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ABSTRACT

The ‘‘Santa Ana’’ winds of Southern California represent a high-impact weather event because their dry,

fast winds can significantly elevate the wildfire threat. This high-resolution numerical study of six events of

moderate or greater strength employs physics parameterization and stochastic perturbation ensembles to

determine the optimal model configuration for predicting winds in San Diego County, with verification

performed against observations from the San Diego Gas and Electric (SDG&E) mesonet. Results demon-

stratemodel physics can have amaterial effect on the strength, location, and timing of the winds, with the land

surfacemodel playing an outsized role via its specification of surface roughness lengths. Even when bias in the

network-averaged sustained wind forecasts is minimized, systematic biases remain in that many stations are

consistently over- or underforecasted. The argument is made that this is an ‘‘unavoidable’’ error that rep-

resents localized anemometer exposure issues revealed through the station gust factor. A very simple gust

parameterization is proposed for the mesonet based on the discovery that the network-averaged gust factor is

independent of weather conditions and results in unbiased forecasts of gusts at individual stations and the

mesonet as a whole. Combined with atmospheric humidity and fuel moisture information, gust forecasts can

help in the assessment of wildfire risks.

1. Introduction

We continue an investigation of gusty downslopewinds in

San Diego County, California, that occur during ‘‘Santa

Ana’’ conditions, a cool-seasonweather pattern consisting of

offshore flow emanating from the Great Basin and Mojave

Desert that canbe amplifiedby the terrain (cf.Raphael 2003;

Conil and Hall 2006; Jones et al. 2010; Hughes and Hall

2010). The winds can be very dry, and sometimes hot,

contributing to the fire danger in Southern California

(e.g., Rolinski et al. 2016). The danger can be particularly

acute in autumn, prior to the onset of winter rains (e.g.,

Westerling et al. 2004;Moritz et al. 2010).A striking example

was the Santa Ana event of late October 2007 that was as-

sociated with multiple fires across Southern California, in-

cluding the Witch Creek fire, which was sparked by power

lines (cf. Cao and Fovell 2016; Fovell and Cao 2017).

This paper is the second in a series investigating the

predictability of the gusty downslope windstorms of San

Diego County. Part I of this study, Cao and Fovell (2016,

hereafter CF16), focused on the moderately strong

14–16 February 2013 downslope windstorm event, in which

near-surface wind gusts exceeding 40ms21 were recorded

in a wildfire-prone mountainous backcountry area covered

by a high-density San Diego Gas and Electric (SDG&E)

mesonet. High-resolution simulations with the Advanced

Research version of theWeatherResearch and Forecasting

(WRF) Model (Skamarock et al. 2008) revealed that the

first phase of that event exhibited characteristics of a

prominent hydraulic jump flow in part of the county, while

the second phase showed a clear downslope progression of

winds as the event wound down. Supporting evidence for

our simulations and interpretations were found in the

mesonet observations.

The success of CF16’s simulations depended upon ap-

propriate selections of the model physics and spatial

resolution. Physical processes requiring parameterizationCorresponding author: Prof. Robert Fovell, rfovell@albany.edu
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in models like WRF include land surface and subsurface

(soil) processes, mixing in the planetary boundary layer

(PBL), radiative transfer, cloud microphysical processes,

and the influence of subgrid turbulence and subgrid cloud

activity. There are several viable options for each of these

processes, resulting in a potentially enormous number

of possible combinations, although some are undoubt-

edly better than others for this application. Using

a ;50-member physics ensemble, CF16 demonstrated

that most model configurations overpredicted the winds

observed in themesonet, with the forecast bias beingmost

sensitive to the land surfacemodel (LSM).However, even

the most skillful configuration exhibited a wind-speed-

dependent bias, which simultaneously overpredicted less

windy sites and underpredicted windier locations. CF16

also showed that horizontal resolution profoundly influ-

enced the spatial extent of the downslope flow, including

controlling where the winds were strongest.

The first objective of this paper is to further in-

vestigate the sensitivity of the intensity, spatial extent,

and structure of these windstorms to model physics, and

to explain why some LSMs outperformed others. This

will be done by examining additional Santa Ana events

that have occurred since the deployment of the SDG&E

mesonet. The second is to develop a strategy for pa-

rameterizing small-scale wind gusts, which cannot be

resolved in mesoscale models. This is motivated by the

fact that gusts can cause an enormous amount of damage

to electrical infrastructure.

Gustiness is a remarkable feature of many downslope

windstorms (e.g., Durran 2003; Jackson et al. 2013). As

an example, the well-studied 11 January 1972 Boulder,

Colorado, downslope windstorm had wind bursts as high

as 60ms21 (e.g., Klemp and Lilly 1975). Empirical and

heuristic attempts have been made to estimate

wind gusts by multiplying the resolved-scale sustained

wind speed by a gust factor [GF, the ratio of the

peak wind speed of a given duration (gust) to the mean

wind speed for a given averaging period] empirically

determined from available observations (e.g., Mitsuta

and Tsukamoto 1989) or adding a scalar value to the

sustained wind, assuming a normal distribution of wind

fluctuations (e.g., Wieringa 1973; Panofsky et al. 1977;

Beljaars 1987). Brasseur (2001) pursued a gust parame-

terization based on physical considerations, reflecting

boundary layer turbulence. In this work, we motivate a

remarkably simple gust algorithm, which is shown to be

skillful when applied to sustained wind forecasts for both

individual SDG&E stations and the mesonet as a whole.

The organization of this manuscript is as follows. The

available observations, model experimental design, and

verification strategy are described in section 2. Model

sensitivity to model physics, stochastic perturbations, and

surface roughness is investigated in section 3. Section 4

presents an analysis of wind forecast bias for individual

stations. A simple yet skillful gust parameterization for

the SDG&E network is introduced in section 5, and the

final section presents the summary.

2. Data and methods

a. Available observations

Wind observations are crucial for verifying and cali-

brating model forecasts of downslope windstorms. As in

CF16 and Fovell and Cao (2017, hereafter FC17), we

employed the dense, homogeneous, and high quality

SDG&E surface observation network of (presently 158)

stations sited in wind-prone areas, which commenced

deployment in 2009 (see Fig. 1, and CF16’s Fig. 1).

SDG&E stations were purposefully sited in wind-prone

areas, especially in the mountainous backcountry of San

Diego County, and generally conform to the Remote

Automated Weather Stations (RAWS) network stan-

dard with respect to anemometer mounting height

(6.1m) and sampling (3 s) and averaging (10min)

intervals. In the SDG&E network, the sustained wind is

the temporal mean of the 3-s samples over each aver-

aging interval, with the gust representing the highest

wind speed sample in the interval. In contrast, RAWS

gusts are not guaranteed to come from the same se-

quence of observations that was used to compute the

sustained wind. Another difference is that SDG&E

stations report every 10min, while RAWS stations

report once within each hour.

In CF16, we studied a moderately strong Santa Ana

wind event of 14–16 February 2013 that was captured by

the SDG&E network, employing a model with fine

temporal and spatial resolution. Like many Santa Ana

events, it spanned two days and evinced a pronounced

diurnal cycle with a lull in the offshore winds in the late

afternoon of the first day, possibly a response to

boundary layer evolution (cf. Smith and Skyllingstad

2011). During the first phase, a hydraulic jump became

visible in a vertical cross section oriented west–east

across SDG&E station West Santa Ysabel (WSY), sited

very near where the October 2007 Witch fire started.

The jumplike feature persisted for several hours and was

consistent with observations taken at stations arrayed

along the west-facing slope, including sites WSY, Witch

Creek (WCK), and Sunset Oaks (SSO). The second

phase consisted of a marked westward downslope pro-

gression of winds with time as the overall winds ampli-

fied and waned.

In this study, six Santa Ana episodes (Table 1)

were selected, adding to the February 2013 case two
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moderately strong events (in October 2013 and January

2015) and three strong events (in April 2014, May 2014,

and February 2015). Multiphysics ensembles consisting

of around 50 members each were constructed for the

February 2013, October 2013, and May 2014 episodes,

which may provide some insights into the optimal model

configuration with respect to model physics that are ap-

plicable to other events of various strengths. Verifications

employed the 135 SDG&E stations that were common to

all six events andare shown inFig. 1.All six eventswereused

for the composite analyses presented in sections 4 and 5.

b. Model setup and verification strategy

As in CF16 and FC17, we employedWRF version 3.5

utilizing five domains telescoping to 667-m grid spacing

that covered the highest terrain portion of the SDG&E

network (Fig. 1). Domain 4 (2-km resolution) encom-

passed the entire SDG&E network (see CF16’s Fig. 3),

and all analyses were performed in this nest. This work

was motivated by the need to anticipate winds that could

impact electrical transmission lines, and so forecast data

available in real time were used for the initialization

and lateral boundary forcing. Specifically, all simula-

tions were initialized with North American Mesoscale

Forecast System (NAM) grids at either 1200 or 0600

UTC, with earlier initializations preferred for episodes

with multiple peaks. All model integrations were 54h

long, starting prior to the onset of offshore winds, and

including the bulk (if not the entirety) of the Santa Ana

event. The model top was 10hPa, with 50 layers (51 full-

sigma vertical levels) employed, focusing the highest

resolution in the lower troposphere in the usual fashion.

Physics ensembles consisting of variations of the LSM

and PBL schemes were conducted to create many par-

allel realizations of these periods: 14–16 February 2013,

4–6 October 2013, and 13–15 May 2014 (Table 1). (The

14–16 February 2013 ensemble was introduced in CF16

and is examined in greater detail herein.) The five LSMs

included the Noah land surfacemodel (Chen andDudhia

2001; Ek et al. 2003), the Noah model with multi-

parameterization options (NoahMP; Niu et al. 2011), the

Rapid Update Cycle (RUC; Smirnova et al. 2000), the

Pleim–Xiu (PX; Pleim and Xiu 1995; Xiu and Pleim

2001), and the thermal diffusion (TD; Skamarock et al.

2008) schemes. Ten PBL parameterizations were se-

lected, those being the Yonsei University (YSU; Hong

et al. 2006), Mellor–Yamada–Janjić (MYJ; Janjić 1994),

quasi-normal scale elimination (QNSE; Sukoriansky

et al. 2006), Mellor–Yamada–Nakanishi–Niino level 2.5

(MYNN2; Nakanishi and Niino 2004), Asymmetric

Convection Model version 2 (ACM2; Pleim 2007a,b),

Bougeault–Lacarrere (BouLac; Bougeault and Lacarrere

1989), Bretherton–Park (UW; Bretherton and Park

2009), total energy–mass flux (TEMF; Angevine et al.

FIG. 1. Topography of Southern California (longitude on abscissa, latitude on ordinate), with

selected place names. County outlines are in gray; identifiers are Santa Barbara (SBC), Ventura

(VC), Los Angeles (LAC), Orange (OC), San Bernardino (SBC), and Riverside (RC) Counties.

White dots denote SDG&Eobservational stations. The blue box highlights theWitchCreek region,

and the red dashed line depicts the location of the vertical cross section across station WSY.
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2010), Grenier–Bretherton–McCaa (GBM; Grenier and

Bretherton 2001), and Medium-Range Forecast Model

(MRF; Hong and Pan 1996) options. For each PBL

scheme, the recommended and/or most frequently

adopted surface-layer parameterization was employed.

Some of the combinations were not workable, which left

us with a total of 48 viable ensemble members. As in

CF16, horizontal diffusion along the model surfaces was

deactivated, and the MODIS land-use database was

adopted. In contrast with Wilson and Fovell (2016),

horizontal diffusion was not found to substantially influ-

ence our results or conclusions (cf. Cao 2015, CF16).

As part of this work, the available topo_wind options

were evaluated and determined to be unhelpful.

Unsurprisingly, given the weather associated with

Santa Ana events, we found that the downslope wind-

storms were not very sensitive to the treatment of the

microphysics or cumulus convection, and the influence

of the radiation parameterization was also small.

Therefore, all simulations examined herein employed

the WRF single-moment 3-class microphysics scheme

(Hong et al. 2004), a simple ice-bearing scheme suitable

for mesoscale grid sizes, the Kain–Fritsch (Kain 2004)

cumulus parameterization (in the 54- and 18-km do-

mains only), and the Rapid Radiative Transfer Model

for GCMs (RRTMG; Iacono et al. 2008) package for

longwave and shortwave radiation.

For selected events (February 2013 and May 2014) and

physics ensemblemembers (Noah–YSUandPX–ACM2),

the sensitivity to random perturbations was assessed via

ensembles created with WRF’s stochastic kinetic energy

backscatter scheme (SKEBS) option (Shutts 2005;

Berner et al. 2011). This technique inserts random noise

perturbations into the rotational horizontal wind com-

ponents and the potential temperature field where and

when turbulence is diagnosed. Each SKEBS ensemble

consisted of one control run and 20 perturbed members,

created by varying the random number seed used as

input to the SKEBS procedure. SKEBS has several

alterable parameters, and the standard or recommended

values were adopted.

As discussed in CF16 and FC17, model-forecasted

winds from 10m above ground level (AGL) were ad-

justed using the stability-dependent logarithmic wind

profile to the SDG&E anemometer height (6.1m) be-

fore hourly verifications against observed sustained

winds were conducted. Mean absolute error (MAE) and

bias statistics were again used to assess how close

pointwise model predictions fj,i were to their corre-

sponding observations yj,i. The MAE and bias are

defined for station j and time i as

MAE
i,j
5 jf

j,i
2 y

j,i
j (1)

and

bias
i,j
5 ( f

j,i
2 y

j,i
). (2)

CF16 reported that shifting the lowest model level

downward to match the SDG&E anemometer height

was not found to be sufficiently helpful to justify the

increased computational cost (in the form of shorter

time steps) for some physics combinations, and herein

we employ the default value of roughly 27m AGL.

Particularly in the next section, our main emphasis will

be on network- and/or event-averaged winds for the 135

SDG&E stations that are common to all six events.

3. Sensitivity tests: Model physics, stochastic
perturbations, and surface roughnesses

In this section, we reexamine and extend CF16’s

physics ensemble for the February 2013 event, assess the

sensitivity to stochastic perturbations and, with the aid

of physics tests for two other episodes, assess the influ-

ence of surface roughness on the simulated airflows and

forecast wind skill.

a. February 2013 event physics ensemble

CF16 selected the PX–ACM2 LSM–PBL combina-

tion because it minimized the forecast MAE and bias of

the network-averaged sustained wind over multiple

events and faithfully captured the temporal evolution

and spatial variation of the flow during the February

2013 episode. In contrast, most other configurations

systematically overpredicted the observed winds with

respect to intensity (e.g., Fig. 17 in CF16) and/or offshore

wind extent. The former is also illustrated in Fig. 2, which

compares time series of network-averaged sustained wind

for the February 2013 episode from the PX–ACM2 con-

figuration with a more commonly used pair (Noah–YSU).

TABLE 1. Santa Ana wind events studied and their model ini-

tialization time. Here, Y denotes the event was used to create

a physics ensemble and N denotes the event was not used for cre-

ating a physics ensemble.

Event

Initialization time

and date

Used in the

physics ensemble?

14–16 Feb 2013 1200 UTC 14 Feb Y

4–6 Oct 2013 0600 UTC 3 Oct Y

29 Apr–1 May 2014 0600 UTC 29 Apr N

13–15 May 2014 0600 UTC 13 May Y

23–25 Jan 2015 1200 UTC 23 Jan N

11–13 Feb 2015 1200 UTC 11 Feb N
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The PX–ACM2 reconstruction is clearly superior, at least

after the first 12h, and its event- and network-averaged

sustained wind bias was 0.07ms21, lower than Noah–

YSU’s 1.48ms21.

Highlighted inCF16 (see their Fig. 6) was the persistent

jumplike feature in the flow through the Santa Ysabel

area (boxed area in Fig. 1) that appeared in the surface

observations as weaker downslope winds (and, occa-

sionally, reversed or upslope flow) at stationWCK than at

neighboring stations both up (WSY) and downhill (SSO).

Figure 3 presents wind speeds averaged over a 4-h period,

spanning the time of WSY’s first peak gust (around 1800

UTC 15 February 2013) and WCK’s first wind reversals.

The flow can be presumed to be easterly (from right to

left) nearly everywhere. The PX–ACM2 (Fig. 3a) and

Noah–YSU (Fig. 3b) members both developed hydraulic

jumps but positioned them differently. In the former, the

jump was well formed and centered over WCK, and the

winds were stronger both uphill and downhill ofWCK, as

was observed. The Noah–YSU simulation’s jump was

shifted somewhat downslope, resulting in higher winds at

WCK than SSO, contrary to the observations. A jump

was barely evident in the TD–YSU simulation as its

temporally averagedwindswere high at nearly all stations

(Fig. 3c). The fourth configuration shown (Fig. 3d) will be

discussed in section 3c.

Figure 4a shows the mean wind speed and potential

temperature fields from the 48-member physics ensem-

ble for the February 2013 event, computed for the same

4-h period as shown in Fig. 3. Owing to variations in

position among the members, as well as its absence in

some (such as TD–YSU), the jump feature was virtually

absent in the ensemble average. The ensemble standard

deviation was largest for both wind speed and potential

temperature above WCK (Fig. 4c), where the jump was

observed to occur. In contrast, the variation above

WSY, where the highest winds in this cross section were

recorded, was negligible.

Focusing on the model-diagnosed 10-m winds1 aver-

aged over the same 4-h interval (Fig. 5a), we note that

the variation among the 48 ensemblemembers was quite

small upwind of, and even beyond, the ridge, at least

until the easterly flow passed station WSY. From that

point downhill, the variation became quite substantial

(2–18ms21). As suggested by the figure, only a subset of

the physics ensemble members captured the weak winds

associated with the jump observed at or very nearWCK.

Although not shown, we note that the region of largest

variation on the lee side for the 4-h window around the

peak of the second phase (during which time a jump did

not appear in the observations) was found relatively

farther down the slope, and there was slightly more

spread in the flow on the east side of the ridge, perhaps

reflecting the natural tendency for nonlinear simulations

to diverge over time.

Figure 6a displays the event- and network-averaged

6.1-m forecast wind bias versus MAE for the February

FIG. 2. Time series of network-averaged observed (black dots) and predicted (blue, PX–ACM2 control run;

green, Noah–YSU control run) 6.1-m sustained winds (m s21) for the 14–16 Feb 2013 event. The gray and

light green plumes reveal the ensemble spread created via SKEBS perturbations.

1 As this is a comparison among ensemble members, adjustment

of these winds to the SDG&E anemometer height was not

necessary.
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2013 event, augmenting CF16’s Fig. 17. (The quasi-

linear relationship between these two metrics is antici-

pated.) Most physics ensemble members had a mean

positive bias and also a larger MAE than the selected

configuration, PX–ACM2, even following careful ad-

justments to the mesonet’s 6.1-m anemometer mounting

height. The result is clearly driven by the choice of LSM

(differentiated by dot color) rather than the PBL

scheme. The commonly employed Noah–YSU combi-

nation placed about average for this event, selecting TD

resulted in most of the highest biases and mean absolute

errors, and the RUC runs as a group were second best.

b. Sensitivity to model random perturbations
(February 2013 and May 2014 events)

Prior to examining the physics ensembles for two

other Santa Ana episodes, we will explore the effects of

stochastic perturbations on wind speed patterns for the

February 2013 and May 2014 events (including jump

formation in the former).

Minimizing wind forecast errors entails determining

wind speeds accurately at the right places and times.

Although we are dealing with network-averaged

quantities here, it might be anticipated that simulations

that do not capture the jump, or do not position it cor-

rectly, will have relatively higher errors. It might be

further anticipated that feature is also susceptible to

noise or other perturbations. This is investigated

using SKEBS-based ensembles, consisting of 20

members each for the Noah–YSU and PX–ACM2

configurations.

Figures 4b and 4d show that, by itself, applying per-

turbations to a single physics member, Noah–YSU,

for the February 2013 event, generated qualitatively

and even quantitatively comparable variations in wind

speed and potential temperature to those produced

by the physics ensemble during the jump period. Like

the physics ensemble as a whole, members in the

Noah–YSU SKEBS collection included runs in which

the jump was very pronounced and others in which

it failed to form (Fig. 5b), such that the feature dis-

appeared from the perturbation ensemblemean (Fig. 4b).

Therefore, at least part of the difference among the

physics ensemble members was due to chance, at

FIG. 3. Vertical cross sections of 4-h averaged horizontal wind speed (2.5m s21 contours and red shaded fields) and potential tem-

perature (thick black 5-K contours) for the 1500–1900 UTC 15 Feb 2013 event, taken west–east across station WSY for four physics

combinations: (a) PX–ACM2, (b) Noah–YSU, (c) TD–YSU, and (d) Noah–YSU–z0mod.

544 WEATHER AND FORECAST ING VOLUME 33



least as far as jump formation and its location are

concerned.

Figures 5c and 5d show the variation of 10-m winds

for the May 2014 event from its physics and Noah–YSU

SKEBS ensembles, respectively, again averaged over

the 4-h time period during which the winds on the lee

slope were strongest. The May case did not produce a

jump feature, either in the simulations or observations,

and the variability provoked by the perturbations was

rather small (Fig. 5d). The variation owing to the model

physics (Fig. 5c) remained, which was still substantial at

various places along the lee slope.

However, when averaged over the network, the

sensitivity to SKEBS-generated perturbations is seen

to have been relatively minor and was therefore

swamped by the physics differences, especially the se-

lection of the LSM. This is revealed for the February

2013 episode in Figs. 2 and 6a. All of the Noah–YSU

reconstructions generated larger mesonet-average

winds than any of the PX–ACM2 runs (including its

SKEBS-perturbedmembers), at least after the first 12 h

or so (Fig. 2). When plotted in bias versus MAE space

(Fig. 6a), we see that the values for the Noah–YSU

SKEBS runs (enclosed in the light blue ellipse) are

rather far removed from all of the PX–ACM2members

(including its SKEBS runs enclosed in the light

orange ellipse). Both figures also reveal that the

stochastic perturbations excited less variability with

the PX–ACM2 configuration.

c. The influence of surface roughness

Figure 7 summarizes the physics ensemble results with

respect to LSM, aggregated over three events (February

and October 2013 and May 2014) and representing

around 150 simulations in total. The boxplots are based

on physics ensemble MAEs and display their median

and first and third quartiles, with the whiskers identify-

ing the maximum and minimum values. A large spread

in MAE, such as that seen for TD and NoahMP,

indicates either more substantial sensitivity to the PBL

scheme and/or greater skill variation among events;

both are undesirable. Apart from a few outlying mem-

bers, the Noah LSM had less variable (but relatively

large) MAEs, while PX and RUC performed best in

these trials. The red line depicts average biases for the

LSMmembers, and it is seen that the bias was closest to

zero with the PX LSM.

The boxplot, however, obscures an interesting and re-

vealing finding. Figure 6 also shows results from the two

other events (4–6 October 2013 and 13–15 May 2014) for

FIG. 4. As in Fig. 3, but for (a) the physics and (b) Noah–YSU perturbation ensembles’ mean horizontal wind speed (shaded; m s21) and

potential temperature (contoured; K) fields, and (c) the physics and (d) Noah–YSU perturbation ensembles’ horizontal wind speed

(shaded; m s21) and potential temperature standard deviations (contoured; K).
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which multiphysics ensembles were made. Consistent

with the foregoing information, the errors clearly vary

systematically with LSM, and the PX–ACM2 configura-

tion remains one of the best choices in terms of

minimizing errors. Note, however, that the ordering of

LSMs with respect to skill shifts among the cases: for the

October 2013 event, the Noah LSM clearly resulted in

larger error than the other LSMs, with the Noah–YSU

member actually being the least skillful of all.

At first glance, this may appear to contradict the in-

formation shown in Fig. 7. However, note that unlike

NoahMP and TD, MAEs for the Noah subensemble

were relatively uniform among the three events, and

therefore the vertical extent of the Noah boxplot in

Fig. 7 is small. In contrast, the TD and NoahMP MAEs

varied more from event to event. TD, in particular,

performed worse than Noah in the February and May

cases but better for the October episode (Fig. 6).

This seasonal variation of forecast skill provided a

clue that helped reveal why the PX LSM performed best

among the five LSMs examined. The key difference lies

in the surface roughness lengths z0 applied to various

land-use types, especially MODIS land-use categories

6 and 7 (closed and open shrublands2) that constitute a

large (67.4%) fraction of the SDG&E network (see

Table 2). Most LSMs start with roughness information

provided in the LANDUSE.TBL and/or VEGPARM.

TBL tables in the WRF Model, although some schemes

subsequently make modifications. TD and NoahMP

used the default MODIS roughness length values de-

fined in the two tables, which vary abruptly from 0.01m

(November–April) to 0.06 and 0.05m (May–October)

for open and closed shrublands, respectively (Fig. 8;

Table 2). The Noah LSM internally creates an annual

cycle in z0 with more gradual transitions that is also

curiously shifted in phase from the default MODIS

values, with the lowest roughness (0.01m) in September

FIG. 5. Vertical cross sections taken west–east across WSY showing the ensemble mean (thick black line) and 61 standard deviations

(thin black lines) of the 4-h averaged horizontal 10-mwind speed (blue lines) for the first phase (1500–1900UTC) of the 15 Feb 2013 event

from the (a) physics and (b) Noah–YSU SKEBS ensembles. The same fields are also shown for the 1500–1900 UTC 14 May 2014 event

from the (c) physics and (d) Noah/YSU SKEBS ensembles. The gray-shaded area depicts topography, shown for reference only. Ap-

proximate locations of some SDG&E stations are indicated.

2 ‘‘Closed shrubland’’ is characterized by dense foliage cover

(70%–100%), while foliage for ‘‘open shrubland’’ is less dense

(30%–70%) (https://en.wikipedia.org/wiki/Shrubland).
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and the highest (0.05m for closed shrublands and 0.06m

for open shrublands) in April. In contrast, PX and RUC

assigned temporally constant and relatively high

roughness length values of 0.15 and 0.1m, respectively,

to both shrubland categories. Note that the specified z0
values used for a particular location are influenced by

model grid interpolation and possibly other factors.

As a test, we modified the Noah LSM to utilize the

same surface roughness values of each land-use type

employed by PX (Table 2), which meant removing

the seasonal cycle and increasing z0 values for most cat-

egories, especially the open and closed shrublands that

dominate the SanDiego County landscape. Themodified

Noah simulations, dubbed ‘‘Noah–YSU–z0mod’’ (Fig. 6),

were very competitive with respect to event- and

network-averaged bias and MAE, with near-to-zero

biases and much smaller MAEs (comparable to PX’s).

Note that the revised Noah LSM also produced a

temporally averaged airflow during the jump phase

for the February 2013 event (Fig. 3d) that closely re-

sembles that established by PX–ACM2 (Fig. 3a).

During this time period, TD and NoahMP presumed

the smoothest shrublands (z0 5 0.01m; Fig. 8) and

were unable to capture the jump (as shown for the

TD–YSU case in Fig. 3c). This leads us to the reasonable

conclusion that surface roughness is a principal control of

airflow on the lee slope, which may have implications

for improving operational wind forecasts overall and at

specific locations.

Thus, at least for our region of interest and present

model configurations, wind forecast skill using the Noah

LSM can be greatly improved by adopting roughness

lengths employed by the PX scheme. As the Noah

scheme has some advantages, especially with respect to

2-m temperature and dewpoint temperature forecast skills

(not shown), the revised Noah LSM, Noah–YSU–z0mod,

emerges as one of the most skillful configurations

FIG. 6. Scatterplots of network- and event-averaged 6.1-m sus-

tained wind bias vs MAE (both m s21) from the 48 physics en-

semble members for the (a) 14–16 Feb 2013, (b) 4–6 Oct 2013, and

(c) 13–15May 2014 episodes, color coded by LSM. Small black dots

in (a) show SKEBS perturbation ensemble members made for the

PX–ACM2 and Noah–YSU configurations, respectively. Runs

PX–ACM2, Noah–YSU, and Noah–YSU–z0mod are marked. For

members using the MYJ PBL scheme, the standard but cosmetic

recalculation of the near-surface winds was removed (see CF16).

FIG. 7. Boxplots summarizing physics ensemble MAE (m s21)

distributions stratified by LSM, displaying the median, first quar-

tile, and third quartile values, with the whiskers identifying minima

and maxima. The superposed red dotted line depicts their mean

biases (m s21).
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of all. For simplicity, however, the PX–ACM2 com-

bination remains the control model configuration

for the remainder of this study. Finally, we note

in passing that both versions of the topo_wind

option have been found to reduce the high wind

bias of the standard Noah–YSU configuration, but

generally resulted in underforecasted winds (cf.

Cao 2015).

4. Wind forecast bias analysis for individual
stations

This section utilizes a composite of six Santa

Ana events, adding the 29 April–1 May 2014, 23–25

January 2015, and 11–13 February 2015 events (Table 1)

to the three considered for the physics ensemble.

Again, each simulation is 54 h long and comparisons

with observations were performed hourly, so the

composite dataset consisted of 324 observation times,

initialization times having been excluded.

Figure 9a shows average forecast wind biases for the

composite at the 135 SDG&E stations common to all

six events in rank order. As with the similar figure

shown for the February 2013 event in CF16 (their

Fig. 10d), the average bias is nearly zero among the

stations, but systematic errors exist in that some loca-

tions are persistently either overpredicted (red) or

underpredicted (blue) with respect to the event-

averaged winds.3 The spatial distribution of the com-

posite biases (Fig. 10) reveals that some clustering is

evident, but stations with a wide range of biases can be

found in close proximity, such as in the region around

WSY that is highlighted in the inset at the top-right cor-

ner. This suggests that very localized conditions (e.g., a

single tree, a tiny hill), representing landforms not re-

solvable even on the 667-m grid utilizing the ;10-m

USGS database (cf. CF16), may be responsible for much

of these persistent biases. The locations of stations iden-

tified by name in Fig. 9a are also indicated in Fig. 10.

Station rankings for the observations and selected

simulations are combined in Fig. 9b. The station order-

ing is not necessarily the same for each, as this plot is

intended to compare the relative distributions of aver-

aged wind speeds across the network. The observed

distribution has a ‘‘hockey stick’’ shape with a blade

composed of eight stations (6% of the network) with

sustained winds greater than 9m s21. The standard PX–

ACM2 case (thick black line), with 667-m grid spacing

over much of the network, compares quite well with the

observations (red line), although its somewhat flatter

shape and shorter blade again mean that there was some

overprediction at sites with relatively slower wind

speeds to go along with the windiest locations that were

underforecasted. Shown for contrast are rankings from

simulations made at 10-km grid spacing for PX–ACM2

and Noah–YSU that overpredicted the winds nearly

everywhere, except for the few top wind locations. CF16

demonstrated that resolution influences the resolved

shape of the topography, and overly smooth resolved

terrain using a horizontal grid spacing larger than 2km

exaggerates the horizontal extent of the downslope

winds (see their Fig. 16).

An analysis of the source of the forecast biases is

presented in Fig. 11, in which each dot on the scatter-

plots represents an individual station. First of all, fore-

cast wind bias is not a function (coefficient of variation

R2 5 0.00) of the forecast wind strength itself (Fig. 11a),

at least when aggregated over the 324 hourly forecasts

for each station. However, forecast bias is systematically

related to (and negatively correlated with) the observed

wind, with R2 5 0.45 (Fig. 11b). As in CF16, which dis-

cussed the same issue with respect to the February 2013

TABLE 2. Default roughness lengths (m) employed by land surface schemes for MODIS land-use (LU) categories occurring in the

SDG&E network. Water areas of the 2-km nest are excluded.

MODIS

LU index

Land

fraction (%) PX

Noah

(February)

MODIS

(winter)

Noah

(October)

Noah

(May)

MODIS

(summer) Type

1 8.2 1 0.5 0.5 0.5 0.5 0.5 Evergreen needleleaf forest

2 0.7 0.9 0.5 0.5 0.5 0.5 0.5 Evergreen broadleaf forest

5 11.1 1 0.3 0.2 0.23 0.5 0.5 Mixed forests

6 8.2 0.15 0.03 0.01 0.02 0.05 0.05 Closed shrublands

7 59.2 0.15 0.04 0.01 0.02 0.06 0.06 Open shrublands

8 0.7 0.25 0.05 0.01 0.06 0.05 0.05 Woody savannas

9 0.7 0.15 0.10 0.15 0.1 0.1 0.15 Savannas

10 3.0 0.07 0.1 0.1 0.2 0.1 0.12 Grasslands

13 8.2 0.8 0.5 0.8 0.5 0.5 0.8 Urban

3 This is true for our topo_wind simulations as well (not shown),

so that option does not mitigate this issue.
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event (their Fig. 18), this relationship is partly de-

termined by the windiest locations, and the R2 drops to

0.25 (yet still statistically significant, as the simple linear

correlation is r520.5) when the top eight highest mean

wind stations are removed (not shown).

To improve forecast skill, we seek to identify and miti-

gate all possible errors. Beyond initialization issues and

shortcomings in physical parameterizations, which can be

sizable, some additional error sources can include factors

such as unrepresentative surface roughnesses as well as a

seasonal cycle in z0 that appears questionable for this

region. Very localized characteristics, including natural

small-scale terrain features and artificial obstacles that

can act to enhance or suppress windiness at a given lo-

cation, would represent errors that may be inherently

unavoidable and unfixable except perhaps through post-

processing. Here, we pursue the idea that as the network-

averaged bias is nearly zero, most (but not all) of the

fixable portion of the forecast bias has been addressed,

and what remains is dominated by unresolvable exposure

issues. We further posit that information regarding local

exposure can be derived from theGF, which is defined as

the gust divided by the sustained wind.

In this application, the GF was computed using com-

posite (324 h) averages for both quantities, thereby

representing a single value for each location characteristic

of Santa Ana episodes. Station GF is moderately (and

negatively) related to the average observed wind (R2 5
0.26, r520.51) such that faster wind stations tend to have

relatively smaller GFs (Fig. 11c). In contrast, GF is a fairly

good predictor (R2 5 0.48, r 5 0.69) of forecast wind bias

(Fig. 11d). The average GF among these stations is 1.78,

indicated in Fig. 11d with a vertical blue line, and ranges

from 1.29 [site Volcan Mountain (VCM); Fig. 10] to 2.55

[site Sunrise Highway (SRH); Fig. 10].

By way of explanation, we speculate that larger than

average GFs indicate locations that are relatively more

sheltered. As at least part of the gustiness represents

higher-momentum parcels being brought closer to the

surface by turbulent air motions, it is reasonable that gusts

would be somewhat less influenced by a station’s local

conditions than the temporally averaged sustained winds.

Therefore, anemometer exposure restrictions are antici-

pated to influence the sustained wind more than the gust,

resulting in larger GFs. In contrast, stations with smaller

GFs are presumed to have landform features (e.g., small

hillsides, tiny valley wind corridors) that help enhance the

sustained wind more than the gust, such that the ratio of

gust to wind is reduced. As a consequence, we interpret

GFs both larger and smaller than the all-station average as a

proxy for the influenceof localized and largely unresolvable

conditions.4

While most of the stations cluster close to the least

squares line, there is a subset of stations for which the

bias is less well explained by the GF, especially those

located well below the regression line (Fig. 11d). This is

part of a tendency for sites that are assigned larger

FIG. 8. Seasonal cycles of the default shrubland surface roughness length z0 (m) for each

LSM [red and black solid, Noah LSM open and closed shrublands; red and black dashed,

MODIS default (TD andNoahMPLSMs) open and closed shrublands; blue, RUCLSMopen

and closed shrublands; and orange, PX LSM open and closed shrublands].

4 The fact that the mesonet is homogeneous with respect to in-

strumentation, mounting height, and data-processing characteris-

tics may be crucial to this result.
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surface roughnesses to be more severely underpredicted

(Fig. 11e). While the overall relationship between bias

and z0 is not large (R
25 0.17, r520.41), note that of the

17 stations with z0 . 0.7m, only two [Julian (JUL),

which is forested, and El Monte (ELM), in an urbanized

area; Fig. 10] do not have a negative bias. Indeed, this

subset has an average forecast bias of 23.4m s21, while

it is 10.25ms21 for the remaining 118 stations. This

FIG. 9. (a) Sustained wind bias (m s21) for PX–ACM2 simulations, (b) sustained winds (red,

observed; black, PX–ACM2667m; dark gray, PX–ACM210km; and light gray,Noah–YSU10km;

m s21), and (c) gusts (red, observed; black, forecasted using PX–ACM2; m s21), all averaged over

six SantaAna events (seeTable 1), in station rankorderwith selected stations identified in (a), color

coded by sign of the bias. Only the 135 stations available for all six events are included.
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suggests that while network forecasts benefited from the

PX scheme’s assumptions regarding surface roughness,

the highest z0 assignments are probably excessive.

The 17 stations with roughness lengths exceeding

0.7m are identified with red markers in Fig. 11d. These

represent two basic land-use types: 11 are associated

with forests (categories 1, 2, and 5 from Table 2) and six

with urban land (category 13). Personal site inspections

and discussions with a meteorologist at SDG&E

(S. Vanderburg 2016–17, personal communications)

have reinforced the idea that at least some of the forest

assignments appear inappropriate or outdated, if only

owing to the effect of extensive wildfires (e.g., the 2003

Cedar fire and the 2007 Witch and other nearby fires)

that have significantly altered the landscape.

In postprocessing, we recomputed the winds for 10

forested locations (excluding JUL), presuming a more

moderate (and empirically selected) surface roughness

of 0.45m, which is more comparable to those employed

by the Noah LSM (Table 2) for these sites. This modi-

fication improved the 17-station subset’s average bias

from 23.4 to 20.6m s21 and raised the overall R2 from

0.48 to 0.56 (Fig. 11f). Some of these stations remain

outliers, and the names for the more obvious ones are

marked in the figure. These include VCM, Otay

Mountain (OTM), Sill Hill (SIL), and Lucky Five Ranch

(LFR), which are situated on hilltops or very close to

steep (and largely unresolved) ravines, which may play

significant roles in their relatively large sustained winds.

Further adjustments could be pursued, but the need is

not apparent and the benefits are likely small. These

z0-adjusted forecasts are used in the next section.

The least squares fit shown in Fig. 11f (which includes

the outliers) was used to predict forecast bias for the ob-

served GF, and the residuals from this model are shown

in Fig. 11g, plotted against the observed wind. In contrast

to Fig. 11b, no signal of the observed wind remains after

the bias explained by the station GF has been removed

(R25 0.02). This indicates to us that the GF variation from

the network mean serves as a useful proxy for local site ex-

posure issues, such that, after relatively minor adjustments

to z0 for a handful of sites, the systematic and persistent

forecast biases seen in Figs. 9a and 11b essentially reflected

unavoidable errors to be remedied in postprocessing.

5. A gust parameterization for the SDG&E
network and its stations

Numerical models of the present type do not resolve

short-period (;3 s) gusts, because they cannot directly

capture the turbulent motions that these wind bursts

represent. This is true even if the model employs a time

step on the order of a few seconds, as model filters will

still act to suppress variations with time scales of less

FIG. 10. Spatial distribution of six-event-average 6.1-m sustained wind bias (m s21), color

coded as indicated. The average bias over the entire SDG&Enetwork is around 0m s21. Inset

shows the subset of the 135 stations in the Santa Ysabel vicinity. The locations of stations

mentioned by name in the text and/or figures are identified.
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FIG. 11. Scatterplots of six-event-mean (a) forecast sustainedwind vs sustainedwind bias, (b) observed sustainedwind vs sustained wind

bias, (c) observed sustained wind vs observed GF, (d) observed station-averaged GF vs sustained wind bias, (e) PX–MODIS LSM

roughness length vs sustained wind bias, (f) observed station average GF (after high z0 station adjustment) vs sustained wind bias, and

(g) observed sustained wind vs GF-bias model residuals for 135 SDG&E stations. Each dot represents a station. A least squares fit (red

line) is shown in each panel for reference, with R2 values indicated. The vertical blue lines represent network-averaged values. (Units

are m s21 for winds, biases, and residuals; m for roughness lengths; and GF is nondimensional.)
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than several minutes. Because of this, it is most sensible

to compare model outputs to observed sustained winds

and construct a reasonable gust parameterization. In this

section, we pursue a simple gust model for individual

stations and the SDG&E mesonet as a whole.

a. Station wind and gust predictions

Figure 12a presents the relationship between ob-

served sustained winds and gusts for the six-event

composite dataset, each point representing an SDG&E

station’s values after averaging over the 324 hourly ob-

servations. The no-intercept least squares fit to the

entire dataset yields a slope (or GF) of 1.7 with an R2 of

0.89. This suggests that adequate forecasts of sustained

winds could result in skillful predictions of observed

gusts in a simple manner via a constant gust factor, that

being 1.7 in the present example. The relationship

between the composite-averaged forecasted versus ob-

served sustained winds is nearly 1:1 (Fig. 12b), despite

the previously discussed tendency to overforecast sites

with slower winds and underforecast those with stronger

average values. The systematic bias has mainly served to

increase the scatter (R2 5 0.62).

Using the average forecasted winds to predict the

observed gusts instead (Fig. 12c) also results in a slope of

very nearly 1.7, but with an even larger R2 (0.75) than

that associated with the relationship between forecasted

and observed winds. The noticeable decrease in scatter

occurred precisely because some of the systematic biases

in the sustained wind forecasts have been mitigated via

the tacit presumption of a uniform gust factor. Recall

that we have hypothesized that GFs higher than the

all-station average (1.7) indicate locations that are

relatively more sheltered (resulting in model over-

prediction of the sustained winds), and that sites with

smaller than average GFs have local features that

contribute to underprediction. The unresolvable local

exposure issues that made the forecasted winds either

too high or low have less impact when those same winds

are used to anticipate gusts, which are ostensibly less

influenced by those issues.

As a consequence, biased forecasts for the observed

sustained winds can be used to make unbiased estimates

of the observed gusts. This is demonstrated in Figs. 12d

and 9c, which now plot forecasted versus observed gusts.

The gust predictions were made by multiplying the

sustained wind prediction for each site by a single,

constant GF of 1.7, as suggested by Fig. 12c. There are

still errors that could possibly be decreased via revisions

to terrain and/or land-use characteristics, but again at

this point the benefits are likely too small to justify

the effort.

b. Network-averaged wind and gust predictions

Next, we pursue a very similar strategy to make

predictions of network-averaged gusts from network-

averaged sustained wind forecasts. Each point in

Fig. 13a now represents one of the 324 observa-

tion times from the six Santa Ana wind events. Re-

markably, after averaging over the 135-station

network, the relationship between the observed winds

and gusts has virtually no dispersion, with an R2 of

0.99 and a slope of 1.7. Each station has its own GF at

each point in time, which can vary for a variety of

reasons (see below), but it remains that when these

324 network-averaged wind and gust pairs are plotted,

there is no scatter.

This curious finding is not just a characteristic of

Santa Ana wind events, as illustrated in Fig. 13b, which

shows network-averaged winds versus gusts every

10min over 12 consecutive months. Again, each of the

51 940 points on the plot represents a wind and a gust

averaged over 135 stations at a single instant in time.

Obviously, this 1-yr period contains a wide variety of

weather conditions and surface wind directions, and

yet the slope (1.7) and the R2 (0.99) have remained

unchanged. At each station, the GF may shift with the

magnitude of the sustained wind, type of weather, and

time of day and year, but when these data are com-

bined into network averages, the variation is found

to vanish.

Why this result has been obtained is not entirely

understood. [This finding was first reported in Fovell

and Cao (2014), and Cao and Fovell (2015) and

Gallagher (2016) have demonstrated that this very low

scatter also occurs in other homogeneous observa-

tional networks, such as the Dugway Proving Ground

Mesonet in Utah, the NOAA/Air Resources Labora-

tory Field Research Division Mesonet in Idaho, and

the Delaware Environmental Observing System Mes-

onet.] It is noted that, unlike some other networks or

combinations of networks, the SDG&E mesonet is

nearly homogeneous with respect to instrumentation,

age of facilities, anemometer mounting height, and

station-siting philosophy. At a single station, the GF

can vary substantially with the sustained wind (e.g.,

FC17, their Fig. 3), but even at one site the variability

can be considerably reduced when the wind–gust pairs

are considered in bulk (not shown). The dispersion, as

measured by the R2 statistic, was already low, and this

is true at all sites in the mesonet. The network average

is then obtained by integrating over this collection of

station datasets, each with relatively low dispersion.

Perhaps this is simply a manifestation of ‘‘central ten-

dency,’’ given that the network is nearly static, with neither
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hardware nor station location changes over the period

under examination.

In any case, the no-intercept least squares fit between

the network-averaged observed and forecasted winds

over the six Santa Ana events yielded a slope of 0.99,

with a skillful R2 of 0.80 (Fig. 13c). The PX–ACM2

configuration was already shown to consistently produce

unbiased forecasts when averaged over the mesonet,

which naturally averages out the previously discussed

systematic biases. Applying a constant gust factor of 1.7

to these forecasted sustained winds to get predicted

gusts yielded a scatterplot (Fig. 13d) that is visually

comparable to Fig. 13c with respect to dispersion,

possessing a slope of 1.0 and the R2 being 0.82. Impor-

tantly, note that the network-averaged gust forecasts are

unbiased.

Finally, we apply this constant GF concept to make

predictions of network-averaged gusts for individual

SantaAnawind events. Figure 14 presents time series of the

observed (dotted lines) and forecasted (solid lines) winds

FIG. 12. Scatterplots of six-event-mean (a) observed event-averaged sustained wind vs observed event-averaged

gust, (b) observed event-averaged sustained wind vs forecasted event-averaged sustained wind, (c) forecasted

event-averaged sustained wind vs observed event-averaged gust, and (d) observed event-averaged gust vs fore-

casted event-averaged gust using a gust factor of 1.7 for the 135 SDG&E stations. Each dot represents a station. A

zero-intercept least squares fit (red line) and the 1:1 line (dashed gray) are shown in each panel for reference, with

slopes and R2 values indicated. (All units are m s21.)
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(black) and gusts (red) over the SDG&E mesonet for the

six Santa Ana episodes. Generally, the gust parameteriza-

tion captures the amplitude and temporal evolution of the

gusts for all six of the events quite well, especially the peaks.

Obviously, performance depends upon the sustained wind

predictions being correct in the first place. Gust over-

predictions such as the first peak of the April 2014 event

(Fig. 14a) and underpredictions such as the October 2013

(Fig. 14e), the February 2013 (Fig. 14f), and the January

2015 (Fig. 14d) events are consistent with the corresponding

sustained wind biases. However, all can be considered to

be rather skillful gust forecasts, especially for the May

2014 (Fig. 14b) and the February 2015 (Fig. 14c) episodes.

Averaged over the six events, the SDG&E network

forecasted gust bias is merely 20.2ms21, which is com-

parable to the averaged forecasted sustained wind bias

(;0.0ms21).

6. Discussion and summary

We seek to obtain skillful gust forecasts in San

Diego County during Santa Ana wind events. These

episodes are relatively frequent during the winter

half-year (Raphael 2003; Jones et al. 2010) and the dry

FIG. 13. Scatterplots of network-averaged (a) observedwind vs observed gust over the six events (324 observation

times), (b) observed wind vs observed gust for 1 yr (51 940 observation times), (c) observed wind vs forecasted wind

over the six events, and (d) observed gust vs forecasted gust over the six events. Each dot is a network average based

on 135 SDG&E stations. A zero-intercept least squares fit (red line) and the 1:1 line (dashed gray) are shown in each

panel for reference, with slopes and R2 values indicated. (All units are m s21.)
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(sometimes hot) winds contribute greatly to the fire

hazard (Rolinski et al. 2016). As models of the present

type cannot resolve gusts, this effort must start with

making sure sustained wind predictions are as accurate

as possible and then deducing gusts via an algorithm or

parameterization of some kind. We attempted to parti-

tion the forecast sustained wind bias into ‘‘fixable’’ and

‘‘unavoidable’’ components. The fixable part may be

addressed via the model configuration, including re-

finements of physical parameterizations, among many

other things, leaving the unavoidable portion to be

mitigated via postprocessing.

Utilizing hundreds of WRF simulations made for

CF16, FC17, and herein, and the high-density SDG&E

surface mesonet, we have demonstrated that the wind

speeds and flow patterns during moderately strong to

strong Santa Ana episodes are sensitive to horizontal

resolution, stochastic perturbations (cf. Berner et al.

2011), and model physics selections, especially the land

surface models (LSMs) that determine surface rough-

ness. The Pleim–Xiu LSM scheme emerged as the best

overall with respect to sustained wind forecast skill,

having a nearly zero bias when averaged over the net-

work and multiple events, largely because of its unique

treatment of surface roughness in the shrubland cate-

gories that dominate the west-facing slopes in the

SDG&E network. In particular, PX uses substantially

larger z0 values for those categories and holds themfixed

throughout the year, while most WRF simulations re-

sulted in positive wind biases as they treated the surface

as being too smooth. Altering other LSMs such as Noah

to mimic the PX roughness lengths improved their

MAE and bias scores, confirming this is the dominant

factor. This is important, because other land surface

FIG. 14. Time series of network-averaged observed (black dots) and predicted (red curves) 6.1-m sustained winds (black; m s21) and

gusts (red; m s21) for the (a)April 2014, (b)May 2014, (c) February 2015, (d) January 2015, (e) October 2013, and (f) February 2013 events

(see Table 1). The GF used to forecast gusts is 1.7, based on the network-averaged wind vs the network-averaged gust.
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treatments could provide superior temperature and

humidity reconstructions (cf. Cao 2015), which are cru-

cial within the context of Southern California fire

weather predictions (e.g., Rolinski et al. 2016).

It is intuitive that increasing the surface roughness

would slow down the winds, at least overall. It may also

change the nature of the downslope flow, in ways that

could be detectable even with limited (i.e., surface only)

observational data, thanks to the relatively dense

SDG&E mesonet. The hydraulic jump that occurred

during the first phase of the February 2013 episode is one

such example. The jumpwas consistently present only in

simulations having relatively rougher surfaces, although

it could occasionally emerge in configurations with

lower z0 values via stochastic forcing. The downslope

extent of strong surface winds is another, related ex-

ample. This was larger with LSMs specifying lower

roughness lengths and in these cases contributed to the

positive network-averaged wind biases.

Even a model configuration that yielded negligible

bias when averaged over multiple events and stations

was still found to possess systematic errors at individual

sites. These errors were shown to be inversely correlated

with the average observed wind: the model tended to

overpredict locales with weaker winds while under-

predicting speeds where measured winds were stronger.

Forecast sustained wind speed bias was also seen to be

correlated with, and proportional to, the observed gust

factor (GF), the ratio of the observed sustained wind

and gust. This is mainly true since the GF and sustained

wind are (negatively) correlated: sites with larger GFs

tend to have slower winds.

We interpreted the difference between a given sta-

tion’s GF and the network average (1.7 for the SDG&E

mesonet as a whole, with virtually no scatter or weather

dependence) as ameasure of very localized anemometer

exposure that cannot be captured even at reasonably

high spatial resolution and, thus, an unavoidable com-

ponent of the bias. Sites with obstacles or landforms that

tend to slow the temporally averaged sustained wind

more than the transient, impulsive gusts would result in

GFs that are larger than the network average, and its

winds would be more likely to be overpredicted. In

contrast, stations having local features that help enhance

the winds relative to the gusts would have lowerGFs and

be underpredicted. In practice, both were found to be

the case, as after using the observed GF to predict sus-

tained wind forecast bias, the remainder of the bias was

independent of observed wind speeds.

The gust algorithm that emerged from this study is

extremely simple: we multiply sustained wind forecasts

at each site by the network average GF of 1.7. Gust

factors vary in space and time, but gust forecasts made

this way had more skill than the sustained wind pre-

dictions. This was because using a constant value partially

mitigated the unavoidable local exposure bias discussed

above. Applying a constant value of 1.7 to the network-

averagedwind forecasts also proved to be beneficial, which

we demonstrated for the six Santa Ana events under ex-

amination. Averaging the sustained wind predictions over

the network already filtered out the exposure bias.

Certainly, a more sophisticated treatment of predicting

gusts could be designed, but we are encouraged that an

attractively simple gust parameterization could actually

improve upon already skillful sustained wind forecasts in

this region. That being said, we emphasize that the spe-

cific 1.7 factor is a consequence of SDG&E mesonet de-

sign factors including (and not limited to) mounting

height and averaging intervals, and the optimal multiplier

will certainly be different for networks with other char-

acteristics. We also caution that our study area experi-

ences little in the way of convective weather, and so a gust

parameterization this simple may not work well in areas

where thunderstorms are common.
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