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ABSTRACT

In the present investigation we propose a simple theory to explain how a veering environmental wind
shear vector can cause an initially symmetric updraft to grow preferentially to the right of the shear vector
and acquire cyclonic rotation. The explanation offered is based on linear theory which predicts that inter-
action of the mean shear with the updraft produces favorable vertical pressure gradients along its right
flank. To assess the validity of linear theory for large-amplitude updrafts, the three-dimensional, shallow,
anelastic equations are numerically integrated using a simple parameterization for latent heating within a
cloud and the linear and nonlinear forcing terms are separately analyzed. These results suggest that although
the nonlinear effects strongly promote splitting of the updraft, the linear forcing remains the dominant
factor in preferentially enhancing updraft growth on the right flank. We believe this differential forcing is
a major contributor to the observed predominance of cyclonically rotating, right moving storms.

1. Introduction

Why do most Great Plains tornadoes spin cyclon-
ically? It has been known for some time that tor-
nadoes are embedded within a cyclonically rotating
portion of a thunderstorm called the mesocyclone
(Brooks, 1949; Fujita, 1960). Why, then, do most
rotating thunderstorms contain mesocyclones rather
than mesoanticyclones? Tornadic storm proximity
soundings (Maddox, 1976) reveal a characteristic
curvature of the wind hodograph. We argue herein
that it is this curvature which is most likely respon-
sible for the prevalence of mesocyclones (rather than
mesoanticyclones) and propose a simple theory to
explain the result.

Numerical experiments by Wilhelmson and Klemp
(1978) demonstrate how cyclonic and anticyclonic
severe storms may evolve in the presence of environ-
mental wind shear. They consider a shear flow in
which the shear vector does not change direction with
height. Since there is no horizontal variation of the
environmental shear flow, there is initially no vertical
vorticity or divergence. Coriolis effects are neglected
for these experiments. Convection is initiated by an
axisymmetric thermal and a vortex pair develops in
a horizontal plane due to the upward tilting of the
vortex tubes associated with the mean shear flow.
Facing in the direction of the shear vector, there is
positive vertical vorticity on the right side of the up-
draft and negative on the left. After a time, rain
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forms on the center axis of the original cell and is
primarily responsible for inducing a downdraft which
splits the original cell into two cells—one, dominated
by cyclonic vorticity (at low levels), propagating to
the right of the shear vector, the other dominated by
anticyclonic vorticity, propagating to the left. The
two storms possess mirror-image symmetry and re-
semble Browning’s (1964, 1968) observationally-de-
duced model for severe right- and left-moving storms
(denoted by SR and SL, respectively).

One might guess that the SR-type storm is more
commonly observed in the Northern Hemisphere
because of the cyclonic bias introduced by the earth’s
rotation. However, Klemp and Wilhelmson (1978b)
found the inclusion of the Coriolis effect to only
weakly enhance the SR storm over the SL in their
model. Climatological data concerning wind hodo-
graphs associated with severe tornadic thunder-
storms (the great majority of which are SR types)
reveal a strong clockwise turning of the wind shear
vector (in addition to the wind vector) between the
surface and 700 mb (see Maddox, 1976). Klemp and
Wilhelmson demonstrated that the relative strengths
of the SR and SL storms were sensitive to the vari-
ation of the direction of the wind shear vector with
height. Specifically, a clockwise turning of the wind
shear vector with height favors the development of
a cyclonic, right-moving storm (even with no Coriolis
effect) while conversely, a counterclockwise turning
Javors the anticyclonic, left-moving storm.

To illustrate the preceding remarks, we present
results of two numerical experiments from the cloud
model developed by Klemp and Wilhelmson (1978a).
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Klemp et al. (1981) conducted numerical experi-
ments with the goal of simulating the tornadic storm
which occurred on 20 May 1977 near Del City,
Oklahoma. The environmental hodograph used is
displayed in Fig. 1. This hodograph indicates that
the wind shear vector veers with height over the en-
tire troposphere. [On a wind hodograph where ¥ vs
U is plotted, the direction of the wind shear vector
dV/az is obtained by considering the local tangent
to the curve V(U) and identifying the ordinate as
northward and the abscissa as eastward.] The ther-
modynamic sounding and other details may be found
in that paper. We present here two comparative ex-
periments with the Coriolis effect neglected (the
study of Klemp et al. included it). In addition to the
20 May sounding in Fig. 1, a straight line hodograph
is included which contains approximately the same
magnitude of wind shear below 6 km (with no shear
above this height) but shows no variation of direction
with height. Fig. 2a contains horizontal cross sections
at 2.25 km above the surface of vertical velocity and
rainwater fields at four stages of development for the
straight line hodograph. During the early stage (20
min), the updraft is nearly axisymmetric, later (40
min) the updraft is elongated in the direction of the
shear vector. By 60 min, rain formation on the cen-
tral axis of the original cell splits the updraft into
two updraft/downdraft pairs which thereafter (80
min) travel to the right and left of the shear vector,
respectively. The vorticity fields (not shown) indicate
that the right moving updraft is cyclonic and the left
moving updraft is anticyclonic. We compare this
development to the one which occurs using the 20
May hodograph in Fig. 2b. Notice that at 20 min
the updraft becomes biased toward the right of the
shear vector. At 40 min the right side of the splitting

U (ms™)

FiG. 1. Wind hodograph for severe thunderstorms which oc-
curred near Del City, Oklahoma on 20 May 1977 with height
labeled in kilometers. Curvature of the hodograph indicates veering
of the wind shear vector with height. The straight line hodograph
(dashed line) contains approximately the same magnitude of shear
below 6 km, but does not vary the direction of the wind shear
vector with height.
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(a) STRAIGHT HODOGRAPH
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F1G. 2. Horizontal contour plots of vertical velocity at 2.25 km
AGL at t = 20, 40, 60 and 80 min from the three-dimensional
numerical cloud model developed by Klemp and Wilhelmson
(1978a) for (a) the straight line hodograph of Fig. 1 and (b) the
20 May sounding also contained in Fig. 1. Updrafts (solid lines)
and downdrafts (dashed lines) are contoured at 4 m s™! increments,
beginning at +2 m s™'. The heavy line is the outline of the 0.5 g
kg™! rainwater field predicted by the model. Note that in (a) the
development is completely symmetric with respect to the diagonal
line which represents the direction of the shear vector. The di-
agonal line in (b) is the same as in (a) and also corresponds to the
direction of the shear vector at 2.25 km. Here the development
is skewed so that the right member is enhanced over the left.

updraft is much stronger than the left, and at 60-80
min the right side ultimately dominates. Since Cor-
iolis effects are neglected, the only possible reason
for this bias is the curvature of the hodograph. A
further refinement to this result is that hodograph
curvature over the lowermost portion of the atmo-
sphere is most important in producing the rightward
bias. A hybrid case was simulated using the 20 May
winds up to 4 km and the straight line hodograph
above that point. This case developed similarly to
that shown in Fig. 2b although the cyclonic storm
deviated somewhat more slowly to the right. This
influence of directional wind shear appears to be a
general result and not peculiar to this numerical
model; it occurs in all published numerical simula-
tions where the environmental shear vector turns
clockwise from the surface to mid-levels (cf. Schles-
inger, 1978).

Impressed with the fact that the rightward bias
occurs early in the numerical experiments, we felt
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that if we could understand this initial bias, we would
be a long way toward an explanation of why the
turning shear vector favors the development of one
member of the split pair. The initial amplitude of the
convection in the cloud model is, by definition, small
and linear theory is thus applicable. We’ve found
that the simple relation which exists in the linear
theory between the non-hydrostatic pressure and the
wind shear vector can explain the early bias described
above. Specifically, the linear theory predicts that
an initially axisymmetric updraft interacts with a
shear flow in a way that produces a favorable (un-
Sfavorable) vertical pressure gradient, below the level
of maximum vertical velocity, on the right (left) side
of the updraft when the shear vector turns clockwise
with height. Furthermore, the linear theory predicts
the production (through the upward tilting of mean
vortex tubes) of cyclonic vorticity on this right side
to which the updraft is biased. In a similar fashion
the left side would be favored if the shear vector
turned counterclockwise with height. [This expla-
nation is reminiscent of, but distinctly different from,
that of Newton (1960) who hypothesized that the
clockwise turning of the wind produces the rightward
bias. ]

The linear theory as such is theoretically limited
to small-amplitude motions. To evaluate the rele-
vance of the linear theory and to gain knowledge
concerning the role of nonlinear effects, we per-
formed numerical integrations of simplified, three-
. dimensional equations of motion pertaining to buoy-
ant convection in an environment where the wind
shear vector may change direction with height. We
analyze the contribution to the vertical acceleration
from the pressure gradient associated with the linear,
nonlinear and buoyancy terms and the vertical ad-
vection separately and find the linear effect is the
only one which is responsible for the rightward bias
described above. Further, we find that the pressure
forcing due to the nonlinear dynamics can, through
preferential uplift on the storm’s flank, contribute to
the storm splitting process.

The following section contains the governing equa-
tions and rationale for simplifications made. Con-
sequences of the linear theory concerning the right-
ward bias are considered and the numerical
integration of the nonlinear equation set is described.
Results and analysis of these integrations are pre-
sented in Section 3. Further discussion and summary
are included in Section 4.

2. Linear analysis and numerical model

As mentioned in the Introduction, we are im-
pressed with the fact that when the shear vector
changes direction with height an initially symmetric
updraft at early times displays a systematic bias to-
ward the flank which will subsequently become the
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stronger member of the split pair. At early stages in
a thermal’s development, the details of cloud micro-
physics are of minimal importance. Hence, for clarity
of exposition, we have chosen a relatively simple con-
vection model to study the way in which a turning
wind shear vector acts to change the shape of an
initially symmetric updraft. It is of course possible,
and in fact likely, that initial convection in nature
is not axisymmetric. However, it seems entirely un-
likely that all initial convective elements are system-
atically biased in a way which favors the development
of cyclonic, right-moving storms. The hypothesis of
Klemp and Wilhelmson (1978b) is that a systematic
bias can result through the interaction of an initially
symmetric thermal with the shear flow. Klemp and
Wilhelmson demonstrated that such a bias does oc-
cur in the numerical model; in the present study we
develop a simple theory to explain why this is so.

In order to study the simplest set of equations
which contains the relevant physics, we shall consider
the shallow, inviscid anelastic equations (Ogura and
Phillips, 1962)

@+V-VV=—V7r+Bk, )

ot

%f +v-VB = —N?w, (2)
V.v=0, (3)

where v, and B are the velocity vector and buoyancy
respectively; © = ¢,80(p/po)*/», where p, po, R and ¢,
are the pressure, ground pressure, universal gas con-
stant and the specific heat at constant pressure, re-
spectively. The del operator is defined V = id/dx
+ jd/dy + ka3/oz, where i, j, k are the unit vectors
in the x, y and z directions, respectively. The Carte-
sian components of v are denoted by (v, v, w). N
= [(g/8,)(86/3z)]"/? is the Brunt-Vaisala frequency,
where g is the acceleration due to gravity and B
= gf#/6,. The potential temperature § = 6, + 6(z)
+ #(x, t), where 6, is a constant, x the position vector
and ¢ time. The initial conditions are '

B(x, 0) = By(x),
v(x, 0) = iU(z) + j¥(2) + vo(x),

(4a)
(4b)

where Bo(x) and vy(x) are chosen to be axisymmetric
with respect to the vertical axis. Our principal con-
cern will be with determining the mechanism(s) by
which the axisymmetric updraft (produced by the
axisymmetric warm thermal) becomes asymmetric.
To quantify the discussion, we consider the vertical
component of Eq. (1)

ow on

ot v.Vw 3z + B.

Within this model, w may change locally by advec-

(5)
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tion, vertical pressure gradients and buoyancy. Per-
haps the most enigmatic of these three terms is the
vertical pressure gradient. Estimation of the non-hy-
drostatic pressure gradient by way of obstacle flow
analogies has dominated theoretical discussions of
severe storms ever since Newton and Newton (1959)
first suggested it. The obstacle flow analogy is ap-
pealing because it provides a relatively simple way
of viewing a complex physical problem. However,
such analogies are difficult to justify rigorously. For
example, flow around circular cylinders in the lab-
oratory has various configurations depending on the
Reynolds number, whether or not separation occurs,
etc. Furthermore, the flow around a cylinder in a
stream flow which varies along the axis of the cyl-
inder may be highly complex. Since there is no ob-

stacle in the atmosphere, how does one decide a.

priori what aspect of cylinder flow is relevant? We
shall make further comments on this analogy in Sec-
tion 4c. One approach toward understanding the
pressure gradient term is through direct calculation
from three-dimensional numerical model calcula-
tions. Schlesinger (1980) has calculated the contri-
butions to the pressure from hydrostatic, non-hydro-
static and drag sources for one numerical model case
study. He found that the non-hydrostatic vertical
pressure gradient contributes to updraft splitting by
forcing positive vertical velocity on the flanks of the
original cell (see his Fig. 9). That this forcing is
greater on the right (south) flank is, we believe, a
direct consequence of the fact that his hodograph
exhibits a wind shear vector which turns clockwise
with height. This effect is predicted by the linear
theory we now develop.

a. Linear theory

We consider Egs. (1)-(3) linearized about the en-
vironmental wind vector V = [U(z), V(z), 0]:

D d

—_ V' + . = _V ! '

Di w 7 \% « + B'k, 6)

D (- 2,1

Dr B' = —N?%w/, @)

V.v=0, (8)
where D/Dt = 9/dt + V- V. Because the mechanism

we investigate is not directly related to buoyancy
effects, we consider for the moment a homogeneous
fluid (B’ = N? = 0), flowing horizontally at a velocity
V(z). Suppose at t = 0, we specify an axisymmetric
updraft wy(x) with perturbation horizontal compo-
nents u o(x), vo(x) specified such that continuity [ Eq.
(8)] is satisfied.

Moving with the mean flow, the vertical velocity
changes according to the vertical component of (6),
that is

€)
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We obtain an equation for »’ by taking the divergence
of (6), i.e.,

VZ [

", (10)
zZ

The qualitative behavior of the solution of (10) may

be found by noting that for a function consisting of

a narrow band of Fourier components, the Laplacian

of the function is negatively proportional to the func-

tion itself. In this situation, Eq. (10) becomes

™ 7 Vw'.
Since the forcing functions we examine have small
band width, we expect Eq. (11) to be approximately
correct away from boundaries. Evaluation of this
approximation in numerical simulations presented in
Section 3b also confirms its qualitative validity.
We now consider the pressure field associated with
the initial symmetric updraft wg(x). Relation (11)
indicates that high pressure will form on the upshear
flank of the updraft with low pressure on the down-
shear flank. Thus, at any given height a negative
horizontal pressure gradient forms across the updraft
in the direction of the environmental wind shear vec-
tor. If the shear vector is independent of height, then
the pressure varies with height in proportion to
Vwg. A simple illustration will facilitate the ensuing
discussion. Fig. 3a displays an initial impulse in a
one directional shear flow V(z) = [U(z), 0, 0] where
for simplicity we take U = az, a > 0. Relation (11)
becomes

(11

N aw{,

L x
Referring to Fig. 3a, we observe that since dU/az
> 0, there is high pressure on the west (according
to the standard meteorological convention) side of
the updraft because dwy/dx > 0. Conversely there
is low pressure on the east side. The high and low
pressures have maximum amplitude at the height
where wj (and consequently, dwo/dx) has its largest
values. Hence, as indicated in the diagram, the pres-
sure distribution tends to prevent the shearing apart
of the updraft which would occur if only the advec-
tion term were operative. Further, this favorable non-
hydrostatic pressure gradient may play a crucial role
in lifting negatively buoyant sub-cloud air (e.g., as
observed by Marwitz, 1972) to its level of free con-
vection. Note that the direction of the high/low pres-
sure pattern aligns with the shear vector on a sym-

‘metric updraft. If the shear vector does not change

direction with height, the relative highs will be ver-
tically stacked as will the lows and the flow develops
symmetrically about the shear vector. We emphasize
that a veering wind situation may not be fundamen-
tally different from the case described above. That
is, a wind hodograph may exhibit wind veering but
no change in direction of the wind shear vector. Thus,
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(a) STRAIGHT HODOGRAPH

{b) CURVED HODOGRAPH

3

level M

level L
X

—>

F1G. 3. Schematic which illustrates the behavior of pressure and
vorticity as implied by Egs. (11) and (12), respectively, for (a) a
case where the wind shear vector does not change with height and
(b) a case where the wind shear vector veers with height. The
corresponding hodographs for environmental flow at low (L) to
mid (M) levels are inset to the left. Horizontal pressure gradients
parallel to the shear vector are labeled at each level along with
the preferred locations of positive (+) and negative (—) vorticity.
The orientations of the resulting vertical pressure gradient forces
between low and mid levels are indicated by the black arrows.

any straight line hodograph produces the same be-
havior as described above.

When the shear vector changes direction with
height, the situation is fundamentally different be-
cause now there is no axis ‘of symmetry in the fluid.
Fig. 3b contains a hypothetical hodograph in which
a shear vector pointing toward the northeast at low
levels turns toward the southeast at middle levels.
The diagram in Fig. 3b illustrates that at low levels
there is a high to the southwest and a low to the
northeast, and at a higher level, the horizontal pres-
sure gradient turns with the shear vector so that there
is a high to the northwest and a low to the southeast.
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Thus, vertical pressure gradients are created which
assist rising air on the southern side of the updraft
and inhibit upward motion on the northern side. It
is in this fashion, we believe, that an initially sym-
metric updraft becomes biased toward the right side.

The tendency of the rightward moving storm to
have stronger vorticity than its leftward moving
counterpart given a veering wind shear vector was
also noted by Klemp and Wilhelmson (1978b). Here
we consider the vertical component of the curl of

(6), i.e., b N
o N e\ Vw'
Dt =k <dz XVw > ’

where {' = dv’/dx — du' /dy-is the vertical component
of the perturbation vorticity vector ' = (¢, 7/, ¢).
The right-hand side of (12) represents the linearized
version of vortex-line tilting. Notice the contrasting
forms of the vorticity production term in Eq. (12)
and the pressure perturbation Eq. (11). While pres-
sure perturbations are aligned parallel to the shear
vector, vertical vorticity perturbations are oriented
perpendicular to the shear vector. The environmental
vorticity associated with the mean shear is
VXV(E)=kX av .
dz

Hence, these horizontal vortex lines at any level z
are oriented perpendicular to the shear vector. Ac-
cording to (12), cyclonic (positive) vorticity is pro-
duced on the right (facing in the direction of the
shear vector) and anticyclonic is produced on the left
of a symmetric updraft. When the shear vector di-
rection does not vary with height, the positive vor-
ticity maxima are vertically stacked to the right of

(12)

-the shear vector as are the negative minima on the

left. Because of the assumed symmetry of w, the
magnitudes of the positive and negative vorticity ex-
trema are identical. The schematic diagram in Fig.
3a illustrates where positive and negative vertical
vorticity are produced by tilting.

When the shear vector turns with height, the ori-
entation of the vortex pair turns with the shear vector
in accordance with the right hand side of (12). As
illustrated in Fig. 3b, the production of positive vor-
ticity is on the side where favorable pressure gra-
dients have been created due to the turning shear
vector, i.e., cyclonic vorticity and updraft production
are positively correlated.

To prove this result more generally, consider the
flow in the cylindrical coordinates (r, ¢, z). Thus

,_ow'  1aw' . aw'
Vw - or e'_'_r ¢ €+ 9z
where e,, e, and e, are the unit vectors; for an axi-
symmetric updraft the second term is zero. The mean
wind vector in this coordinate system is

V(z) = (U cos¢ + V sing)e, — (U sing — V cos¢)e, .

eZ’
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To relate our results to hodograph features we let
V=W(U) and thus 8V/dz = (3V/aU)aU/dz for
dU/dz # 0. Using this definition of ¥ and (11), Egs.
(9) and (12) become

Dw'’ a Vv . ow’' U
—_~ ——z cosp + —sing | —— 1,

Dt a aUu or 9z

D5 (ing - 2 o) 22 U

Dt (Smd’ U %) ar 3z
respectively.

It is easy to show with these relations that for any

location (7, z),
vV (au>3<aw'>2
% oU*\az/\ar /)’ (13)

Thus, there is a positive correlation between updraft
and vorticity production when the hodograph cur-
vature (8°V/3U?) is negative (for 8U/dz > 0, which
is the typical case) which corresponds to veering of
the wind shear vector. This correlation can increase
the magnitude of the positive vorticity maxima over
the magnitude of the negative vorticity minima
through processes which will be examined in Sec-
tion 4b.

To evaluate the specific predictions of the linear
theory, we display in Fig. 4, p, { and w from the
three-dimensional cloud model experiment described
in Fig. 2b. Fig. 4a contains horizontal contour plots
of the vertical vorticity, pressure and vertical velocity
at z = 1.0 km at ¢t = 15 min. The shear vector at z
= 1.0 km is from 198°. The vorticity pattern pro-
duced through vortex tilting is approximately aligned
perpendicular to the shear vector with positive vor-
ticity on the right and negative on the left. There is
a relative pressure maximum upshear and a pressure
minimum downshear. The updraft maximum is
biased to the right of the shear vector, toward the
positive vorticity maximum which is greater in mag-
nitude than the negative minimum. At 5.0 km (Fig.
4b), the shear vector is from 246° and the vorticity
and pressure patterns again align with the shear vec-
tor at that level. The high/low pressure pattern veers
from an essentially north/south orientation at low
levels to an east/west orientation at higher levels.
Thus, there are favorable vertical pressure gradients
on the south and east sides with the most favorable
gradient probably in between on the southeast flank
where we witness the updraft to grow preferentially.

As illustrated in Fig. 2, storm splitting and the
development of right and left moving storms can
occur with or without hodograph curvature. How-

-ever, we believe the preceding arguments demon-
strate that the bias of the right-moving cyclonic
storm over the left-moving anticyclonic storm is a
direct consequence of the veering shear vector and

** Dw' D'
o Dt Dt
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F1G. 4. Horizontal contour plots of vertical vorticity (thin lines,
107 m s™! contour interval), pressure (heavy lines, 0.2 mb contour
interval) and vertical velocity (updraft shaded with o at maximum)
from the three-dimensional cloud simulation of Fig. 2b at ¢ = 15
min at (a) z = 1.0 km and (b) z = 5.0 km. The long arrow
represents the direction of the environmental shear vector at that
level. Note that the pressure and vorticity patterns align nearly
parallel and perpendicular to the shear vector as predicted by Egs.
(11) and (12), respectively.

is a linear effect. To justify this conclusion we shall
next consider the role of buoyancy and nonlinear
effects through numerical solution of Egs. (1)-(3)
described in the following subsection.

b. Numerical integration and analysis

In the numerical model calculations, Eqgs. (1)-(3)
are approximated by a set of finite-difference equa-
tions on a staggered grid. Derivatives are second-
order accurate and the leap-frog method is used for
time integration. The diagnostic pressure equation

_is obtained by taking the divergence of (1) and using
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(3) which yields
ou v

(o) [aw\?
T \ox ay 3z 3y ox
dudw _ovow 9B

+2 -2 -

9z dx oz dy 9z’ (14

and is solved every time step. The domain is bounded
above and below by rigid parallel plates where w

= 0; since the early development of convection is of .

primary interest, periodic lateral boundary condi-
tions are specified for simplicity without adversely
affecting the results. The initial conditions are given
by (4) and will be specified below. Egs. (1)-(3) are
inviscid and thus no mixing terms are included in the
model. Tests with the full cloud model indicate that
this is a good approximation during the early devel-
opment of convection. In simulating moist convec-
tion, a device which we’ve found useful for qualita-
tively replicating results obtained in the full three-
dimensional cloud model is to let N> = —N2Z for w
> 0 and N2 = N2 for w < 0, where N2 = 5.107%
s2and N3 =15 X 107% 572 This is intended to sim-
ulate latent heating in the updraft and adiabatic
warming in the return flow and is similar to the con-
ditional instability model used by Lilly (1960).

We are concerned with the mechanisms by which
a storm updraft propagates and how it may change
shape as it moves. Eq. (5) contains the desired in-
formation but in too compact a form to be easily
digested. To provide a more meaningful analysis, we
shall consider the contributions to r from three ef-
fects: linear, nonlinear and buoyancy, that is,

Tt L+ s (15)
Details of this analysis are included in the Appendix.
The model domain is 10 km deep and is 32 km
X 32 km in the horizontal. The vertical grid size
Az = 500 m and the horizontal grid size Ax = Ay
= | km. The time step At = 20 s.

The effect of buoyancy on vertical acceleration is
contained in the expressions —dmz/dz + B and is
referred to as the buoyancy forcing. The contribu-
tions to the negative vertical pressure gradient from
the linear and nonlinear terms in the momentum
equation are —dn;/dz and —dny./dz, respectively.
The advection of vertical velocity is also computed.
The four terms together with their sum dw/dt are
discussed in the following section.

3. Results

The initial conditions are specified according to
(4a) and (4b) with ve(x) = 0 and the initial thermal
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disturbance is given by

2 2
AB cos? = X, X= [(i> + <X>
2 Xo. Yo

+ (i - 1)2]”2, X<1 (16)

Zg

By(x) =

0, (otherwise)

where AB = 0.1 m s™2, xo = yp = 10 km, z, = 1.4
km, and the center of the domain isat x = y = 0.
The scale of this initial perturbation is chosen to be
similar to that used in the full cloud model simula-
tions. However, the same qualitative evolution occurs
if the initial scale is specified to be smaller or larger.

a. Straight line hodograph

We first consider the response of the fluid to the
thermal impulse (16) when the environmental wind-
shear vector does not change direction with height.
The wind profile we use is

30(5)— 12ms™, 0 <z<z,
U(Z) = z:

~ 18 ms7}, z,<z<10km } ,
V(z) =0, 0 <z<10km

(17)

"where z, = 4 km is the depth of the shear layer. The

hodograph is displayed in Fig. 5. Fig. 6a contains
horizontal contour plots of w at z = 1.5 km at ¢
=5, 10 and 15 min. The axisymmetric thermal ini-
tially produces a symmetric vertical motion field. The
updraft continues to grow and elongates in the di-
rection of the shear vector (¢ = 10 min) and by 15
min the updraft is splitting. The integration was ter-
minated at this time because the neglect of more
detailed cloud physics and turbulence processes be-
gins to corrupt the realism of the simulations. Thus,
the integrations are carried out long enough for the
nonlinear terms to become significant (because Wy,
~ 10 ms™!), yet short enough so that we may neglect
rain formation, turbulence, etc.

Figs. 7a-7f display horizontal cross-sections of the
forcing terms in the vertical momentum equation as
described above. They correspond to the vertical
motion field at t = 10 min, z = 1.5 km shown in Fig.
6a. At this time the maximum vertical velocity is
approximately 11 m s™' at z = 3.5 km. Hence, the
forcing terms are displayed at a level approximately
halfway between the ground and the level of wy,,.
The vertical pressure gradient associated with the
linear terms in the momentum equation (hereafter
referred to for brevity as the linear shear forcing)
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FiG. 5. Two idealized hodographs which represent a case where
the wind shear vector does not vary with height (dashed line below
2 km, solid line above 2 km) and one where the wind shear vector
veers with height (solid line). Heights above ground are labeled
in kilometers.

indicates (Fig. 7a) uplift on the east (downshear)
side and a downward force on the west side of the
updraft. This behavior is consistent with relation (11)
and the schematic diagram in Fig. 3a. The buoyancy
pressure forcing (Fig. 7b) is basically symmetric with
somewhat weaker values on the axis and displaced
slightly upshear. The pressure gradient associated
with the nonlinear terms in the momentum equation
(Fig. 7c) is striking in that it induces strong uplift
on both the left and right flanks. The advection of
vertical velocity (Fig. 7e) acts to decrease w; at ear-
lier times, the pattern is essentially opposite in sign
to the linear shear forcing (Fig. 7a) as one would
expect from calculating —V(z) - Vw’, while at r = 10
min the vertical advection —ww, is important and
negative at this level. The sum of all these terms is
the local rate of change of w, dw/d¢, and is displayed
in Fig. 7f. Recalling the split structure of the vertical

RICHARD ROTUNNO AND JOSEPH B. KLEMP

143

motion field at # = 15 min, it is clear that the non-
linear terms are the most important in producing this
splitting. ,

To gain another perspective, we display w together
with the linear shear, buoyancy and nonlinear forc-
ings in vertical cross sections through wy,,, both along
(x-z sections) and across (y-z sections) the shear at
t = 10 min in Fig. 8. The updraft in the x—z section
is basically erect and appears to resist the shear,
which would tend to advect the updraft to the left
at low levels and to the right at upper levels. Note
the symmetry of w in the y-z section. The linear
shear forcing along and across the shear is displayed
in Fig. 8b. This forcing along the shear behaves as
predicted by Eq. (11) and illustrated in Fig. 3a; below
the level of wy,, there is uplift downshear and a
downward force on the upshear side. Above the level
of wp,, the converse is true, and hence this effect
counters the distortion effect of differential horizon-
tal advection. The linear forcing across the shear is
negligible, which is consistent with Eq. (11). The
buoyancy forcing (Fig. 8c) is essentially in phase
with the vertical velocity structure as one might ex-
pect given the simple parameterization of the con-
ditional instability. The nonlinear forcing (Fig. 8d)
along the shear exhibits positive forcing below wp.,
on both the upshear and downshear sides with the
latter approximately four times larger than the for-
mer. The nonlinear forcing is negative above wpg,.
Across the shear, the nonlinear forcing indicates the
same behavior but is symmetric about the shear vec-
tor; the positive maxima on the left and right flanks
again are believed to be the primary mechanism for
producing the split updraft at ¢+ = 15 min (Fig. 6a)
in this simple model. More will be said concerning
the physics of this term in Section 4a.

b. Curved hodograph

We now perform the same analysis for a case
where the wind shear vector veers with height, viz.

:3—0c051r‘<£>+3ms"‘, 0 <z<2km )
™ Zs
U(z) = 30<5> —12ms, 2 <z<z
zS
| 18 ms™!, z,<z<10km (18)

30 .

—{simri—l}ms“, 0 <z<2km

T P
V(z) = 0, 2 <z<10km |

where again z; = 4 km. The corresponding hodograph

is displayed in Fig. 5. The wind profile is specified

such that the hodograph curvature is confined be-

tween the ground and 2 km. Above 2 km, the ho-
dograph is identical to the straight line case exam-
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FiG. 6. Horizontal contour plots of w at z = 1.5 km at ¢ = 5, 10 and 15 min from the numerical convection model described in
Section 3b for (a) the straight line hodograph and (b) the curved line hodograph of Fig. 5. The vertical velocities are contoured at 2
m s™! intervals. The long arrow in the plots at 5 min indicates the direction of the environmental wind shear vector at z = 1.5 km.

ined above. In addition, the magnitude of the shear,
{(8U/dz)* + (8V/dz)*}'/%, is constant over the low-
ermost 4 km and equal to the value in the straight
hodograph case.

Fig. 6b exhibits horizontal contour plots of w at
z=15km at ¢t =5, 10 and 15 min. Again, the
updraft is nearly symmetric during the first 5 min.
However, by 10 min there is a marked bias of the
updraft toward the right of the shear vector. At 15
min, the updraft splits as it does in the straight line
case, although the right member of the pair is now
stronger. Figs. 9a-9f display the forcing terms for
the curved hodograph similarly to those in Figs. 7a-
7f for the straight line hodograph. Not only does the
linear shear forcing conform to the linear prediction
of (11) and bias the updraft to the right, but cursory
examination of the other forcing terms indicates the
linear forcing is the only one contributing to such a
bias. That is, the buoyancy, nonlinear and advection
forcings are much as they were in the straight ho-
dograph case, being, in fact, slightly biased to the

left; this leaves only the linear shear effect described
in Section 2a to account for the rightward bias.

4. Summary and discussidn

The calculations presented herein are limited to
what we hypothesize to be the initial stages of cu-
mulus convection in a general wind shear. We've
demonstrated that linear theory predicts the right-
ward bias of an initially axisymmetric thermal and
using a simplified three-dimensional convection
model, shown that the linear effect is the only one
responsible for the early rightward bias. However,
certain aspects of the nonlinear forcing display fea-
tures which merit further discussion.

a. The role of the nonlinear effects vis-a-vis storm
splitting

Schlesinger (1980) documented that non-hydro-
static pressure gradients produce preferential uplift
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F1G. 7. Horizontal contour plots at z = 1.5 km, £ = 10 min for the straight line hodograph
case of (a) the linear pressure forcing, —dw./dz; (b) the buoyancy pressure forcing, —dw/
9z + B; (c) the nonlinear pressure forcing, —dwy,/dz; (d) dw/dt which js the sum of (a), (b)
and (c); (e) the advection of w, —v-Vw; and (f) dw/dr which is the sum of (d) and (e). The

contour interval is 0.004 m s™2

on the flanks of the original updraft cell which con-
tribute to updraft splitting. Fig. 7c¢ and Fig. 8d
(across shear) illustrate that the vertical pressure
gradients which promote splitting are, in fact, as-
sociated with the nonlinear dynamic terms in the
momentum equations. (Recall that the non-hydro-
static pressure gradient as illustrated in Fig. 7d has
been divided into the three contributions shown in
Figs. 7a, 7b and 7c.) Of the six nonlinear terms on

the righthand side of Eq. (14), notice that three are
related to fluid extension while the other three involve
fluid shear. We first consider the fluid shear term
2u,v,. Since

4u,v, = {horizontal shearing deformation}?
— {vertical vorticity}?,

a wind field in pure rotation has 2u,v, = —%¢{2 Re-
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F1G. 9. As in Fig. 7 except for the curved hodograph displayed in Fig. 5.

calling (11) and (14), the perturbation pressure is
then related to the vertical vorticity according to
r~ =% (19)
Thus, the pressure is lower where the magnitude of
the vorticity is higher. [This is a familiar result from
large-scale meteorology. The geostrophic relation
between pressure and vorticity is V,’n’ = — f{s, and,
using the same approximation which leads to (11),
we obtain ' ~ —f{;. That is, the pressure is lower
where the relative vorticity is higher. This geos-
trophic relation is obtained from (19) by setting

= f + {;, neglecting the square of {; and absorbing
—~ f? into the definition of pressure.]

Before attempting to use Eq. (19) for diagnosis,
some notes of caution are in order. For pure shearing
deformation, u,v, # 0 and yet { = 0 (Prandtl and
Tietjens, 1934, p. 82). Also, in a two-dimensional
[e.g., 8/0x = 0, u = u(y, z)] flow, u,v, = 0 but {
= —u, # 0. However, in the numerically modeled
storm (Fig. 4), the type of vortex motion occurring
on the updraft flanks displays a vortex pair and the
vorticity is localized rather than two-dimensional;
hence, where there is vorticity, it is related to the
pressure approximately by expression (19). This re-
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sult suggests that low pressure is induced by rotation
on the updraft flanks which promotes lifting and this
contributes to the splitting process.

The two remaining nonlinear fiuid shear terms,
2u,w, and 2v,w,, are similar to 2u,v, and may be
related to the x and y components of the vorticity
vector, respectively, in the same manner as 2u,v, was
related to {. These terms also tend to be maximized
near the level of maximum Vw, but unlike 2u,v,, do
not vanish on the symmetry axis along the shear vec-
tor. This is because a large contribution to the hor-
izontal vorticity is from horizontal gradients of buoy-
ancy which tend to act symmetrically (although
distorted by the mean shear) about the updraft center
producing a horizontal vortex ring around the pe-
riphery of the updraft. Further numerical compu-
tations (not presented) suggest that these two terms
may have an influence on splitting which is compa-
rable to the u,v, term. '

The first three terms on the right hand side of Eq.
(14) which we’ve identified with fluid extension are
unlikely contributors to the splitting tendency. To
illustrate the influences of these terms consider a sim-
ple axisymmetric updraft of the form

. mzZ
w = h(r) sin TR
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where r = (x> + y*)'? and h(0) = k., and |h(r)|
— 0 as r — oo. Evaluating these three extension
terms and again following the same procedure which
leads to approximate relation (11) yields

Tz
FTE

~ f' 2
7 =~ f'(r) cos H

where f'(r) is a functional of h which is also maxi-
mized at r = 0. Thus, the pressure perturbation as-
sociated with this effect is zero at the level of wp,,
and positive above and below. For the structure of
h(r) described above, the effect is maximized on the
central axis of w.

Hence, we speculate that with regard to the pref-
erential forcing on the left and right flanks, the shear
terms have the highest efficacy.

b. Selective enhancement of the positive vorticity
when the shear vector veers

We’ve shown that when the environmental shear
vector veers with height, an initially symmetric up-
draft becomes biased toward the right of the shear
vector, where positive vorticity is produced by the
upward tilting of vortex tubes associated with the

T
(@¢

z (km)

T T
dw du _dw dv

(b)

2 (km)

-0 ' o] 10
x (km)

-0 o] 10
x (km)

F1G. 10. Horizontal contour plots z = 1.5 km, ¢ = 10 min for the curved hodograph
case in Fig. 5 of (a) the vertical vorticity and the vorticity production terms in Eq.
(20), viz., (b) tilting, (c) stretching and (d) vertical advection. Vorticity is contoured
in 0.008 s™' increments while the production terms are contoured at 4 X 107° 52

intervals.
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FIG. 11. Horizontal contour plot of vertical velocity (heavy solid
lines, 10 m s~ intervals), pressure (thin solid line, 0.5 mb intervals)
and horizontal vector winds (10 m s™' corresponds to a 1 km grid
interval) at z = 6 km, ¢ = 40 min from the three-dimensional
numerical cloud model simulation of Fig. 2b. Long arrow repre-
sents direction of the environmental wind-shear vector at this level.
Note that the pressure pattern aligns with the shear vector rather
than the storm relative winds.

environmental shear. To understand why this bias
should amplify the positive vorticity, consider the
vertical vorticity equation obtained from the curl of
(1):

a¢ av

3 v-Vi{+k ( 32
That is, the vertical vorticity at a fixed location can
change by advection, tilting horizontally oriented
vorticity to or from the vertical direction and stretch-
ing of vortex tubes (cf. Dutton, 1976, pp. 339-343).
Figs. 10a-10d contain horizontal contour plots of
vorticity, tilting, stretching and vertical advection of
¢at ¢ = 10 min, z = 1.5 km which correspond to w
as shown in Fig. 6b. We note that tilting and stretch-
ing are both biased toward the right. It appears that
the increased vertical velocity on the right flank of
the original updraft acts to preferentially increase
the horizontal gradient of w on that side and there-
fore increase the amount of vortex tilting preferen-
tially on the right. Another contribution to the bias
is the increased vertical velocity near the ground to
the right of the shear vector which increases con-
vergence of the positive vorticity, i.e., vortex stretch-
ing acts preferentially on the positive member of the
vortex pair. Vertical advection is more or less sym-
metric and tends to oppose the stretching effect at
this time. Horizontal advection is small and hence
not displayed.

x w) + ;%g. (20)
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c. Comments on the obstacle flow analogy

It has been noted many times in the literature that
the horizontal flow around severe thunderstorms at
mid-levels resembles flow around an obstacle as ob-
served in laboratory fluid dynamics experiments (cf.
Newton, 1960). And indeed at certain levels it does
resemble flow around a circular cylinder at high
Reynolds number where separation occurs on the lee
side. The value of such an observation is that which
is known about the laboratory flow can be used to
understand atmospheric flow. In the laboratory flow,

" there is high pressure at the forward stagnation point

and low pressure in the rear due to flow separation.
So, the analogy goes, in a frame of reference moving
with the thunderstorm (cylinder), high pressure
should be observed at the point where the relative
winds divide (stagnation point) to go around the
thunderstorm with low pressure in the wake. How-
ever, this analogy is complicated by the fact that
significant amounts of air are flowing into or out of
the storm over most of its depth, making it a rather
porous cylinder. Furthermore, since the storm rela-
tive wind direction varies considerably with height,
the three-dimensional aspects of the pressure distri-
bution could be substantial. We believe the present
analysis is preferable since it is derived from the
relevant equations of motion without analogies to
other flow systems. A major difference between our
analysis and the obstacle flow analogy is that our
result predicts that the pressure gradient across the
updraft is in the direction of the environmental
wind-shear vector rather than the direction of the
storm relative winds at a given height. This result
is illustrated in Fig. 11 which is taken from the full
three-dimensional cloud model simulation displayed
in Fig. 2b. Shown is the horizontal contour plot of
vertical velocity and pressure together with the hor-
izontal flow vectors and the environmental shear vec-
tor at z = 6.0 km, ¢ = 40 min. Although the storm
relative flow is toward the northeast, the high/low
pressure pattern is more nearly aligned with the shear
vector which points to the east-southeast and is con-
sistent with Eq. (11). Similar alignments with the
shear vector rather than the storm relative flow is
apparent at an earlier time in Fig. 4. The prediction
of Eq. (11) is independent of any a priori estimate
of storm relative motion.

d. Summary

The primary objective of the present work is to
explain how a veering environmental-shear vector
can bias an initially symmetric updraft to grow to
the right of the shear vector and acquire cyclonic
rotation, even though there is initially no environ-
mental rotation. The explanation offered is based on
a linear theory where it is assumed amplitudes are
small. To evaluate the extent to which the linear
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theory can describe events in a situation where am-
" plitudes are large, we integrated the three-dimen-
sional, shallow, anelastic equations using a simple
parameterization of the latent heating within a cloud
and analyzed linear and nonlinear effects separately.
We have found the results to depend strongly on the
directional variations of the wind shear vector.

1) When the shear vector does not veer with
height, the numerical integrations show than an ini-
tially symmetric updraft can split in two even though
no rain process was included. We propose that the
vortex pair produced by the upward tilting of (hor-
izontal) environment vorticity, together with the hor-
izontal vorticity produced by horizontal buoyancy
gradient, creates low pressure on the updraft flanks
at midlevels, thereby forcing vertical motion on the
flanks. These are, essentially, nonlinear effects. Wil-
helmson and Klemp (1978) attributed storm splitting
to an accumulation of rainwater on the axis of the
initial updraft. However, recomputing the cloud
model simulation shown in Fig. 2a with rain pro-
cesses turned off, splitting did occur, although it took
much longer to develop and the split storms moved
apart much more slowly. Consequently, although the
rainwater loading effect may dominate the splitting
process, the dynamic forcing may also play a signif-
icant role. .

2) When the shear vector veers with height, the
updraft splitting occurs as before but note the right
member of the split pair is stronger and has stronger

L/2 z
m(x,z,t)=L" f dx'[f (z -z (x', z, t)dz ’}
- ~L/ 0
0 L2
+2L7' 2 k7!

n=1 -L/2

where L is the domain length and k, = 2nzL™".
The derivative of (A3) with respect to z is
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positive vertical vorticity than the left member has
negative. Computation of the terms in the vertical
momentum equation demonstrates that the linear
effect is the only one which can account for this right-
ward bias. Further, the linear theory can also account
for the increased positive vorticity on the right flank
because the increase in |[Vw| on that flank implies an
increased tilting of the environmental vorticity.

APPENDIX

Pressure Analysis
Eq. (14) is Poisson’s equation which we write here

Vir = f(x, t). (A1)

We require periodicity of the solution over the hor-
izontal domain size. Since w = 0 at the upper and
lower boundaries, the conditions on 7 at these bound-
aries (from Eq. 5) are

O (x,,0,1) = B(x, %, 0, 1)
9z

as

(A2)
on
b_' (xy ,V, sz t) = B(x’ y, ZT9 t)
z

The initial condition for the integration presented in
Section 3 [Eq. (19)] has zero buoyancy at z = 0 and
zr. Because there is no diffusion in this model, the
buoyancy remains zero at the boundary for all time.
Without loss of generality we consider the two-di-
mensional version (8/8y = 0, say) of Egs. (Al) and
(A2). The solution is

dx’ cosk,(x — x’)[f f(x', z', t) sinhk,(z — z")dz’
0

c_oshk_,,zf Tf(x', z', t) coshk,(z7— z")dz '} , (A3)
]

L/2 z 0 L/2 z
I _ L f dx ’[f f(x', z', t)dz '} +2L7' Y dx' cosk,(x — x’)\:f f(x', z', t) coshk,(z — z")dz’
oz -L2 0 _ n=l V-L/2 )
sinhk,z [ | o
- f(x', z', t) coshk,(zr — z')dz"|. (A4)
sinhk,zr Jo

We analyze the contribution to = from the forcing
function f which may be arbitrarily decomposed to
isolate different physical effects. It is important to
note w(x, y, t) = P[f] where P[f] is a linear func-
tional of f. If we let f = f, + f5, say, then = (x, y,
1) = P[f,] and my(x, y, t) = P[f,] where 7, and =,
both independently satisfy Eqs. (A1)-(A2).

The analysis in Section 3 considers the contribu-

tion to the pressure from linear, nonlinear and buoy-
ancy terms. Formally, we solve the three equations

: dUdw dV ow
vir, = o 2% arow)
b 2 dz dx dz dy)’

ou\? (av>2 (6w>2
2 = =)y _ (=) (22
Vi (6X> ay oz

(AS)
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ou ow av ow du dv
0z 0x 3z dy dy dx’ (A6)
0B
Virg=—, (A7)
a9z

where the solutions for n;, mn, and 7, are each re-
quired to be horizontally periodic. Evaluating (A4)
at z = 0 and z; for the forcing functions in (AS)-
(A7) confirms that

ar,
—;;(x,y, 0,¢)=0
, (A8)

74
(;; (xs Vs 21, t) =0

where « is L, NL or B. Since the lateral boundary
conditions are periodic, Egs. (A5)-(A7) are solved
by first taking the fast Fourier transform in the x
and y directions, then solving the resulting ordinary

differential equation in z by inversion of a tri-diag-
onal matrix.
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