
The grid point method was used for these 

experiments and other methods of representa-

tion were not seriously considered until recent-
ly. The grid point method requires finite 
difference approximations and these by neces-

sity, generate appreciable truncation errors. 

This undesirable feature of the grid point 
method can seriously corrupt the numerical 

integrations. The study of various finite dif-
ference operators and their properties, still 

represents a large fraction of the time devot-
ed to the simulation problem in meteorology. 

 Spectral forms of the meteorological equa-

tions do not use any approximations for the 
evaluation of space derivatives. They do not 
eliminate entirely the necessity for truncation, 

but they permit a rigid control over the result-

ing truncation errors. The integration of 
spectral equations may require an excessive 

amount of computing power. This would 
definitely be true at very high resolution. 

This problem will always remain, it might 
be serious today but it will likely be trivial 

in another generation.
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 The results of the first successful integra-
tion of the barotropic vorticity equation in 
terms of spherical harmonics were published 
by Baer (1964). The application of this 
method to baroclinic models does not present 
any additional problems. An experiment 
carried out by Li Peng (1965) shows that 
spectral baroclinic models can produce useful 
results even at very low resolution. An ex-
tension to the primitive equations appears 
more problematic and failure to overcome 
this difficulty would make the method useless. 
It would not be possible to find any merit in 
a spectral form that cannot be extended to 
the complete meteorological equations. 

 Fortunately, the work of Kubota (1959) and 
a few others indicates that the complete 
meteorological equations may be treated in 
terms of spherical harmonics. He uses the 
differentiated form (vorticity and divergence 
equations) of the two equations for horizontal 
motion. The divergence equation in particular 
contains a large number of difficult terms to 
handle. The method appears as extremely 
laborious and it can discourage any attempts 
towards implementation. A different approach 
will be used in the present experiment be-
cause of its greater simplicity. 

 In order to avoid using the differentiated 
form of the meteorological equations it has 
been found that the horizontal components of 
the wind must be represented by functions 
other than spherical harmonics. The func-
tions that must be used do not differ much 
in nature from the truncated series of spheri-
cal harmonics used to represent temperature 
and vertical motion. Once that the problem 
of representing the horizontal components of 
the wind has been solved, the differentiated 
form no longer has to be used and this eliminat-
es the most serious barrier that prevented 
us from integrating the primitive meteorologi-
cal equations. 

2. The method 

  Spherical harmonics are associated Legendre 

polynomials of the first kind and the mete-
orological equations may be treated in terms of 
the elements that constitute these polynomials 
instead of using the polynomials themselves. 
This simplifies the multiplication process 
significantly and eliminates some of the dif-

ficulties present in the method of multiplica-
tion described by Silberman (1954). The 
basic elements required to generate spherical 
harmonics are simple analytic functions.

where A and cp represent the longitude and 

the latitude respectively, M simply represents 
the absolute value of m. Both M and n will 
be either positive integers or zero. The 

number M gives the number of waves along 
any given latitude circle while n is only an 

exponent and cannot be given any simple 

physical interpretation at this stage. 
 These functions. will be used later to re-

present the meteorological variables. They 
are continuous and all their physically sig-

nificant derivatives are continuous, this will 
become obvious after a discussion of the pro-

perties of these functions. The evaluation of 
the two partial derivatives is straightforward.

 The evaluation of non-linear terms in the 

equations of motion involves the product of 

functions. For a description of the multipli-

cation we will use two functions with m and 

k assigned as upperscripts. The upperscript 

with the largest absolute value will be re-

presented by m so that M•†K. The product 

of two functions is then given by:

 In both cases the result takes a simple 

form in comparison with the multiplication of 
true spherical harmonics. With the multipli-

cation and the two derivatives we have the 
basic operations needed for the integration of 

the meteorological equations. A few addi-

tional operations involving the horizontal "del" 
operator V H will be discussed in order to 

clarify the application to physical processes.
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Here a is the radius of the earth, also :

 The above identity is valid only when M•† 

K as in (4) and (5) and it will be used in 

the two following operations :

 The last term in (8) vanishes when mk•†0. 

When mk<0 the division by cos2* may be 

carried out in accordance with (7). The next 

operation also has the same property

 The last term in (9) vanishes again when 

mk•†0. When mk <0, the division by cos2* 

may be carried out in accordance with (7). 

 The operator V H when applied twice as in 

(6), (8) and (9) necessitates a division by 

cos2*. In all cases the numerator is exactly 

divisible by cos2* and the results are expres-

sible in terms of the functions selected in (1). 

 In order to integrate the meteorological 

equations, each field will be expressed in 

terms of the functions defined in (1)

 The vector representing the horizontal 

gradient of this field is defined by its two 
components :

carried out because it would not be possible 
then to transform the results back to the 
form used in (10). The distinction being 
made here is emphasized by calling (10) a 
"true staler" and the expression used in both 

(11) and (12) is called a "horizontal vector 
component". The only difference between 
the two is a division by cos cp, but this distinc-
tion is very important. It forms the basis of 
the method described here. 

 When cos* appears more than once in the 
denominator, the division is carried out with 
the formula :

 When such a division is required in the 
meteorological equations as in (6), (8) and 

(9), it truns out that the polynomial appear-
ing in the numerator is always exactly divisi-
ble by cos2*. 

 For a complete description of the multipli-
cation we will use the fields : Q with coef-
ficients Bum, R with coefficients Cum and S 
with coefficients Dam.

 When the upperscript is preceded by a 
minus sign, the corresponding term is deleted 

when the upperscript is made zero. The 
coefficients of the results will be determined 

from :

 Both Px and Py take the same form as P 

except for an additional division by cos cp. 

This division presents no problem because 
the corresponding numerator is always exact-

ly divisible by cos cp. The division is not
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 Equations (18) and (20) are not used for 
M=0. The upper limits of the first two sum-
mation in (19) and (20) have been left 
undefined. The summation ends when it 

generates terms which are not part of the 
representation. 

 In the meteorological equations, the various 
operations are performed without any trunca-
tion. The calculations proceed until they 

generate the partial time derivative of a true 
scalar. At this point, the array of coefficients 
is truncated by making the truncation errors 
orthogonal with each of the terms retained 
for further calculations. This process uses 
the functions

These functions have the following property:

where the "bar" represents the integral over 

the entire surface of the earth.

 The elimination of a term Gnm is achieved 
by replacing this term by Gnm - Hnm. The 
highest order term in this last expression is 
Gn - 2m as may be seen from (21). This 
technique is always applied to the highest 
value of n which is then reduced by two 
units. It is repeated until all the undesired 
terms have been eliminated. It should be 
noted that the functions Hnm are the spherical 
harmonics presented in a different form. 

 The various operations described in this 
section are required for the integration of the 
meteorological equations. Each variable is 
represented by a truncated double series in 
accordance with (10). The derivatives of a 
meteorological variable are calculated by using 

(11) and (12) and the product of two vari-
ables requires the application of (17), (18), 

(19) and (20). Any particular term in the 
meteorological equations may be calculated 
by using the spectral operations described in

this section and the result represented by a 
double series of the functions Gum. These 

functions do not form an orthogonal system 
but this is unimportant provided that the 

orthogonal functions Hnm are used to truncate 
any series that contains too many terms. 

 Since each variable is represented by a 
double series of the functions Gm and since 

each term in the meteorological equations is 

calculated separately and represented by a 
double series, this implies that the calculation 

of each time derivative requires a long suc-
cession of spectral operations. An advantage 

of the successive spectral operations resides 

in the fact that they eliminate the need for 
an explicit statement of the primitive equa-

tions in their spectral form. Also, this method 

permits the calculation of the truncation 
errors and this facilitates the assessment of 

their relative importance. 

3. The modeling equations 

 The complete meteorological equations must 

form the basis from which all studies of 
atmospheric phenomena should start. The 

physicists discovered these laws and tested 
them over a much wider range of applica-
tions than we can expect to encounter in the 

atmosphere. It is true that we cannot in-
corporate into these equations all the features 

of the atmosphere and its boundaries, but 
this has not been the main handicap over the 

past few years. Most difficulties stemmed 
from the numerical procedures used to in-

tegrate the meteorological equations. The 

development of improved finite difference ap-

proximations contributed considerably to solve 
the simulation problem. 

 Functional representations of the mete-

orological variables require different integra-

tion procedures which generate errors of a 
different nature. The present experiment 

will simply show that the method discussed 
in the preceding section works successfully 

and gives adequate results. Comparisons 
with the grid point method are not possible 

at this stage and will have to be delayed to 
a later date. The spectral method is applied 

to the primitive meteorological equations with 
the vertical structure specified by five levels. 

In order to avoid the initial value problem, 

the model is applied to a rather simple general
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circulation experiment. The model uses the 
following set of equations expressed in pres-
sure coordinates.

where s is a surface drag coefficient. The 

following values were assigned to the two 

constants related to the eddy viscous stresses.

where : 
u and v are the horizontal components of the 

wind. 

 

****

T is temperature. 

p is pressure. 
* is the geopotential. 

* is the radius of the earth. 

R is the gaz constant for dry air. 
C*. is the heat capacity at constant pressure. 

* is an eddy viscosity coefficient. 

r is a net radiative cooling coefficient. 
TE is a radiative equilibrium temperature. 

 The following boundary conditions are used

 These values would give a friction layer 
with a depth of 800 meters and a drag coef-
ficient representative of a flat land area. 

 The vertical grid is given in Fig. 1, equa-
tions (24), (25) and (26) are applied at all

 The experiments performed by Mintz (1964) 
indicate that the absence of topography will 
not affect significantly some aspects of the 
results. Topography is not used in the pre-
sent model in order to insure the presence 
of transient planetary modes exclusively. 
The lower boundary condition adds another 

predictive equation to the system.

  The subscript S designates the lower bounda-
ry assumed to be at 1000 mb in the above 

equation. Additional boundary conditions are 

required for the frictional stresses.

 Fig. 1. The vertical grid used for the representa-
     tion of the meteorological variables. The 

     evenly spaced levels are 100 millibars apart. 

the odd levels, equations (27) and (28) are 
applied at all even levels except the top of 
the atmosphere. Centered finite difference 
approximations are used to evaluate the verti-
cal derivatives whenever possible. If a 
variable is required at an intermediate level, 
it is obtained by simply averaging the level 
immediately above with the level immediately 
below. 
 The calculation of the cooling rates is based
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on the following parameters

 Because of the presence of dissipative 

terms the ordinary integration using centered 
time steps was unstable. A slight modifica-

tion of the procedure was used in this case.

  The star represents a preliminary value 
and the absence of a star represents a final 
value. As indicated by (34) all time steps 
use centered finite differences except the first 
one where forward differences are used. The 
application of (35) starts after the second 
time step. The scheme described above acts 
as a weak filter and it was the only filter 
used in the model. The properties of (34) 
and (35) are discussed in detail in a report 
by the author (1965). A time step of 20 
minutes was used for the integration. 

 At the beginning of a time step, only true 
scalars are available, namely the stream func-
tion *, the potential function *, and then *, 
T and *. The horizontal components of the 
wind are then calculated. For the integra-
tion of (24) and (25) the following relations 
indicate that there will be no difficulty with 
divisions by cos2*

and here also (8) and (9) apply. 
  The predictive equations are used to evalua-

te the local time derivatives. The local time 
derivatives of vorticity and divergence are 
obtained from the local time derivatives of u 
and v. All local time derivatives of true 
scalars are then truncated to their original 
size by using the spherical harmonics defined 
in (21). Forecasts of vorticity and divergence 
are then obtained and finally converted into 
forecasts of * and *. This method has the 
advantage that it uses the same truncation 

process for all the variables. Horizontal vector 
components appear at intermediate stages of 
the calculations. The attempt made by Kubo-
ta to avoid this occurence produces very 
cumbersome equations. Allowing horizontal 
vector components to appear at intermediate 
stages clearly simplifies the numerical pro-
cedure. 
 The model described above is sufficiently 
elaborate to test the applicability of the 
spectral method, but it does not contain, at 

present, all the features required for a high 
quality general circulatic experiment. 

4. Results 

 The integration was started from an at-
mosphere at rest and at a uniform temperatu-
re of 280°K. All the coefficients with indices 
in the following range were used

giving a set of 15 permissible coefficients for 
each variable. The integration was carried 

over a period of 200 days and then at this 

point the resolution was increased to

  In these equations, * cos * and v cos cp are 
true scalars so that (8) and (9) apply to the 
non-linear terms of the total derivatives of 
the right hand side and the last term of (37) 
may be written as

giving a set of 45 permissible coefficients for 
each variable. The integration was then 
continued for another 22 days. The north 
south cross-section of the mean zonal flow 

obtained at the end of this period is present-

ed in Fig. 2. The zonal flow has been 
averaged around latitude circles only. The
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Fig. 2. The zonal wind in m. sec.-1 averaged 

   around latitude circles as a function of 

   latitude in degrees and pressure in millibars 

   at the end of the 222 day integration.

two jet streams and the equatorial easterlies 

present reasonably realistic characteristics. 
The parameters used in the model represent 
the month of January, this is evidenced in 
the cross-section with the stronger stream 
appearing in the northern hemisphere and at 
low latitudes. The mean zonal flow did not 
show very significant variations during the 
last 10 days of the integration indicating that 
the model atmosphere reached a form of 
dynamic equilibrium at this stage. 

 The integration of the meteorological equa-
tions in terms of spherical harmonics is 

particularly well adapted for studies of the 
behaviour of planetary waves. In the at-
mosphere, these waves are either stationary

Fig. 3. The coefficients of the terms with M=2 
   and n=2 for the geopotential at 500 mb as 

   a function of time in days. (a) amplitude 
   in m2 sec-2 (b) phase angle in degrees 

   longitude.

or move very slowly. The work of Eliasen 
and Machenhauer (1965) establishes the pre-
sence in the atmosphere of planetary waves 
with relatively high phase speeds, but their 
amplitudes are not significant. Barotropic 
and baroclinic models require empirical cor-
rections to slow down the retrogression of 
the longest waves, but this should no longer

r1g. 4. the buumb stream function at the end of the 222 day integration . The abscissa 
   is longitude and the ordinate is latitude.
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be necessary in primitive equations models. 
The time series of Fig. 3 indicate that both 
amplitude and phase fluctuate sensibly, but 
the wave shows no net tendency to move 
either westward or eastward over the period 
of 22 days even in the absence of topographi-
cal effects. Other planetary waves gave 
similar results. The fluctuations in amplitude 
and phase decrease considerably towards the 
end of the integration indicating that the 
fluctuations were probably caused by the in-
crease in resolution. 

 The resolution used in the model is not high 
enough to give realistic mean meridional circu-
lation cells. Charts of the geopotential or the 
stream function (Fig. 4) lack in detail and 
because of the absence of topography, they 
have no characteristics that could be attribut-
ed to particular regions of the earth. These 
shortcomings did not prevent the simulation 
from being realistic on the planetary scale 
and within the limitations mentioned above 
this experiment has been a successful test of 
the spectral method. 

5. Conclusions 

 Spherical harmonics or the elements that 
constitute these functions may be used suc-
cessfully to integrate the complete meteorologi-
cal equations. There are no serious difficulties 
associated with this method. An extension 
to a three-dimensional functional representa-
tion should logically follow. A functional re-

presentation in the vertical coordinate would 
have to account for the presence of boundaries, 
but this does not appear to be a fundamental 
difficulty. A completely three-dimensional 
spectral representation would require finite 
difference approximations in the local time 
derivatives only and the truncation errors in 
this case would be more easily controlled. 

 Spectral forms of the meteorological equa-
tions may never compete successfully with 
the grid point method for the operational

production of weather forecasts, but there 
are a number of problems that could use 
functional representations advantageously. 
General circulation experiments and extended 
forecasts do not require a very high resolu-
tion and for this reason might be treated 
more effectively with spherical harmonics. 

 In the immediate future, comparisons be-
tween the spectral method and the grid point 
method will provide a considerable amount 
of information about the relative merits of 
each method. It is only after a series of 
comparisons that it will be possible to decide 
which method should be used for any particu-
lar group of experiments. 

 The research has been supported by McGill 
University, the Meteorological Service of 
Canada and the Air Force Cambridge Research 
Laboratories under Contract No. AF 19 (628)-
4955. 
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Low order spectral形 式 に よ るprimitive方 程 式 の 積 分 に つ い て

AndreJ.Robert

カ ナ ダ 気 象 局

この論文では,大 気の運動方程 式・ 熱力学 の式の球函数展開に よる数値実験につい ての議論 が行なわれ る｡球 函数

による時間積分は格子点に よる時間積分にかわ る興 味あ る方法であ る｡

静止・ 等温 の初期条件か ら出発す る5層 モデル は,球 函数 の15成 分 をとって200日 間時 間積分 され,さ らにそ れ

につづ く22日 間につい ては45成 分を使用 して積分が行 なわ れた｡

数値実験 の結果,両 半球 のjet streamお よび赤道に沿 う下層 の偏東 風が示 された｡数 値実験 で得 られたplanetary

waveの 振 幅・位相速度 は,実 際の大気 のそれ らとよ く対 応 していた｡こ の数値実験 の結果 は,大 気大循環の数値実

験に球函数の使用 が有利であ る事 を示 してい る｡


