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ABSTRACT

Axisymmetric and slab-symmetric cumulus cloud models with Kessler's parameterizations for micro-
physical processes are developed. By using a staggered grid arrangement and applying a modified upstream
difference scheme, erroneous behavior in the center of a simulated cloud, which would result with the use of
the ordinary upstream difference scheme, is eliminated. A comparison between the present two models of
different geometries confirms in general the conclusions reached in previous studies: the updraft in an aixsym-
metric model grows more vigorously than in a slab-symmetric model. However, the ratio of the maximum
updraft in the slab-symmetric model to that in the axisymmetric model is 0.53 in this study, notably larger
than Murray's 0.12. An analysis of the pressure gradient force associated with cloud motions reveals that
the vertical pressure gradient force due to perturbed pressure is: 1} of the same order of magnitude as that of
the thermal buoyancy force in the core region of the cloud; is 2) acting in the opposite direction of the net
force due to excess heat, moisture, and the weight of liquid water; and 3) is larger in absolute magnitude in
the slab-symmetric model than in the axisymmetric one.

Also included are differences in the evolution of the modeled clouds in relation to different intensities of
initial buoyant elements used in initiating convection in a conditionally unstable atmosphere and in relation

to differences in the size of integration domains.

1. Introduction

Almost all cumulus clouds observed in the atmosphere
show three-dimensional characteristics. However, pre-
sently available computers are not yet fast or large
enough to allow investigation of the dynamics of a
three-dimensional cloud by simulating it with much
detail. The inclusion of environmental wind conditions
and complicated microphysical processes leads to very
large data fields if sufficient spatial resolution is used.
For this reason, all modeling studies of moist convection
published to date have been restricted to two-
dimensions in space.

In two-dimensional cloud modeling, the geometry of
the domain can be either slab-symmetric or axisym-
metric. There is no doubt that the axisymmetric model
is superior to the slab-symmetric model in single cloud
simulation. In the axisymmetric model one is, however,
unable to incorporate wind shear, an important factor
in cloud dynamics. For this reason, Orville (1965, 1968),
Liu and Orville (1969), Orville and Sloan (1970a),
Lipps (1971), Takeda (1971) and Schlesinger (1972)
have used slab-symmetric models.

A basic difference between clouds modeled in these
two geometries was first discussed by Ogura (1963).
Ogura noted that the ratio of maximum speed of com-
pensating downdraft outside the cloud to the maximum
speed of updraft inside the cloud in a slab-symmetric
model is significantly larger than that in an axisym-

metric model. A consequence of this strong downdraft
in a slab-symmetric model is the generation of a region
of relatively high excess temperature and low humidity
outside the main body of the cloud, a physical situation
unfavorable for sustained development of the primary
cloud. For example, with a downdraft of 2 m sec™! and
a temperature lapse rate of 6C km™!, the warming due
to subsidence can result in a potential temperature
increase of 5K in 10 min. This excess temperature is
almost comparable in magnitude with the maximum
excess temperature observed inside camulonimbus.

A more systematic comparison between slab-
symmetric and axisymmetric cloud models was made
by Murray (1970). He also observed that the ratio of
maximum downdraft speed to maximum updraft speed
is larger in a slab-symmetric model than in an axisym-
metric model, though the values of the ratio are a little
different from those obtained by Ogura. The most
striking point in Murray’s result is that the cloud in an
axisymmetric model grows vigorously with a maximum
updraft of 17 m sec™* at 32 min while the maximum
updraft in a slab-symmetric model barely reached
2 m sec’! at 29 min, the time computation was
discontinued.

A recent comparison between clouds simulated in a
two-dimensional slab-symmetric model and a three-
dimensional model by Wilhelmson (1972) shows that
the maximum vertical velocities are 11 and 16 m sec™,
respectively. The three-dimensional model simulated a
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single cloud at the center of the domain in a calm
environment and the results should be close to those
simulated in an axisymmetric model providing the
initial and boundary conditions in the two models are
the same. The initial and boundary conditions used by
Murray in his axisymmetric model and by Wilhelmson
in his three-dimensional model are by no means the
same. It is purely by chance that their simulated maxi-
mum updraft velocities are similar. On the other hand,
without changing the initial and boundary conditions,
Wilhelmson’s results show a marked difference from
Murray’s with regard to the maximum updraft in the
slab-symmetric models.

The discrepancy between Murray’s and Wilhelmson’s
results are the motivation of a more detailed study of
the difference between an axisymmetric model and a
slab-symmetric model. Also included here are differ-
.ences in the evolution of modeled clouds in relation to
different intensities of the initial buoyant element used
in initiating convection in a conditionally unstable
atmosphere and the relation of differences in the size of
integration domains.

2. The basic equations

The basic equations used in this study are similar to
those derived by Ogura and Phillips (1962) for deep
moist convection. The modification by Wilhelmson and
Ogura (1972) to include buoyancy of water vapor and
the adoption of a non-isentropic base state has also been
incorporated. The set of equations in cylindrical
coordinates will be presented; those in Cartesidin
coordinates are similar but have fewer terms.

The horizontal and vertical equations of motion are

du du  Ou O’

——=—y——w——C —+F,, (1)
at ar 0z ar

dw dw  dw o’

— = —yu——w——Cpf—

at or 0z 0z

0/
+g(;+0¢61Q'u~Qc-Qr>+Fn 2)

where # and w are the horizontal and vertical wind
velocities, respectively, C, the specific heat of dry air
at constant pressure, 6 the potential temperature, = the
nondimensional pressure, g the acceleration of gravity,
and Q, the mixing ratio of water vapor. The ice phase
of water is excluded and two classes of liquid water are
considered: cloud droplets and raindrops. The mixing
ratios are denoted by Q. and Q,, respectively. The terms
F, and F, represent the horizontal and vertical com-
ponents of the frictional force terms defined later. The
barred variables represent those of the environmental
base state. Deviations from these values are represented
by primed variables. Any quantity not barred or primed
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represents the sum of the base state and the deviation.
The equation of mass continuity for deep convection is

drpu  Orpw
or 0z

=0, (>)

where p Is the density of the air. The nondimensional
pressure = is related with the dimensional pressure p by

where P=1000 mb (a reference pressure) and R is the
gas constant of dry air. For simplicity in numerical
integration, a vorticity equation is introduced. The
vorticity is defined as
dpu  Opw
pm——— . . )
0z Or

Cross differentiating Egs. (1) and (2) yields

dn dn on [2wdp wu dp
e

at ar 9z p 0z r dz
0% 9 /6
+’Mw_~,5§__<T+O-61Q/v“Qc‘Qr)'f‘Dm (6)
dz? or\ 6
where
0pF, OpF. _
n= - (/>
dz . Or

The term —C,(305/3z)(dx'/dr), which is typically two
orders of magnitude smaller than the thermal buoyancy
term, has been neglected in Eq. (6). The actual form
of D, used in computation will be presented later. A
streamfunction 'y is defined in relation with # and w as

£V o

—=7pu, —=—1pw. (8)
0z or

Substituting (8) into (3) yields

10y a9 /13y
p=-—=% <~——> )

y 02> 9r\r Or

With the boundary conditions of ¥ in Section 3, Eq. (9)
can be solved for  using the fast Fourier transformation
scheme (Ogura, 1969). The wind components # and w
can then be determined from (8). The equations for
potential temperature, water vapor, cloud and rain-
water content are, respectively:

a6’ a0 96 L
—=—u——w—t+——(Py—P3—Py)+Ds
ol or 9z Cyr

(10)
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The diffusion terms will be discussed at the end of this
section. In Eqs. (12) and (13), the assumption has been
made that the cloud droplets have negligible terminal
velocity and therefore always follow the air flow. The
raindrop falls at a representative terminal velocity
(denoted by V,) relative to the air flow. The third term
on the right-hand side of Eq. (13) accounts for the re-
distribution of rainwater as it falls, The representative
terminal velocity is usually computed with the assump-
tion of Marshall-Palmer distribution of @, and an
equation to express the terminal velocity of individual
raindrops as a function of its diameter (Kessler, 1969;
Liu and Orville, 1969; Ogura and Takahashi, 1971),
However, without assuming the Marshall-Palmer
distribution, the representative terminal velocity can
be derived directly from the empirical formula relating
the rainwater content and the rainfall intensity (R/)

derived by Marshall and Palmer (1948):
Qr=T2X107(RI)**/p, (14)

where ), is in units of gm gm™! and RJ in mm hr™?, The
relation between R/ and Q, is

RI=360pV,Q,.
Substituting (15) into (14) yields
V,=3634(pQ,)0 1354,

(15)

This equation gives a terminal velocity very close to
that of the equation derived as volume-weighted mean
by Ogura and Takahashi (1971). The value of ¥V, of
Ogura and Takahashi is a little larger than that of this
equation for small Q, and is smaller for large Q..

In Egs. (12) and (13), the rates of auto-conversion
and collection are represented by Kessler’s (1969)
formulas with the parameters! k1=0 for Q< a, k1=10"3

1 Kessler (1969) recommended the values of parameters £, =103
sec”!, a=5X10"* gm gm™ and k:=2.2. In a later version of his
cumulus model, Kessler and Bumgarner (1971) used k1 =10* sec™!
and a=107% gm gm~L The results of some preliminary experiments
using =103 gm gm™, k,=2.2 and several different values for &,
in the range from 107 to 107* sec™! indicate that, as far as the
fields of w, 8 and Q, are concerned, the differences are negligibly
small, whereas Q. at the cloud top shows some differences. For
example, Q.=3.4 gm gm™! with £k, =10"* sec* and Q.=2.3 gm
gm™ with £, =107 sec™? at 15 min. Because 3.4 gm gm™ of Q.
appears to be unrealistically large, £, =107% sec ! is selected in this
study.
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sec ! for Q.>a, a=107% gm gm™! and k;=2.2. The term
5 represents the rate of condensation which takes place
whenever air is supersaturated. The amount of moisture
condensed, which form cloud droplets only, is deter-
mined by the saturation technique (see Appendix).

Terms Ps and P, represent the rate of evaporation of
cloud droplets and raindrops, respectively. Cloud
droplets are assumed to evaporate instantaneously if
the air is not saturated. The rate of evaporation is
determined so as to keep the air at the saturation level
until the cloud droplets are totally evaporated. The
raindrops will evaporate only if the cloud droplets are
exhausted. The evaporation rate of raindrops is deter-
mined from the following equation which was used by
Ogura and Takahashi (1971):

~1 [(Qv/st)—l:lC(pQT)d_525
B 54X 105H(0.41X107/e,)

4=

(16)

where (), is the saturation mixing ratio of water vapor,
es the saturation vapor pressure (mb) over a plane water
surface, and C the ventilation coefficient given by

C=1.64+0.57X10-3(V,)'-5, an

The turbulent diffusion equation for isotropic turbu-
lent mixing is used for Dy:, D¢, and Dg,_. In the axisym-
metric model, the diffusion for ¢ is

19 90 19 90

Dy =-—Kr—+4-—Kp—.
ror dr pdz 03

(18)

Similar equations apply to Q', and Q.. The deviations
of § and Q, from the base states are diffused in the hope
of preserving the vertical profiles in the region far away
from the cloud. The eddy diffusion coefficient K was
proposed by Smagorinsky (1963) as a function of the
deformation field. It was subsequently used by
Deardorff (1970, 1972), and Wilhelmson and Ogura
(1972). In the axisymmetric case, it is

a 01\ 2
K={(cA)? I (_w+_u>
dr 9z

BuN\® O\ su\?7) !
#G) G0 )

dar Jz 7
where A=(ArAz)} is a representative grid interval, Ar
and Az the horizontal and wvertical grid intervals,
respectively, and ¢ a nondimensional constant chosen
to be 0.2 following Deardorff? (1972). The same eddy

diffusion coefficient is used for variables ', Q’,, and Q..
There is no simple and definite expression to represent

(19)

% Deardorff used K in Eq. (19) for the eddy viscosity of momen-
tum but increased K by a factor of 3 for the eddy diffusion co-
efficient of temperature in order to avoid excessive intensity at the
larger wavenumbers in the temperature spectrum. Since this prob-
lem does not happen in the models of this study, K instead of 34
is used for the eddy diffusion coefficient in Eq. (18).
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the effect of eddy viscosity on the variable 5. The eddy
viscosity for the momentum equations can be assumed

a8

19 du 19 Ou u
Fo=——Kr—+-—Kp——K—
rdr Odr pidz Oz 72
r (20)
19 ow 190 Odw
F,=——Kr—+- —Kp— J
ror Or poz Oz J

Direct substitution of (20) into (7) leads to a compli-
cated form of D,, which is difficult to use. For this
reason, the following assumption for D, is made:

19
Dy=- —K

r Or

dp 19 9y 7
r—+— —Kp—— K—.
dr padz Iz r?

(21)

The K for 5 is assumed the same as that for the other
variables. The central difference is used in the finite-
difference form of the diffusion terms so that the varia-
bles to be diffused are conserved.

3. Specifications of the experiment
a. The base state

The environmental condition, in which a cumulus
cloud is to be simulated, is taken as the base state. For
the purpose of studying the dynamics of the cumulus
cloud, idealized temperature and humidity profiles
closely related to those in the real tropical atmosphere
are adopted. The temperature is assumed 23C at the
surface, decreasing upward at the dry adiabatic lapse
rate to the cloud base, which is assumed to be at 0.8 km
from the surface. The relative humidity is 709, at the
surface, increasing linearly to 909, at the cloud base.
Above the cloud base, the relative humidity decreases
at a rate of 7.5% km~!. At higher levels, a minimum of
309% relative humidity is imposed to resemble the real
atmosphere. The temperature lapse rate above the cloud
base, denoted by TI'; is 6.0C km™! in most of the cases.
This temperature profile is conditionally unstable below
about 5 km. A different lapse rate will be pointed out
when it is used.

b. Boundary conditions

The top, bottom and lateral boundaries are assumed
rigid with free slip conditions?:

dpu

w=0, =0, atz=0,Zp
0z
dw

u=0, —=0, atr=D
or

3 The free slip condition at lower boundary does not take into
account the surface frictional force and is not realistic. An alter-
nate lower boundary condition, which parameterizes the frictional
effect at the surface in such a way that the horizontal velocity at
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where Zy; is the height of the domain and D the distance
between the center of the cloud to the lateral boundary.
It is apparent from the above assumptions that y=0
and ¢ =0 at all boundaries.

As will be described later, 6, Q,, Q. and Q, are not
defined on the boundaries, but rather in the grid box
half a grid interval inside the boundaries. Since there is
no interference between points inside and outside the
boundaries, no physical boundary assumption is re-
quired. In computing eddy diffusion terms, the hori-
zontal derivatives of these variables at lateral boundary
and vertical derivatives at upper and lower boundaries
are put to zero to avoid fictitious diffusion across the
boundaries.

The main characteristic of the boundary conditions
is that the domain is completely closed. The summation
of 0, Q. and Q, integrated over the whole domain plus
the amount of precipitation is always conserved. The
integrated @ can only be changed by condensation and
evaporation processes. Heat and moisture interaction
between the air and the surface cannot take place in
these boundary conditions. However, the effect of this
kind of transfer is probably not important since the
cloud lifetime is less than an hour.

¢. The initial conditions

The base state with an initially buoyant element
placed near the surface at the center of the domain com-
poses the initial condition. This buoyant element has a
region of excess potential temperature computed
according to

0,=0°[1{z0—20(:/2)]2}<1 ::2>

where 6 is the maximum initial excess potential tem-
perature at the central axis at level z,. In this study,
20=1.2 km and z,=1.0 km are adopted. The level of
maximum " is then located at the center of the grid box
immediately above the cloud base. The maximum ¢’
does not equal 8, because of the grid arrangement. The
value of 6 is taken to be 0.5K. Smaller values are also
used to investigate the effect of 8y on the cloud develop-
ment (Section 8).

The relative humidity above the cloud base inside the
region of positive ¢, and one grid box beyond it at the
top and the sides, is assumed 1009. The saturation
process, hence, will begin after the first time step of
integration. This initial condition is adequate to study
the dynamics of the cumulus cloud. When investigating
the initiation of cumuli, some other initial conditions
should be used. .

the surface is half the magnitude of the velocity a grid above the
surface, has been tested. Since the simulated clouds under the two
different lower boundary conditions have only a negligible differ-
ence, the free slip boundary condition is used for simplicity.
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4. The finite-differencing scheme

The limited core storage of currently available com-
puters poses a major problem in cloud simulation. The
forward time difference is usually adopted in order to
reduce the core storage requirement despite the fact
that the truncation error in time is first order. With a
forward time difference, the simplest and most stable
space difference is the upstream scheme. Crowley (1968)
and Molenkamp (1968) have noted that the upstream
scheme has a large implicit diffusion. Crowley also
developed stable second-order and fourth-order space
difference schemes, which have a smaller implicit
diffusion. However, Orville and Sloan (1970b) compared
Crowley’s second-order scheme against the upstream
scheme and found the results concerning the formation
and evolution of the cloud in a slab-symmetric model
quite similar, Thus, the upstream scheme, with its
simplicity and stability, is more attractive. Further-
more, Crowley’s second-order scheme produces spurious
oscillations in a two-dimensional advection experiments
(Crowley, 1968; Schlesinger, 1972). This oscillation can
increase the water content substantially because all
negative values generated have to be replaced by zero.
Crowley also developed second-order and fourth-order
conservative schemes, but they possess the same
problem found in the non-conservative scheme men-
tioned above.

In the preliminary stage of this study, the upstream
scheme in advective form was used and unrealistic
results were produced at the central axis of the cloud.
In order to make this point clear, the prognostic equa-
tion of a variable F in an axisymmetric cloud simulation
model with the source and diffusion terms neglected is
considered. It can be written either in advective form

oF oF  oF

o (22)
at ar 9z
or in flux form
aF 19 19
—=—— —(pul) —— —(rpwF).  (23)
ot rp Or rp 0z

Eq. (23) can be derived from Eq. (22) by using Eq. (3),
the mass continuity equation. Egs. (22) and (23)
represent the same physical phenomenon and should
give an identical result. However, their finite-difference
representation is different and Eq. (23) in finite-
difference form conserves the variable F integrated over
a closed domain,

In cloud modeling, conservation of heat, moisture and
water substances are quite important. When Eq. (22)
is used, it does not conserve these variables and may
pose a serious problem on the model, especially at the
central axis. In finite-difference form, the value at a grid
point represents the mean value over the elemental
volume encompassing the point. This mean value at the
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¥i6. 1. The staggered grid arrangement used in the modified
upstream difference scheme.

central axis is modified by horizontal inflow as well as
vertical inflow, However, the horizontal wind velocity
is zero at the central axis and the value of F will not be
affected by horizontal advection if Eq. (22) is used.
Hence, the results at the central axis, which in turn
affects the whole simulated cloud, can be quite unreal-
istic. The fact that the central axis attracts the most
attention from the cloud modeler accentuates the
problem. For this reason the following “modified up-
stream” scheme is used for the variables 6, Q,, Q.
and Q..

With a staggered grid arrangement as shown in
Fig. 1, the finite-difference form of Eq. (23) can be
written as

dF
<—> = —[(ripspripsF iry—riogpuiyl i )i/ &r
ot/ ik
+ "prrywrssF ry —7pi—swi3Fiy)i/ Dz )/ripr. (24)
The four terms in parentheses represent the inflow or
outflow of F through the four boundaries. Assuming F
is uniform in the volume, then
) Fi,k, lf ui+;>0 _
}’i+;,k.= { X . (2‘3)
Fiv1k, U wui<0
The same conditions apply to Fij «, Fi sy and Fy oy,
To illustrate the scheme in an example, assume

Uiry k<0, %i‘.;,k>0}

Wity > 0, wir—3>0
Then

oF
<6_> = —[(ripspuis sl ipr—rigpuiyFi1)i/Ar
L/ ik

+ rprr i s B e —1pi-ywiyFi1)i/ Bz ripi. (26)
Eq. (3) can be written as
(rigsptbivy—rioypteioy)i/Ar
+ (rBrsywiy —1hr—ywi—y) i/ Dz=0.  (27)

Substituting the third term of Eq. (27) into Eq. (26),
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Fic. 2. Time-height variation of w at the central axis of the
axisymmetric model: I'=6.0C km™, D=12.8 km, 6,=0.5K. Con-
tours range from —2 to 12 m sec™* with a contour interval of 2 m
secl,

we have
oF ~ .
<——> = —{[rissprtirs(Fia—F)/Ar ]
0t/ ik
F[rigpriy(Fi—Fiy)/Ar]

+rpr—ywiy(Fr—Fi1)/ Dz} /ripr.  (28)

This form is very similar to the upstream space differ--

ence, It sums up advection at inflow boundaries but
disregards the outflow boundary. In computation,
either (26) or (28) may be used. This scheme has a
truncation error of the first order in space and has some
characteristics of the regular upstream scheme, i.e.,
. implicit diffusion and high stability, but the variable F¥
is conserved and the central axis problem is eliminated.
For a special case of two-dimensional non-divergent
channel flow, this difference scheme reduces to the up-
stream scheme. Consequently, the name “modified
upstream” scheme is adopted. It is natural to place 5
and ¢ at the corners of the grid box because of the
location of # and w. The regular upstream scheme is
used for the advection of n because otherwise many
averages on 7 (or # and w) are needed.

Throughout this study, the space increment Ar=Az
=400 m and time increment /=20 sec are used. The
height of the integration domain is 12.8 km and the
distance between the center of the cloud to the lateral
boundary is also 12.8 km except for the cases in Section
9. In the following five sections, the result of experi-
ments will be presented.

5. The dynamics of cloud in the axisymmetric
model

The time-height variation of w, ¢ and Q, at the
central axis of the axisymmetric model is shown in
Figs. 2, 3 and 4, respectively. The characteristics of
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cloud development pertinent to these time-height
variations can be visualized in four distinct regions.

L. The region above the cloud top.
II. The region characterizing the path of the initial
buoyant element.
ITI. The region around cloud base, including the
sub-cloud layer.
IV. The layer between regions II and III.

The four regions are shown schematically in Fig. 5.
Region II is the region of active cloud growth, which
rises with time. Regions III and IV are characterized
by weaker disturbances left in the wake of the rising
buoyant element.

The air in Region I oscillates regularly with a period
of 10 min. This oscillation is initiated by the adiabatic
cooling above the rising cloud. The same kind of oscil-
lation can be generated in the model by imposing a
small initial temperature excess, which is not capable
of producing a cloud. A cloud top oscillation with the
same period is also evident in the one-dimensional model
of Ogura and Takahashi (1973).

In Region IT, the maximum w reaches 12.9 m sec™
at 20 min. The level of maximum w ascends gradually
in the first 10 min, and changes to a rapid ascending
rate of 4.5 m sec™! during the next 20 min. It reaches a
height of 7 km at 30 min, and levels off thereafter as w
diminishes. The ascending rates for the level of maxi-
mum &', and the cloud top, which is essentially the same
as the upper limit of Q,, are similar to that of the level
of maximum w. The maximum ¢ reaches 3.1K at 18
min, and the maximum Q, is 5.2 gm kg™! at 23 min. In
the active cloud growing stage between 10 and 30 min,
the rising rate of the cloud top is about half the speed of
the average maximum updraft during that period, which
incidentally coincides with the “rule of thumb” indi-
cated by Murray (1970). Because every 3 gm kg~ liquid
water content has a drag force equivalent to a deficit of
potential temperature about 1K, the weight of Q, has

1

o
.0 10.0 20.0 30.0 40.0 50.0 60.0
TIME (MINUTES)
I'16. 3. Same as Fig. 2 except for @'. Contours range from —1 to 3K
with a contour interval of 1K.
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to be the major factor causing the maximum w to
decrease after 20 min. The continuous decrease of w
after 30 min, when Q, has been reduced, is due to en-
trainment, cloud top evaporation, and moist adiabatic
ascending in a conditionally stable environment which
causes a negative potential temperature.

In Region III, the rainwater falls to the cloud base
at 12 min and the subsequent evaporation causes a
rapid decrease of 8 in the sub-cloud layer. As a result,
the updraft in the sub-cloud layer decreases and turns
into a downdraft at 18 min. The weight of the raindrops
contributes to the increase of downdraft speed after its
initial development. The downdraft in this region
persists for more than 30 min, with a maximum speed
of 3.8 m sec”* at 27 min. The Q, is also a maximum
at 27 min in this region.

The main feature of Region IV is the development of
a second maximum updraft at a level 4.5 km above
ground. The evolution of characteristics of this region
should be traced back to Region IT, where w at this level
is a maximum at 20 min. This updraft decreases
drastically when entering Region IV, developing into a
downdraft at 30 min. This downdraft is initiated from
below in Region III and extends to a maximum height
of 4.8 km at 33 min. Since the negative ¢ is confined in
Region III, it is apparent that the upward extension of
the downdraft into Region IV is due to the weight of
liquid water content. Between 25 and 45 min, ¢ in
Region IV is approximately 0.5K and changes only
slightly. The @, decreases from about 5 gm kg™! to
0.5 gm kg™' in the same period. As a result, the
buoyancy force is then capable of producing a second
maximum updraft of 3.5 m sec™ at 41 min, After the
decay of the second maximum w, gravity waves are
dominant and no more physically significant phe-
nomenon develops.

Ogura and Takahashi (1971, 1973) have developed a
one-dimensional time-dependent model. In that model,
a cloud is envisioned to take a cylindrical form with a
time-independent radius, and the pressure perturbation

OR

8.0
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7 (KM

.0

S —
.0 10.0 20.0

0.0 50.0 60.0

30.0 q
TIME (MINUTES)

I'16. 4. Same as Fig. 2 except for Qr. Contour range from 1 to 5 gm
kg * with a contour interval of 1 gm kg™
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16, 5. Schematic illustration of the characteristics of cloud

development.

associated with the cloud motion is ignored. Further-
more, the environmental atmosphere surrounding the
cloud is assumed to be at rest all the time so that no
variations with time take place. The environmental
conditions and microphysical processes involved in the
model are different from those applied in the present
study. Nevertheless, a comparison between the time-
height variation of the vertical velocity in the one-
dimensional model and Fig. 2 of this paper shows some
interesting qualitative differences.

First, the maximum vertical velocity in the one-
dimensional model is located very close to the top of
the cloud (see Fig. 3 of the 1971 paper and Fig. 2 of the
1973 paper). Consequently, the horizontal outflow from
the cloud satisfying the mass continuity is extremely
strong and concentrated in a thin layer near the cloud
top (Fig. 3 of 1973 paper). This is not the case in Fig. 2
for the axisymmetric cloud. Holton (1973) has also
shown that the unrealistically strong outflow in a one-
dimensional model can be alleviated by incorporating
the pressure perturbation.

Second, in Ogura and Takahashi’s cloud, all meteoro-
logical variables in Regions III and IV reach a steady
state and remain in that state until the downdraft
develops inside the cloud. This is again quite different
from the distributions shown in Figs. 2—4 in this paper.
The unrealistic behavior in the one-dimensional model
is obviously caused by ignoring variations which should
take place in the environment: the relatively dry down-
draft develops outside the cloud to compensate the
updraft in the developing stage and this dry air is
subsequently fed into the cloud.

6. Cloud dynamics in the slab-symmetric model

The time-height variation of w, ¢ and Q, at the
central plane of the slab-symmetric mode! are shown
in Figs. 6, 7 and 8, respectively. The basic character-
istics of cloud development are similar to those of
axisymmetric model, even though the cloud grows
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FiG. 6. Time-height variation of w at the central plane of the
slab-symmetric model: T=6.0C km™, D=12.8 km, §,=0.5K.
Contour range from —2 to 6 m sec™! with a contour interval of
2 m sec™.

smaller and slower in the slab-symmetric model. The
maximum w reaches only 6.9 m sec™! at 21 min, the
maximum &’ is 2.6K at the same time, and the maximum
Q- is 2.3 gm kg™! at 25 min. During the active growing
stage of the cloud between 10 and 30 min, the ascending
rate of the level of maximum w, that of maximum ¢,
and that of the cloud top are approximately 2.8 m sec™,
which is also about half of the mean maximum updraft
during that period. The updraft in the main body of the
cloud (Region II) lasts much longer in. the slab-
symmetric model, and the secondary maximum updraft
below the cloud top (Region IV) is not so obvious. In
order to match the magnitudes of the maximum updraft
of the slab-symmetric model to that of the axisym-
metric model, the temperature lapse rate above the
cloud base is increased from 6 to 6.6C km™! in the slab-
symmetric model. The resulting maximum values of w,
¢ and Q, along the central plane are plotted in Fig. 9
along with those values corresponding to lapse rate of
6C km™! in both models. The increase of lapse rate in

O

20.0 30.0 40
TIME (MINUTES)

F16. 7. Same as Fig. 6 except for 6’. Contours range from —1 to 2K
with a contour interval of 1K.

Fi1G. 8. Same as Fig. 6 except for Q,. Contours range from 1 to 2 gm
kg1 with a contour interval of 1 gm kg™

the slab-symmetric model results in a faster growth of
the cloud after the first few minutes. The w and Q.
curves are surprisingly close to those of the axisym-
metric model and suggests a similar cloud behavior. The
maximum 6 increases to SK and can be accounted on
the basis of the steeper lapse rate. There is also a ten-
dency to produce a secondary maximum updraft at
40 min, but the magnitude is not large. The three Q,
curves reach about the same value after 45 min, indi-
cating that the lifetime of the three cases is not
significantly different.

Fig. 10 shows a further comparison of the w field
between the axisymmetric model with I'=6C km™! and
the slab-symmetric model with I'=6.6C km™! at 20 min.
As noted above, the maximum vertical velocities in -
these two cases are similar in magnitude. The sizes of
the updraft region as shown in Fig. 10 are also similar.
The difference is in the downdraft: the maximum down-

“draft in the axisymmetric model is 3.1 m sec™! whereas

that in the slab-symmetric model is 5.6 m sec™. More-
over, the downdraft region extends far away from the
cloud region in the slab-symmetric model: even at the
point 5.2 km from the center of the cloud, the maximum
downdraft is approximately 0.5 m sec™! whereas the
downdraft in the axisymmetric model is confined in the
region of 3.2 km radius from the central axis.

7. The role of pressure deviation in the
development of a cloud

To clarify the cause of the difference between the
growth rates of the axisymmetric and slab-symmetric
clouds described above, the vertical momentum equa-
tion is agdin displayed:

dw _on’ 4
= —Cp0—8—+g<%—+0.61Q'1,—Q,;—-Q,)-i-F,.
>4

dt

Considering the central axis at time zero, the buoyancy
force due to 6" and Q’, in the two geometries are exactly
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the same. The frictional force and the drag due to liquid
water content are identically zero. Consequently, the
pressure gradient force is the only force that may
generate different w in the two geometries for the first
few time steps. In this article, we have introduced the
streamfunction and the pressure field was not calculated
in time iterations. However, the values of the pressure
gradient term were estimated as a residue from the
above equation. These values across the level of maxi-
mum w in Region II in the two geometries at 5-min
intervals are listed in Table 1. At time zero, this level is
chosen to be the level of maximum w at the first time
step. The values of &, O, and Q.+Q; at these levels are
listed for comparison. After 35 min in the axisymmetric
model and 45 min in the slab-symmetric model, the
location of the maximum w in Region Il cannot be
determined and the results are not presented. The
pressure gradient force is apparently always acting in
the opposite direction of the net force due to excess
heat, moisture and the weight of liquid water. Its
magnitude in equivalence of potential temperature
deviation is —0.42K in the axisymmetric model and
—0.55K in the slab-symmetric one at time zero. They
are large enough to compensate the thermal buoyancy
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Fic. 9. Time variation of maximum =, 8 and Q. at the central
axis of the axisymmetric model with I'=6.0C km™ and those at
the central plane of the slab-symmetric model with I'=6.0C km™
and I'=6.6C km™: D=12.8 km, §,=0.5K.
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F16. 10. Distribution of w on ¥, z plane near the center of cloud
at 20 min. F=6.0C km™ for the axisymmetric model and I'=6.6C
km™! for the slab-symmetric model. D=12.8 km, 6,=0.5K. Con-
tours range from —4 to 12 m sec™ with a contour interval of 2 m
sec™l

force, which is 0.42K. Adding up the thermal buoyancy
force, the water vapor buoyancy force (which is
equivalent to 0.34K) and the pressure gradient force,
the net force is then 0.34K for the axisymmetric model
and 0.21K for the slab-symmetric model. The smaller
net force in the slab-symmetric model prevents the
cloud from rising at the same rate as in the axisym-
metric model. The slower increase in the maximum w in
the slab-symmetric model is apparent in Fig. 9. The
difference between the downward pressure gradient
forces in the slab-symmetric model and in the axisym-
metric model increases from 0.13K at time zero to 0.43K
at 20 min. This difference, which is caused by the
difference in geometry, will eventually result in a larger
w and higher cloud in the axisymmetric model than in
the slab-symmetric model. The ratio of the absolute
magnitude of the pressure gradient force to the thermal
buoyancy force at the mature stage is about one-third
for the axisymmetric model and larger than one-half for
the slab-symmetric model. It should be emphasized that
even with a pressure gradient force < —0.75K, as in the
axisymmetric model, its effect should not be neglected.
Schlesinger (1972) has also pointed out in his slab-
symmetric modeling study of deep moist convection
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‘Tasee 1. The thermal and water vapor buoyancy, liquid water drag, and vertical pressure gradient forces at the level of maximum verti-
cal velocity at the central axis (all units in equivalant °K).

Axisymmetric model

Time Height w
(min) (km) (m sec™?) o Q' Qc + Q- p* S**

0 1.2 0.0 0.42 0.34 0.0 —0.42 0.76

5 1.3 2.96 0.59 0.38 —0.15 —0.48 0.82
10 1.9 6.09 1.49 0.50 —0.59 —0.68 1.40
15 2.8 10.56 2.37 0.58 —1.14 —-0.75 1.81
20 4.0 12.87 2.63 0.52 —1.74 ~0.68 1.41
25 5.2 9.47 1.46 0.36 -1.72 —0.23 0.10
30 5.8 3.26 0.21 0.27 —0.83 0.17 —-0.35
35 5.9 1.76 —0.27 0.25 —0.26 0.26 —0.28

Slab-symmetric model

0 1.2 0.0 0.42 0.34 0.0 —0.55 0.76

5 1.3 1.83 0.50 0.36 -0.09 —0.61 0.77
10 1.6 2.91 0.97 0.43 —0.34 —-0.83 1.06
15 2.1 5.02 1.61 0.52 —~0.66 —-0.95 1.47
20 2.7 6.70 1.96 0.54 —0.90 —1.11 1.60
25 3.6 6.40 1.90 0.49 —0.96 —1.26 1.43
30 4.4 4.74 1.54 0.42 —0.78 —1.15 1.81
35 49 3.05 1.01 0.36 —0.55 —0.83 0.82
40 5.3 2.22 0.59 0.32 —0.37 —0.52 0.54
45 5.3 1.65 0.29 0.30 —-0.27 —0.24 0.32

* P=—C,0(3n/07).
. ok S=0(+Q’U+Q0+Qr-

that the pressure gradient force is roughly half as large
as the thermal buoyancy force in the strongest part of
the updraft and this force is acting downward.

The deviation of pressure from its base state affects
the cloud development in two ways. First, as described
above, it is responsible for a pressure gradient force,
which directly contributes to the change of horizontal
and vertical momentum. Second, it affects the deter-
mination of temperature, which in turn is used along
with the potential temperature to determine the
saturation vapor pressure. In the second way, the
pressure deviation acts indirectly on the cloud develop-
ment through the condensation process. Wilhelmson
~and Ogura (1972) have investigated the second effect
and they pointed out that #’/# is an order of magnitude
less than /6 in the cloud region, i.e.,

¢
—L— (29)
T 0 '
The pressure deviation can then essentially be ignored
in determining the saturation vapor pressure. This was
demonstrated by Wilhelmson and Ogura in several
numerical experiments, with and without considering
7’ in the saturation technique.

Eq. (29) does not imply that the pressure gradient
force is also an order of magnitude smaller than the
thermal buoyancy force:

or’ 0
<L,
dz 0

i (30)

where H[ =C,8/g] is the scale height of an isentropic

atmosphere with-a typical potential temperature 8. On
the contrary, as discussed above, the pressure gradient
force and the thermal buoyancy force in the region of
the cloud are of the same order of magnitude, i.e.,

o’ ¢
H—=~—.

dz 6

(31)

The main reason why (31) rather than (30) is valid in
the cloud region is the concentration of the pressure
gradient near the center of the cloud. The magnitude
of H, which is about 30 km, is also a factor of 3 larger
than the vertical dimension of the domain. Conse-
quently, H(dn'/dz) is one order of magnitude larger
than 7/, and Eq. (29) leads to Eq. (31).

It should be noted that the computed 7’ and 97'/dz
are dependent on the definition of ’. This can be illus-
trated using a simple example of a domain with a hori-
zontally uniform slab of air where 6> 0. This situation
will result in no motion because the horizontal derivative
of the potential temperature is zero and no vorticity can
be generated. The vertical momentum equation reduces
to

Cf—=g—. ‘ (32)

The system is still in a state of hydrostatic balance even
though 7 and 6 deviate from their base state values.
If ¢ is defined as the deviation of 6 from a horizontal
mean value instead of from a base state value, the above
situation will give 8 =0 for the warmer slab of air and
hence n'=0 provided the pressure deviation is zero
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somewhere in the domain. The location of the zero
pressure deviation is chosen to be at the upper left
corner of the domain in the model of Wilhelmson and
Ogura (1972). This #’ is now defined as the deviation
of = from the new hydrostatic equilibrium state derived
from the new profile of § with the warmer slab of air. A
similar definition for @', also requires a hydrostatic
readjustment. The simulated cloud will not change for
either definition of ¢’ and Q’,, but the explanation of the
force terms will be different. For ¢’ defined as the
deviation from the horizontal mean, it will, in general,
be smaller than when using the other definition because
of the general warming due to subsidence outside the
cloud and due to condensation in the cloud. At the same
time, the 7’ and d='/dz terms will also become smaller.
This difference is more obvious in the slab-symmetric
model because it results in strong subsidence warming.
As the domain of integration increases, the horizontal
mean 6 will approach 6 of the base state. For this reason,
the definition of ¢ as the deviation of 8 from its base
state value is preferred.

8. Effect of the initial buoyant element on cloud
simulation

As described in Sections 5 and 6 the development of
a cloud simulated in this study is very similar to those
of Murray’s in the axisymmetric model, but differs
greatly in the slab-symmetric one. The results of
Wilhelmson’s model are close to those of this study in
both geometries. The ratio of the maximum w between
slab-symmetric and axisymmetric models in this study
is 0.53, which is a little smaller than Wilhelmson’s 0.71,
but far larger than Murray’s 0.12. Murray used excess
moisture for the initial buoyant element, while in this
study and that of Wilhelmson’s, both excess tempera-
ture and moisture are used. The very large difference
between the axisymmetric model and the slab-
symmetric model of Murray’s was then thought to be
caused by the initial buoyant element he used. For this
reason, simulations were made in which 6, was reduced
to 0.3K, 0.1K and OK for both geometries.

For the case of 6,=0, the humidity field is rounded
off on the edge of the initial buoyant element: the rela-
tive humidities are 100, 97, 95 and 90 percent, respec-
tively, for grid boxes 1 to 4 from the central axis.
Without rounding off the edge of the moisture field for
the case of §,=0, the edge of the initial buoyant element
will rise at a faster rate than the center. This does not
cause any serious trouble in the axisymmetric model,
because w in the center gradually catches up and the
center eventually becomes the dominant region of up-
draft in the whole domain after 15 min. However, in the
slab-symmetric case, the maximum w in the central
plane always lags behind the air surrounding it, and
there are clouds formed at both sides of the central
plane. The maximum w at the central plane never
reaches 1 m sec™!, and it turns into a downdraft as the
two clouds beside it grow.
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F16. 11. Time variation of maximum w, 6’ and Q; at the central
axis of the axisymmetric model for different 6y: I'=6.0C km™,
D=12.8 km.

The results of the maximum w, 6’ and Q, at the central
axis using a different 8y for the initial disturbance in the
axisymmetric and slab-symmetric models are shown in
Figs. 11 and 12, respectively. These maximum values
tend to be smaller and reach their peak later in time
with decreasing 6, for both geometries, except for the
case of 6o=0. In addition, the second maximum % in
the axisymmetric model is not so obvious as 6, becomes
smaller. The maximum @, for 8,=0.5K, 0.3K and 0.1K
is similar after 30 min in the axisymmetric case and
35 min in the slab-symmetric one, indicating that the
lifetime of the simulated cloud is not altered greatly by
changing 6,. As for the case of §;=0, the maximum w,
¢ and @, are much smaller than the other cases, but
they reach their maxima at about the same time as in
the case of 6p=0.5K. The ratio of the maximum w be-
tween the slab-symmetric model and the axisymmetric
model does decrease slightly with decreasing 6,, but not
to the extent that Murray’s results indicate.

9. The effect of domain size on cloud simulation

The boundary conditions used in this model close the
domain completely. There is no exchange of momentum,
heat, moisture or liquid water across the boundaries.
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T'16. 12. Same as Fig. 1 except at the central plane of
the slab-symmetric model.

These boundary conditions are by no means realistic
because, in the real atmosphere, disturbances produced
by clouds are not confined in a finite domain. There is
no unique way to determine variable boundary condi-
tions; hence their use may not bring the cloud model
any closer to reality. As a matter of fact, Takeda (1971)
found that the variations of air flow at the lateral
boundaries due to cloud disturbances were not described
by the use of his “open’ boundary conditions in which
the wind field is allowed to change at the boundaries.
With closed boundary conditions, the boundary effects
should be very small during cloud lifetimes of about an
hour if a large enough domain is used.

To determine the required minimum domain, the
model is tested for D=6.4, 12.8 and 25.6 km with other
conditions being kept unchanged. The time variation of
the maximum w, § and Q. at the central axis for the
axisymmetric and the slab-symmetric models are shown
in Figs. 13 and 14, respectively. For the axisymmetric
model, the w’s for D=12.8 and 25.6 km show little
difference before 35 min. During that time, the growth
and decay of the first peak of w is completed. After
35 min, the »’s in the two domain sizes reach the same
second peak value with a phase difference of 2-3 min.
The #’s and Q,’s in the two domain sizes begin to deviate
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after 25 min, but the differences are within 0.1K for 6’
and 0.1 gm kg™! for Q.. The case of D=6.4 km gives a.
peak w almost 1 m sec™! less than the cases of larger
domain. The second w peak is very small and behaves
quite differently from the other cases. A large difference
in ¢’ from the larger domain cases is also observed after
25 min. The value of (, is smaller than the other cases,
which can be accounted for by the weaker updraft as
well as the limited moisture supply due to the limited
domain,

The effects of domain size on the slab-symmetric
model are tested with a steeper lapse rate of 6.6C km™
above the cloud base to simulate a cloud similar to that
of the axisymmetric model with a lapse rate of 6.0C
km~%. As in the axisymmetric model, the case of
D=6.4 km shows a remarkable difference from cases
with a larger domain. The differences between D=12.8
and 25.6 km are small during the growth stage but are
consistently larger during the decay stage, especially for
the variables ¢ and Q,. As far as the dynamics of cloud
development are concerned, D=12.8 km is acceptable
for both geometries, even though the slab-symmetric
model seems to need a larger domain. The different
response on domain size in the two geometries can be
explained by the larger percentage of area occupied by
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F16. 13. Time variation of maximum w, 6 and Q, at the central
axis of the axisymmetric model for different domain sizes D (km):
I'=6.0C km™}, 8,=0.5K.
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the updraft in the slab-symmetric model. It also should
be noted that the domain requirement is dependent on
the size and height of the simulated cloud. If a larger
and taller cloud is to be simulated, a larger domain
may be needed.

10. Summary and concluding remarks

In this article, axisymmetric and slab-symmetric
cumulus cloud models are developed. By using a stag-
gered grid arrangement and applying a modified up-
stream difference scheme, erroneous behavior in the
center of a simulated cloud, which would resuit with the
use of the ordinary upstream difference scheme, is
eliminated. A comparison between results using the
present axisymmetric model and with those of Ogura
and Takahashi’s one-dimensional model (1971, 1973)
reveals some shortcomings in dynamical formulation
of the latter. The present axisymmetric model is cur-
rently being extended to investigate the development
of warm rain, as an extension of the study by Ogura
and Takahashi.

The effect of the size of an integration domain on
cloud simulation is also investigated. It is demonstrated
that unless the domain is sufficiently large, the down-
draft outside the cloud will be intensified and moisture
supply will be limited with the use of an artificial rigid
lateral boundaries. This strong downdraft will signifi-
cantly affect the evolution of the simulated cloud.

As for the comparison between axisymmetric and
slab-symmetric models, the present result confirms in
general the conclusions reached in previous studies by
Ogura (1963), Murray (1970) and Wilhe'mson (1972):
the updraft in an axisymmetric model grows more
vigorously than in a slab-symmetric model for the same
environmental and initial conditions; the ratio of the
maximum speed of the compensating downdraft outside
the cloud to the maximum updraft speed in a slab-
symmetric model is significantly larger than that in an
axisymmetric model; and the compensating downdraft
in a slab-symmetric model spreads in space more widely
than in an axisymmetric model.

The analysis of the pressure gradient force associated
with cloud motion is made to clarify the role of the
pressure variation in the development of a cloud. It is
found that the vertical pressure gradient force due to
pressure variations is of the same order of magnitude
as that of the thermal buoyancy force in the core region
of the cloud. At all times this pressure gradient force is
acting in the opposite direction of the net force due to
excess heat, moisture, and the weight of liquid water.
The pressure force in a slab-symmetric model is larger
in absolute magnitude than that in an axisymmetric
model. This is responsible for the slower increase in
maximum w in the slab-symmetric model.

The only significant difference between the present
results and those of Murray is in the ratio of the maxi-
mum w between slab-symmetric and axisymmetric
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Fi6. 14. Same as Fig. 13 except at the central plane of the slab-
symmetric model with T=6.6C km™, 6,=0.5K

models: It is 0.53 in this study and 0.12 in Murray’s.
The cause for this difference remains unclear. Because
the evolution of a simulated cloud depends significantly
on the environmental conditions, particularly on
moisture content in the lower layers, it is probable that
the base state chosen in Murray’s experiment happens
to be just above the marginal state for the development
of a slab-symmetric cloud.
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APPENDIX
Saturation Technique

With 8 and Q, given at {=r7, dummy values 6* and
Q.* at t=7-1 are first calculated at each grid point,
taking into account only the dynamical terms (advec-
tion and diffusion) in the prognostic Egs. (10) and (11).
The saturation mixing ratio corresponding to 6* is then
calculated, using Teten’s formula

0*,e=b exp[a(m 65 —273)/(r6*—36)], (A1)
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where b=3.8/p., a=17.51n10, and p, and =, are, respec-
tively, the dimensional and non-dimensional pressure at
that grid point. If Q*,>(Q*,, at a grid point (denoted
by G in Fig. A1), the air is supersaturated. Because we
do not permit the air to be supersaturated, 7! and

7Hlat G must be recalculated from 6* and Q*, so that
6~t1and Q71" satisfy the relation

741

0 =00 = b exp[a(mr+1—273)/(r 471~ 36)].  (A2)

This may be done in the following way: Consider an
air parcel that is lifted from a point P up to a grid point
G during a time step from 7 to 7+1. Because it is
saturated at G, it must become saturated at a level
(denoted by S) between P and G, inclusively. Along the
path PS on the adiabatic chart in Fig. A1, 8 and Q, take
the values #* and QF,, respectively, as they are con-
served. Along the path SG, the air is in the moist
adiabatic process and the changes of potential tem-
perature and saturation mixing ratio are related by

L
1= —

dQs. (A3)

T

To the first order of accaracy in finite-difference form,
Eq. (A3) is approximated by

L 7+1
Ag=07+1—0* =‘_':(Q*:'—st );
T

D

(A4)

where

7=7.4(Ar/2),

and Ar is the non-dimensional pressure difference
between S and G. Substituting 7! in the first part of
(A4) into (A2), and retaining only the terms of the first
order of Af, we get the following approximate expression
for Q71"

(AS)

257aA0x,
]. (A6)

741 )
Qns :Q*ra[ 1+_—___—"
(o6 —36)2
By substituting Eq. (A6) into the second part of
Eq. (A4) and collecting the terms of Af, we get

Wlaw Q% L L
ad 1+ - —en-0r. @)

(rr 0% —36)% C 7
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If we define

237ar,Q* L T
‘71=[1+~__._ ] , (A8)
(1 8% —36)2 C 7
Eq. (A7) then becomes
L1’1
0T+1=9*+‘“_(Q*17—Q*m>- (AQ)
e
It also follows that
741
st =Q*v—'rl(Q*u'—Q*ns)- (Alo)

Egs. (A9) and (A10) give the new values of § and (), at
¢=7-1, respectively.

The value of 7 in (A9) and (A10) can be determined
as follows. First, the relation between the dimensional
and non-dimensional pressures at the point S is given by

1 Ax
petAp=Plr.+An) = pe<l+— ——> (A11)
K e
Teten’s formula applied at the point S is
3.8 a[ (w4 Am)e*—273]
* = exp{
PetAp (r.+Am)e*—36

Taking the terms of the first order of Ar in Eq. (A12),
Eq. (A12) is approximated by

}. (A12)

0" I 237aAn0* 1+A7r -t (A13)
b::Q vs[ +‘_"—__—"]( ,___> - N
(0% —36)2 KT

Consequently,
237a6*Q*., Q*. 7!
Aﬂ' = (Q*D—Q* 1ys)[ - } . (A14')
(w 0*—36)2 «km.

Eqgs. (A5) and (Al4) give the required 7.

Eqs. (A8), (A9) and (A10) are very similar to a set of
equations derived by Asai (1965). However, the physical
processes implied in the two sets of equations are
different. In Asai’s approach, an air parcel is first lifted
up dry adiabatically to the level of the grid point G
(denoted as R in Fig. A1) and then § and Q, are read-
justed isobarically at the pressure p. so that air is
brought to exact saturation. Our approach is more
direct: it computes #7! and Q}F"' by going through PSG
rather than PRG in Asai’s approach. The pressure
variation in the condensation process between S and G
has been taken into account as # appears in Eqs. (A9)
and (A10). Another difference is that the Clasius-
Clapeyron equation is used in Asai’s equations to com-
pute the variation of Q,. with respect to 8, while Teten’s
formula is used in our model. However, it is mentioned
that, with the vertical resolution of the model used in
this study, the two methods are found to give no
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significant difference in the actual computation of
evolution of clouds.
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