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This study evaluates the impact of Tropospheric Airborne Meteorological Data Reporting (TAMDAR) observations on regional
24-hour forecast error reduction over the Continental United States (CONUS) domain using adjoint-based forecast sensitivity to
observation (FSO) method as the diagnostic tool.The relative impact of TAMDAR observations on reducing the forecast error was
assessed by conducting the WRFDA FSO experiments for two two-week-long periods, one in January and one in June 2010. These
experiments assimilated operational TAMDAR data and other conventional observations, as well as GPS refractivity (GPSREF).
FSO results show that rawinsonde soundings (SOUND) andTAMDARexhibit the largest observation impact on 24 hWRF forecast,
followed by GeoAMV, aviation routine weather reports (METAR), GPSREF, and synoptic observations (SYNOP). At 0000 and 1200
UTC, TAMDAR has an equivalent impact to SOUND in reducing the 24-hour forecast error. However, at 1800 UTC, TAMDAR
has a distinct advantage over SOUND, which has the sparse observation report at these times. In addition, TAMDAR humidity
observations at lower levels of the atmosphere (700 and 850 hPa) have a significant impact on 24 h forecast error reductions.
TAMDAR and SOUND observations present a qualitatively similar observation impact between FSO and Observation System
Experiments (OSEs).

1. Introduction

Tropospheric Airborne Meteorological Data Reporting
(TAMDAR), developed by AirDat (AirDat was acquired by
Panasonic Avionics Corporation in 2013), has been providing
a continuous operational stream of real-time observations
from regional commercial airlines since December 2004.
These observations include temperature, winds, water vapor,
pressure, icing, and turbulence. Aircraft equipped with
TAMDAR typically fly regional routes and cruise at altitudes
generally below 25000 ft [1], providing coverage over North
America, including Alaska and Mexico, as well as Hawaii,
Caribbean, and Europe. TAMDAR was designed to fill in the
spatial data voids of traditional Aircraft Meteorological Data
Relay (AMDAR) flights, which tend to fly higher altitude
routes into major airport hubs with only a small number

of planes collecting water vapor, as well as the spatial and
temporal data voids of radiosondes, which are launched
every 12 h from limited locations.

The current TAMDAR-equipped fleets make more than
1800 daily flights, providing roughly 3600 radiosonde-like
profiles during the ascent and descent phase of flight at
various regional and major airports across North America
and Europe. The time-based horizontal resolution in cruise
is 3min, and the pressure-based vertical resolution during
ascent and descent is 10 hPa. The data are transmitted via
satellite to a ground-based operation center for quality con-
trol and are available for assimilation within 15 s of sampling
[1]. These observations are rapidly becoming a major source
of critical data utilized by various assimilation systems for
the improvement of mesoscale numerical weather prediction
(NWP) and the overall safety of aviation for the future [2].
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The TAMDAR data have been producing promising
impacts onNWP forecasts over the Continental United States
(CONUS) for several years and formany different data assim-
ilation systems (e.g., [3–6]), as well as hurricane track pre-
diction [7]. Using the four-dimensional nudging data assim-
ilation method, Liu et al. [4] verified that TAMDAR had a
positive impact formesoscaleNWP.Moninger et al. [6] found
positive impacts of TAMDAR on 3 h Rapid Update Cycle
(RUC) forecasts of temperature, relative humidity, andwinds.

The Weather Research and Forecasting (WRF) com-
munity variational data assimilation (WRFDA) system [8–
10] developed at National Center for Atmospheric Research
(NCAR) has been enhanced to assimilate TAMDARobserva-
tions and investigate TAMDAR data impact on the forecast
for hurricane Ike [7]. Their study was followed by further
research of observation error tuning [5] to improve the per-
formance of TAMDAR observations in the WRFDA system.
Although positive impacts of TAMDAR data on hurricane
Ike and regional forecasts were reported, those two previous
studies neither compared TAMDAR with other observation
types, nor isolated the impact of each observed variable from
TAMDAR.

In addition to the traditional observation-denial method,
often referred to as Observation System Experiments (OSEs),
used in the studies mentioned above, the adjoint-based fore-
cast sensitivity to observation (FSO) method is an efficient
approach to assess relative observation impact on ameasured
aspect of the forecast error. Unlike OSEs, which measure
effects of a single observation on all forecast metrics, FSO
quantifies the response of a single forecast metric to all
perturbations of the observing systems [11]. It can directly
assess the impact of any or all observations used by a
forecasting system during data assimilation on a selected
measure of short-range forecast error, as opposed to adding
or withholding observations during assimilation.

The observation impacts from the FSO method can
be easily aggregated by various metrics (e.g., observation
variable type, data location) providing a powerful tool with
potential applications within data assimilation and observing
systems. The FSO method has been used in global data
assimilation systems to evaluate the observation impact with
respect to a scalar function representing the short-range
forecast error [11–19]. Two methods of observation impact
estimation (i.e., OSEs andFSO)were evaluated and compared
by Gelaro and Zhu [19] and by Cardinali [11]. The authors
reported qualitatively similar observation impacts on short-
range forecasts using both methods.

In this study, the observation impact of TAMDAR on
regional forecasts is evaluated using the adjoint-based FSO
method in a limited-area model for two periods in 2010.This
evaluation employs the WRF model [20], its adjoint model
(WRFPLUS; [21]), and its three-dimensional variational data
assimilation (3D-Var) system [10], centered on the CONUS.
The adjoint-based FSO tool used in this study was developed
by Auligné et al. [22] under the framework of WRFDA. The
observation impact from FSO is compared to that fromOSEs
for TAMDAR and SOUND observations.

The updatedWRFDA system with TAMDAR data assim-
ilation capability has been in operation, providing routine

analyses and forecasts since 2010. In addition to comparing
the overall impact of TAMDAR data with that of other
observation types in the operational system, this study also
evaluates the impact of TAMDAR on operational short-range
forecasts by quantifying the contribution of observed wind
(𝑢, V), temperature (𝑇), and moisture (𝑞) using the adjoint-
based FSO method.

TAMDAR impact can be directly compared to other
observations such as SOUND at specific vertical levels or
for observed variables. Use of the WRFDA FSO system
allows the measurement of TAMDAR observation impact
when the entire dataset is present in the data assimilation
system. This provides the rank of TAMDAR observational
impacts on reducing short-range forecast error with respect
to the set of all assimilated observations. It also allows for
the identification of problems and refinement of potential
features of TAMDAR observations, which are crucial for
directing further investigation.

The remainder of this paper is structured as follows.
In Section 2, the methods of the forecast sensitivity to
observation and the WRFDA FSO system will be described.
Section 3 presents the experiment design. Detailed results
and comparisons between FSO and OSEs are illustrated
in Section 4, and summary and discussions are given in
Section 5.

2. WRFDA FSO

The adjoint-based FSO system used in this study is WRFDA
FSO, which was developed at NCAR in 2008 [22, 23], and has
been verified and employed to examine observation impact
in the East Asian region during tropical cyclone seasons [24].
Readers are referred to Jung et al. [24] for a detailed descrip-
tion of the concept of forecast sensitivity to observations and
application in theWRFDA system.WRFDAFSO includes the
WRF model, its adjoint (WRFPLUS), and WRFDA and its
adjoint.

WRFPLUS includes a linearization and its adjoint of
the dry dynamics of the WRF model, a simplified vertical
diffusion scheme, and a large-scale condensation scheme.
There are no othermoist processes represented inWRFPLUS.
WRFDA FSO is capable of calculating the impact of all
available conventional and satellite radiance data on the
analysis and short-range forecast. It combines higher order
approximations of forecast error measurement and their
characteristics in the context of the adjoint-based observation
impact calculation discussed by Errico [16], Gelaro et al. [17],
Tremolet [25], and Descu and Todling [26].

According to the theory of adjoint-based FSO discussed
in previous studies, the calculation of observation impact is
a three-step process that involves WRFDA FSO. It seeks the
gradient of the forecast error cost function with respect to the
vector of observations.

(i) Forecast Sensitivity to Analysis. The calculation of forecast
sensitivity to analysis is obtained using two forecast trajecto-
ries (i.e., 24 h) by the WRF model, which is initialized with
the analysis and background, respectively.The background is
typically a prior model forecast (e.g., 6-hour forecast), and
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Figure 1: The model geographical configuration with the coverage of TAMDAR (a) and SOUND (b) observations (black dots) at 0000UTC
2 January 2010.

the analysis is produced by optimally assimilating observa-
tions with the background into the WRFDA 3D-Var system.
Therefore, the forecast trajectory of the background is starting
6 hours before the trajectory of the analysis. At the forecast
time, with a selected reference atmospheric state (REFER)
as the truth, the forecast error will be calculated for the
forecast of analysis and background. A forecast error cost
function will be defined based on the difference between
those two forecast errors. Along the forecast back trajectory,
the WRFPLUS adjoint model is able to calculate the forecast
sensitivity to analysis with the forecast error cost function. In
WRFDA FSO, the REFER could be the global analysis from
other data assimilation systems or the internal analysis of
WRFDA. Detailed methods of forecast sensitivity to analysis
are described by ((A.1)–(A.7)) in the Appendix.

(ii) Forecast Sensitivity to Observation. The second step is to
extend the forecast sensitivity to analysis from the grid point
provided by the previous step into the observation space
using the adjoint ofWRFDA 3D-Var. It involves the adjoint of
the observation operator, observation error covariance, and
the inverse of the Hessian matrix of the cost function that
can be obtained by using the iterative Lanczos method in
the minimization procedure [27].The formula is provided by
((A.8)-(A.9)) in the Appendix.

(iii) Observation Impact. The observation impact is therefore
obtained through calculating the inner product of the forecast
error sensitivity to observation and the innovation vector,
which is described by (A.9) in the Appendix. This step
is implemented within WRFDA and allows users to easily
perform various observational impact studies. It should be
noted that greater innovation corresponds to greater obser-
vation impact. The negative values of observation impact
correspond to the forecast error reduction due to improved
initial conditions by assimilating observations meaning that
the observation has a positive impact on the forecast.

3. Experiment Design

The purpose of this study is to compare the impact
of TAMDAR data with other observation types in the

operational WRFDA system and to evaluate the contribution
of TAMDAR wind, temperature, and moisture observations
on operational short-range forecasts. Therefore, FSO experi-
ments are conducted over a two-week period for January of
2010 and a two-week period for June of 2010.TheWRFmodel
domain for this study has a single 134× 84 grid that covers the
US and surrounding oceanic regions (Figure 1) with 60 km
horizontal resolution and 35 vertical levels defined in sigma
coordinates with a model top of 50 hPa. Compared to the
operational CONUS domain run by AirDat, this domain
has a much lower resolution and smaller coverage, but it is
sufficient to cover the entire North American TAMDAR dis-
tribution (Figure 1(a)).This specific configuration is designed
for reducing the expensive computational cost of adjoint
runs.

WRFDA 3D-Var is used to obtain the analysis by assim-
ilating rawinsonde (SOUND), PILOT, PROFILER, surface
data from SYNOP, METAR, SHIP, BUOY, aircraft data from
AIREP and TAMDAR, satellite retrieved wind (GeoAMV)
and GPS precipitable water (GPSPW), and GPS refractivity
(GPSREF). It should be mentioned that the TAMDAR data
were provided directly from the AirDat original observing
network, instead of TAMDAR data used at National Cen-
ters for Environmental Prediction (NCEP), which received
approximately 3% of all available operational TAMDAR
observations. The other assimilated datasets come from the
Global Telecommunication System (GTS). Figure 1 gives an
example of assimilated TAMDAR and SOUND horizontal
distribution over the model domain. It should be noted
that the restricted Aircraft Communications Addressing and
Reporting System (ACARS) data are not used here since they
were not available to AirDat in real time.

The quality control (QC) of conventional data including
TAMDAR observations in WRFDA is first done in observa-
tion preprocessing procedure (obs proc). Details can be
found in the WRFDA user guide (http://www2.mmm.ucar
.edu/wrf/users/wrfda/Docs/user guide V3.4.1/users guide
chap6.htm). The second QC is taken inside WRFDA
before minimization, in which WRFDA does the same QC
procedure for TAMDAR data, as well as other conventional
data.Observationswill be rejectedwhen their innovations are
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larger than 5 times of the standard error of the observation.
In this study, no bias correction or thinning procedures
are used for TAMDAR data since these functions are not
developed in WRFDA, although, compared to SOUND
measurement, TAMDAR has the bias of 1.57% for RH,
−0.04K for temperature, and 0.004m/s for wind [5].

The observation error for temperature from TAMDAR
used in this study is 1.0 K, which is the same for most
observation types in this study, except for SHIP and BUOY
with 2.0 K. The wind observation error is 3.6m s−1 for TAM-
DAR and AIREP, 2.7m s−1 for SOUND, BUOY, SYNOP, and
METAR, 2.8m s−1 for PROFILER and PILOT, and 4.5m s−1
for GeoAMV. For TAMDAR relative humidity, we assume the
error to be 10%, which is used for other observation types as
well in this study.The observation errors are kept uniform for
both January and June experiments. The background error
covariance (BE) is generated with National Meteorological
Center (NMC) method [28] prior to each study period using
monthly statistics of differences between WRF 24 and 12 h
daily forecasts over the configuration shown in Figure 1. The
same BE is used for both experiments in January and June.

WRFDA 3D-Var is performed each day at 0000, 0600,
1200, and 1800UTC with a 6 h assimilation time window
from −3 h to +3 h. The background of every cycle is obtained
from theWRF 6 h forecast initialized fromNCEP global final
analysis (FNL), instead of the previous WRF analyses. In
order to calculate the forecast sensitivity, two 24 hWRF fore-
cast trajectories are performed for all analysis times, which
are initialized with background and analysis, respectively. It
is noted here that the 24 h forecast trajectory of background
is starting 6 h before analysis trajectory. The forecasts utilize
the Kain-Fritsch cumulus parameterization [29], Goddard
cloudmicrophysics scheme, and the Yonsei University (YSU)
planetary boundary layer parameterization [30]. The 24 h
WRFPLUS adjoint simulations are run along with the WRF
trajectory, but onlywith physical processes of a simple vertical
diffusion scheme and a large-scale condensation scheme. All
WRFDA 3D-Var and the WRF forecast and WRFPLUS runs
use the same model domain configuration and resolution.

For the observation impact calculation, the dry energy
norm ((A.3b) in the Appendix) is used to define the forecast
error, and the forecast error is calculated for the entire domain
(Figure 1). To define the forecast error, the reference analysis
that assimilated all observation types described previously
with WRFDA 3D-Var is considered the true state in this
study. The augmented form of the third-order Taylor series
approximation of forecast error discussed by Gelaro et al. [17]
is selected for the most accuracy as shown in the Appendix
(A.10).

4. Observation Impact Results

4.1. Two-Week Time Average. The observation impact of the
conventional dataset on the 24 h forecast error has been
investigated at the four synoptic times (i.e., 0000, 0600,
1200, and 1800UTC) for two selected periods in January
and June, which allows for examining the seasonal varia-
tions in the observational impact on the WRF short-range
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Figure 2: Time-average total observation impact (J kg−1) of the
types of variables in June (grey) and January (black) 2010. Negative
values correspond to a decrease in the energy norm of forecast error.
“REF” stands for the GPS refractivity (GPSREF).

forecast during the summer and winter period over the
CONUS domain. The two-week time-averaged total obser-
vation impacts aggregated with the observation variables
(i.e., wind, 𝑇, 𝑞, 𝑃

𝑠

, and REF) over all of the four synoptic
times are organized in Figure 2. Negative values correspond
to a decrease of forecast error due to assimilating a specific
observation variable.

Overall, the forecast error reduction is negative for all
variables in two selected periods, implying that the forecast
error starting from analysis is smaller than that starting from
background. This result also implies that the assimilation
of observations in the WRFDA system reduces the forecast
error. The observation impact in the two seasons is signif-
icantly different for wind observation being larger in June
and smaller in January. For January, the largest forecast error
decrease is due to temperature observations, followed by
wind observations for this specific region and 24 h forecast
length, whereas the largest forecast error reduction for June
is due to wind observations followed by temperature obser-
vations. The possible reason is that the observation number
of GeoAMV from GTS in June 2010 is much more than
January for unclear reasons. The next important observation
variable to reduce the forecast error is the moisture (𝑞), the
refractivity (REF) of GPS, and the surface pressure (𝑃

𝑠

). The
comparison shows that in general all observation variables
except for REF reduce the forecast error by a larger amount
in June than in January. The forecast error is highly affected
by the synoptic situation, for example, in summer; there are
more convective cases than winter. Convective forecasting
is usually more challenging in NWP, while the observation
amount of GPSREF in the experiment period of January is
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Figure 3: Time-average total observation impact (J kg−1) (a) and the corresponding assimilated observation number (b) of the types of
observing systems in June (grey) and January (black) 2010.

more than that in June, which could be the possible reason
that GPSREF has larger impact in January than in June.

The time-averaged total observation impact for the var-
ious observing systems and the corresponding assimilated
observation amount for June and January are grouped in
Figure 3. For both June and January, on average all of the
observing systems provide the most consistent improvement
for 24 h forecast from season to season, although TAMDAR,
SOUND, and GeoAMV drop their impact from summer
to winter period. The common seasonal variation exists
with smaller observation impact in the winter period and
larger in the summer period for each variable (Figure 2) and
observing system (Figure 3), which is consistent with the
results of Zapotocny et al. [31]. Therefore, Figure 3 suggests
that the WRFDA properly assimilated these observations
and improved the initial conditions of the forecast. Overall,
for two selected periods, the largest forecast error reduction
is due to TAMDAR and SOUND, followed by GeoAMV,
METAR, GPSREF, PROFILER, SYNOP, and PILOT.The total
forecast error reductions from AIREP, GPSPW, BUOY, and
SHIP are smaller because of their sparse coverage with limit
data amount as shown in Figure 3(b). The primary reason
for the small impact from AIREP is that the ACARS is a
restricted dataset and not available for operational assimi-
lation by nongovernmental agencies. Figure 3(b) shows that
the assimilated AIREP observation numbers are obviously
less than others. We expect that this would be a dominant
observing system if ACARS data were included in this study
(e.g., [32]).

From the cross-reference of Figures 3(a) and 3(b), the
assimilated observation numbers of TAMDAR are much
more than SOUND. This is the main reason that TAMDAR
data are leading the observation impact in this system when
considering that they have the same observed variables
(wind, temperature, and humidity) and similar observation
errors as SOUND. GeoAMV also has a large observation
number; however, the impact is not as obvious as TAMDAR
and SOUND because it is only located at certain levels
and with only wind observations and larger observation
error (Section 3).The observation number of GeoAMV from
GTS in June 2010 is much more than January for unclear
reasons, which certifies that the larger observation impact of
GeoAMV in summer versus winter period is closely related
to the number of datasets.

The surface observation types SYNOP, METAR, BUOY,
and SHIP have similar trends in the summer and winter
period. However, the observation impact is slightly different
with an increase from summer to winter period, even with
equivalent observation numbers and the same observation
error. This difference appears to be a result of the WRF 24-
hour forecast error for the surface, which is larger in January
than in June. With the surface pressure instrument, METAR,
observation impact is significantly different in winter versus
summer period; however, this does not change the total 𝑃

𝑠

observation impact between the winter period and summer
period in Figure 2. The reason is the 𝑃

𝑠

in Figure 2 including
the surface pressure observation from SOUND and SYNOP
in the WRFDA FSO procedure.
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Figure 4: Time-average per-observation impact (J kg−1) for June
2010, which is time-averaged total observation impact divided by the
observation number.

In order to evaluate the normalized observation impact,
the observation impact per observation numbers for all
assimilated observation systems in June is calculated
(Figure 4), which is the averaged observation impact (shown
in Figure 3(a)) divided by the observation number (shown
in Figure 3(b)). January has a similar per-observation
impact, and the redundant figure is not shown here. Figure 4
indicates that SYNOP surface observations have the greatest
normalized observation impact, although they have a
relatively small contribution to the total observation impact
as shown in Figure 3(a). It means every single SYNOP
observation contains important information to reduce
model surface forecast error which is usually larger and
more difficult than the upper air for model forecast. The
rank of other normalized observation impacts is in order
of SOUND, TAMDAR, GeoAMV, METAR, and GPSREF
from high to low. The TAMDAR observation, which has the
greatest total impact, has a smaller normalized observation
impact than SOUND.The reason is likely because TAMDAR
uses a larger wind observation error (3.6m s−1) than that of
SOUND (2.7m s−1). Additional comparisons between these
two observing systems will be addressed in the following
sections with greater detail.

4.2. Observation Impact across Four Synoptic Times. In the
previous section, it was shown that the assimilation of large
sets of observational data reduces the 24 h WRF regional
forecast error. However, the observation impact of individual
observations varies widely, and the adjoint-based calculation
allows us to quantify this impact for every observation at
a particular analysis time. The time-averaged observation
impact and dataset count for all assimilated observations

across four synoptic times are shown in Figure 5 for sum-
mer period only. Since the seasonal impact difference is
understood from previous discussion of Figures 2 and 3, the
redundant winter figure is omitted.

It is noted that the observation impact corresponds to
the observation number when comparing Figures 5(a) and
5(b), and the observation impact of TAMDAR, SOUND, and
GEOAMV varies with four synoptic times. For TAMDAR,
its observation impact at 0000UTC is the largest, 0600UTC
is the smallest, and 1200 and 1800UTC are the closest. The
observation impact of TAMDAR at 1200UTC is slightly
less than 1800UTC, although the data amount at 1200UTC
is much less than 1800UTC. The observation number at
1800UTC is the greatest, followed by 0000, 1200, and
0600UTC, which is expected based on the commercial air-
line flight times. The observation impact in Figure 5(a) indi-
cates a smaller TAMDAR observation impact at 1800UTC
compared to 0000UTC, even though the observation num-
ber (Figure 5(b)) at 1800UTC is more than 0000UTC. This
mismatch may be because observations are more numerous
but do not necessarily result in an automatically a larger
impact if observation error correlations and the thinning are
not properly used.

The largest observation impact of SOUND is at 1200UTC,
followed by 0000, 1800, and 0600UTC, which is consistent
with its observation number in Figure 5(b). GeoAMV obser-
vation impact was the third largest one in the system; how-
ever, it has less obvious time variation than that of TAMDAR
and SOUND. GeoAMV has the same issue as TAMDAR
at 1800UTC; largest observation numbers do not bring the
largest observation impact. This performance suggests that
WRFDA may need more attention and effort to handle data
density for assimilation.Theother possible reason for the per-
formance of GeoAMV could be that larger observation error
was introduced to GeoAMV wind observation as described
in Section 3.METAR andGPSREF have a comparable impact
following GeoAMV at all analysis times. With smaller obser-
vation numbers, METAR, GPSREF, and PROFILER have
relative large observation impacts. Based on (A.10) in the
Appendix, the observation impact is depending on two ele-
ments: the departure of observation and background (𝑑) and
model forecast error. It means that the model forecast error is
larger on the locations of METAR, GPSREF, and PROFILER,
and these data contain important information to reduce
the forecast error to a great extent. The surface observation
instrument, SYNOP, produces an equally important impact
for 0000, 0600, 1200, and 1800UTC in this study, due to the
equal data report amount along with those times.

The comparison between TAMDAR and SOUND shows
that at 0000UTC the observation impact from SOUND
is similar to TAMDAR, and at 1200UTC, SOUND pro-
duces more impact than TAMDAR. At 0600 and 1800UTC,
however, since SOUND has only a few records, TAMDAR
has a much greater observation impact than SOUND. The
amount of TAMDAR observations is significantly larger than
SOUND at all assimilation times. Particularly at 1800UTC
when SOUND reports are sparse, TAMDAR observation has
the thickest coverage due to the high peak of commercial
flights landing and takeoff at local airport. The averaged total
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Figure 5: Time-average total observation impact on 24 h forecast (J kg−1) (a) and the corresponding assimilate observation number (b) of
the types of observing systems for 0000 (blue), 0600 (red), 1200 (green), and 1800 (orange) UTC in June 2010.

observation impact illustrates that TAMDAR has a distinct
advantage at 1800UTC in reducing the 24 h forecast error
due to the dense observation record. Therefore, the larger
total observation impact of TAMDAR than that of SOUND
(Figure 3) mostly likely originates from the contribution of
1800UTC observations.

4.3. Observation Impact Vertical Distribution. Since TAM-
DAR and SOUND have similar observation impacts dis-
cussed in Sections 4.1 and 4.2, andTAMDAR is a rawinsonde-
like observation with the same observational variables,
the comparison is made between TAMDAR and SOUND
to investigate why the observation impact of TAMDAR
is greater than SOUND at some analysis times. Figure 6
presents the vertical distribution of the time-averaged wind
observation impact and observation number for TAMDAR
and SOUND for the summer period at 0000UTC. The
observation impact is categorized for eight vertical levels:
1000, 850, 700, 500, 300, 200, 100, and the model top
(50) hPa. From the vertical distribution, both TAMDAR
and SOUND present the positive impact at all vertical
pressure levels for wind. It can be seen from Figure 6(a) that
TAMDAR wind observation impact resides primarily below
300 hPa corresponding to its cruise altitude below 25000 ft.
At 500 hPa, TAMDAR shows a larger observation impact
than SOUND correspondingwith larger observation number
in Figure 6(b). However, at 1000, 850, 700, and 300 hPa,
TAMDARpresents smaller observation impact than SOUND
although TAMDAR has more observation at these levels. It

is likely a function of the model-assigned larger observation
error for TAMDAR wind observations than that of SOUND.
Gao et al. [5] presented revised lowerTAMDAR-specific error
values, which, prior to TAMDAR, were set to the same values
as AIREP.

The observation impact vertical distribution for temper-
ature (𝑇) and water vapor mixing ratio (𝑞) are displayed for
June in Figure 7, as well as the corresponding observation
number. The q in Figure 7(c) is converted from the observed
relative humidity (RH) in WRFDA. Since the adjoint model
does not account for the majority of moist processes, the
error of humidity impact is assumed to be ignored for the
preliminary investigation in this study. Therefore, it must
be declared that the humidity impact mentioned here only
counts the contribution to dry energy norm. However, it
is fair to make approximate comparisons of the humidity
impact between TAMDAR and SOUND in the same system.

As with wind, both T and q show the positive impact to
forecast at all vertical levels. In Figures 7(a) and 7(c), at 850
and 700 hPa, TAMDAR shows a larger T and q observation
impact than other levels corresponding to the more obser-
vations in Figures 7(b) and 7(d); however, SOUND presents
smaller observation impact at these two levels corresponding
with fewer observations than TAMDAR.Therefore, the dense
TAMDAR observations compensate sparse SOUND reports
in the critical vertical region (lower levels) where no other
moisture data is available. This analysis suggests that the
humidity observation of TAMDAR has a positive impact on
theWRF regional 24 h forecast, especially at lower levels (700
and 850 hPa) where convective weather originates.
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Figure 6: Time-average observation impact (J kg−1) of TAMDAR and SOUND wind (a) on pressure levels (hPa) from 1000 hPa above the
surface up to 50 hPa at 0000UTC in June 2010; (b) is the observation number at corresponding vertical levels.

4.4. OSEs. In previous sections, the linear estimations of
observation impact are described. This section compares
the impact of observations on 24 h forecast evaluated using
typical OSEs with that evaluated using the adjoint-based
FSO method. The REFER that assimilates all observation
types (Section 3) is used as a control experiment that is
referred to as OSE-ALL. Two OSEs are then conducted by
performing new analysis-forecast cycles for a given period
(i.e., from 1 to 15 June 2010). In the new analysis procedure,
the TAMDAR and SOUND to be evaluated are removed from
the observation set in data denial experiments. The corre-
sponding OSEs are referred to as OSE-TAMDAR and OSE-
SOUND, respectively. Through a series of OSEs, the impact
of TAMDAR and SOUND is evaluated. The configurations
of the analysis and forecast system are the same as those
described in Section 3 for FSO.

The observation impact of TAMDAR from OSEs is
defined as the difference of 24 h forecast error of OSE-ALL
and OSE-TAMDAR. The calculation of forecast error for
OSE-ALL and OSE-TAMDAR uses the formulation in the
Appendix (A.6) with the same REFER as the true state as the
FSO described in Section 3. OSE-SOUND followed the same
procedure as OSE-TAMDAR to get the observation impact of
SOUND. Figure 8(a) presents the time-averaged observation
impact for both OSE-TAMDAR and OSE-SOUND in June at
0000, 0600, 1200, and 1800UTC.

The TAMDAR and SOUND observation impact
obtained from FSO are compared in Figure 8(b). The largest

observation impact of TAMDAR is at 1800UTC, which is
even larger than the error of removing SOUND observation
and is consistent with the results of FSO (Figure 8(b)).
Likewise, the observation impact of SOUND data is larger
at 1200UTC than TAMDAR data. At 0000UTC, the OSEs
show that TAMDAR results in slightly larger observation
impact than SOUND, whereas FSO presents equal impact
between TAMDAR and SOUND. 0600UTC is only showing
the impact of TAMDAR for both OSEs and FSO. The
comparable pattern demonstrates that FSO and OSEs show
similar importance at each synoptic time. The WRFDA FSO
diagnostic tool is capable of highlighting the major forecast
degradation due to the observations withheld compared with
OSEs. However, using cross comparisons of the magnitude
of observation impact between OSEs and FSO, the difference
shows larger observation impact of OSEs than that of FSO.
This means the linear estimate forecast error reduction from
FSO method slightly underestimates that from the nonlinear
method in the OSEs. This underestimation may be due to
the (1) neglected moist physics in adjoint integration, (2)
the validity of the tangent linear assumption, and/or (3)
the validity of the tangent linear assumption of the forecast
error reduction. OSEs measure the effects of either SOUND
or TAMDAR on all forecast metrics; FSO quantified the
response of a single metric to all observations including
TAMDAR and SOUND. Overall, the comparable results still
demonstrate that the FSO and OSEs show similar qualitative
improvements due to TAMDAR and SOUND observations.
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Figure 7: Time-average observation impact (J kg−1) of (a) temperature (T) and (c) specific humidity (q) from TAMDAR and SOUND on
pressure level (hPa) from 1000 hPa above the surface up to 50 hPa at 0000UTC in June 2010; (b) and (d) are the observation number of T and
q, respectively, at the corresponding vertical level.

5. Summary and Discussions

This paper presents an application of the WRFDA FSO
system for estimating the impact of observations on regional
forecasts and investigates influence of TAMDAR data on
short-range (24 h) forecast error reduction. A significant
advantage of the FSO method is that observation impact can

be efficiently estimated for a complete set of observations,
or any subset of observations grouped by type of observing
system, observed variable, geographic region, vertical level,
or other categories. The assessment of the value of TAMDAR
and SOUND observations impact through the OSEs is also
performed, which demonstrates that the FSO experiments
and OSEs provide similar qualitative diagnostic results. The
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Figure 8: Two-week averaged observation impact (J kg−1) of OSEs (a) for removing TAMDAR (OSE-TAMDAR) and SOUND (OSE-
SOUND), respectively, and the observation impact of TAMDAR (FSO-TAMDAR) and SOUND (FSO-SOUND) from FSO (b) in June 2010.

FSO method also requires fewer computational resources
than OSEs and can monitor the observation impact in an
operational framework.

FSO results suggest that on average all the observing
systems play a positive role in reducing the 24 h forecast
error. The wind and temperature in the observation sys-
tem make key contributions to reduce the 24 h forecast
error, although the largest observation impact for June is
wind, whereas it is, for January, temperature. The largest
observation impact is produced by SOUND and TAMDAR
and followed by GeoAMV, METAR, GPSREF, and SYNOP.
However, most instruments have the seasonal variation with
the larger impact in summer period than winter period.
Thewind, temperature, and relative humidity observations of
TAMDAR have significant contributions in the operational
WRFDA system, particularly at 1800UTC.

FSOobservation impactwas compared to the observation
impact deduced from OSEs that were performed as data
denial experiments for TAMDAR and SOUND. Consistent
with FSO impact results, the total observation impact of
TAMDAR from OSEs is larger than SOUND at 0600 and
1800UTC, and impact at 0000UTC is similar to SOUND,
and impact at 1200UTC is less than SOUND. Whilst OSEs
are more indicated for evaluating the longer term forecast
impact of data, FSO is still a good choice to investigate the
short-range forecast error reduction due to the observations.
FSO is able to evaluate the impact of observations when
the entire observation dataset is present in the assimilation
system with one experiment, while OSEs have to perform
more than one experiment to evaluate the contribution from
different datasets [11].

The advantages of TAMDAR data in the operational
WRFDA system are reinforced through this study using the
FSO approach and include the following.

(i) The total observation impact of TAMDAR is obvious
at 0000, 1200, and 1800UTC cycle consistently. TAM-
DAR at 1800 and 0600UTC is able to complement
SOUND observations to reduce forecast error.

(ii) TAMDAR relative humidity and temperature obser-
vation are a very important supplement to SOUND
data at lower levels, especially at 850 and 700 hPa.

Additionally, a few issues have been noticed with the
adjoint-based observation impact estimate. First, the calcu-
lation of the sensitivity used in the WRF adjoint is limited
by simple physical schemes. Secondly, the definition of the
forecast error norm does not include moisture. A greater
impact from moisture observation might be expected when
more moist physics schemes are included in theWRF adjoint
model and a total moist energy norm is used.

In this study, no bias correction or thinning procedures
are used for TAMDAR data since these functions are not
developed in WRFDA. As discussed in Section 2, the obser-
vation innovation and observation number directly affect
the forecast error reduction. The bias correction is clearly
related to the innovation, and the thinning procedure decides
how many data will be assimilated. Therefore, additional
work is needed to address the bias correction and thinning
procedure to improve the accuracy of observation impact
of TAMDAR in FSO system. Inclusion of moisture in total
energy and investigation of the influence of TAMDAR data
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thinning and bias correction strategy on short-term forecast
error reduction should be part of future development. The
new observation error for TAMDAR has been estimated and
added in WRFDA [5]. It would be also interesting to study
the forecast sensitivity to TAMDAR observation errors with
FSO.

Appendix

Basic Concept of Observation Impact

The nonlinear forecast model can be expressed as

x𝑓 = 𝑀(x0) , (A.1)

where 𝑀 is the nonlinear propagator of the model for the
time period 0 ≤ 𝑡 ≤ 𝑓 and x𝑓 is the forecast model state
vector at time 𝑡 = 𝑓 with initial condition vector x0. Given a
perturbation 𝛿x0 at the initial time, the linear evolution 𝛿x𝑓
at time 𝑡 = 𝑓 is

𝛿x𝑓 = M𝛿x0, (A.2)

where M is the tangent-linear propagator of 𝑀 along the
forecast trajectory initiated from x0. To study the observation
impact on forecasts, the forecast error, which is measured
with respect to the true atmospheric state x𝑓

𝑡

at time 𝑡 = 𝑓, is
defined as

𝑒 = ⟨x𝑓 − x𝑓
𝑡

,C (x𝑓 − x𝑓
𝑡

)⟩ , (A.3a)

where ⟨⋅, ⋅⟩ denotes the Euclidean inner product of two
vectors and C is a diagonal matrix that has the weighting
coefficients of the forecast error components. Usually, the dry
total energy norm is used for C [33–35] as

𝑒 = ∑
𝑖,𝑗,𝑘

[𝑢
󸀠2

+ V󸀠2 + (
𝑔

𝑁𝜃
)

2

𝜃
󸀠2

+ (
1

𝜌𝑐
𝑠

)

2

𝑝
󸀠2

] . (A.3b)

Using (A.2), the sensitivity (gradient) of 𝑒 to initial conditions
is expressed as

𝜕𝑒

𝜕x0
= 2M𝑇C (x𝑓 − x𝑓

𝑡

) . (A.4)

Given two forecasts x𝑓
𝑏

and x𝑓
𝑎

with the background (x0
𝑏

)
initial condition and analysis (x0

𝑎

), respectively, the forecast
error is

𝑒
𝑏

= ⟨x𝑓
𝑏

− x𝑓
𝑡

,C (x𝑓
𝑏

− x𝑓
𝑡

)⟩ ,

𝑒
𝑎

= ⟨x𝑓
𝑎

− x𝑓
𝑡

,C (x𝑓
𝑎

− x𝑓
𝑡

)⟩ .

(A.5)

To measure the observation impact on forecast error reduc-
tion, a scalar function is defined as the difference between 𝑒

𝑎

and 𝑒
𝑏

:

𝐽
𝑒

=
1

2
(𝑒
𝑎

− 𝑒
𝑏

) . (A.6)

The linear approximation of forecast error reduction 𝐽
𝑒

caused by analysis increment x0
𝑎

− x0
𝑏

can be expressed as

𝛿𝑒 = ⟨x0
𝑎

− x0
𝑏

, s⟩ , (A.7)

where s is a properly defined vector that is expressed in terms
of the forecast sensitivity to initial conditions [17, 36]. For
example, s = (1/2)((𝜕𝑒

𝑎

/𝜕x0
𝑎

) + (𝜕𝑒
𝑏

/𝜕x0
𝑏

)) is introduced
by Langland and Baker [12] in their observation impact
methodology.

In a data assimilation system, the analysis increments
x0
𝑎

− x0
𝑏

are represented by a best linear unbiased estimation
equation

x0
𝑎

− x0
𝑏

= Kd, (A.8)

where K = AH𝑇R−1 is the Kalman gain matrix, A represents
the matrix of analysis error covariance and corresponds (at
convergence) to the inverse of the Hessian matrix of the
cost function [37, 38], H𝑇 is the adjoint of the observation
operator, R−1 is the reverse of observation error covariance;
d is the innovation vector d = y − 𝐻(x0

𝑏

), y represents
observations, and 𝐻 is the nonlinear observation operator.
Using (A.8) and the adjoint relationship, the forecast error
reduction estimation (A.7) can be expressed as

𝛿𝑒 = ⟨Kd, s⟩ = ⟨d,K𝑇s⟩ , (A.9)

where K𝑇s is the forecast sensitivity to observations. The
quantity 𝛿𝑒, as defined in (A.9), provides the information that
is required to assess observation impact using only observa-
tion space quantities. In the case d = 0 orK𝑇s = 0, there is no
observation impact. Typically, 𝑒

𝑎

is smaller than 𝑒
𝑏

, so that the
negative observation impact value in (A.9) is corresponding
to the reduction of the forecast error due to improved initial
conditions. Using (A.9), the total observation impact can
be partitioned into contributions made by any individual
observation or grouping of observations assimilated over
the entire domain. Combining (A.4) with (A.9), the linear
approximation of (A.6) can be introduced as

𝛿𝑒 = ⟨d,K𝑇 [M𝑇
,𝑏

C (x𝑓
𝑏

− x𝑓
𝑡

) +M𝑇
𝑎

C (x𝑓
𝑎

− x𝑓
𝑡

)]⟩ . (A.10)
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