PBL single column model (SCM) demonstration (Spring 2024) 1 _____ 2 3 • preliminaries _____ 4 5 • Make a directory called SCM in your lab space, move into it, and copy into it: cp \$LAB/SCM_snow/run_WRF_SCM_snow.ipynb. 6 7 8 • In ARCC Jupyterlab, spawn a process on Snow, NOT BATCH 9 \rightarrow if you are NOT given the drop-down menu 10 • go to File > Hub Control Panel, then select Stop My Server • then select Start My Server when it appears 11 • Select "Snow 4 cores 32 GB 8 hours" (the smallest amount of resources on 12 13 offer) 14 • Move to your SCM directory and launch the notebook 15 _____ 16 17 • Part 1: running SCM with the YSU PBL scheme -18 19 * In this part, we are all running the same configuration, consisting of the YSU PBL scheme (bl pbl physics = 1) and the standard Monin-Obukhov surface layer scheme 20 21 (sf_sfclay_physics = 1) 22 23 * In Cell #2 there is an opportunity to change your name and the name of your simulation. This will be used in Part 2. 24 25 26 * Execute the notebook and observe the results this physics combination produces. 27 _____ 28 • Part 2: contributing to PBL/surface layer class ensemble 29 30 _____ 31 * You will be assigned a unique physics configuration * Edit Cell #2 for your surname and simulation name 32 * Edit Cell #4 for your assigned configuration 33 34 * Copy the *png files that are named with your surname to \$LAB/SCM_ensemble/ 35 36 _____ 37 • FINISHING UP YOUR JUPYTERLAB SESSION 38 _____ 39 * Make sure you halt your notebook execution. 40 * I also strongly recommend stopping your server (File > Hub Control Panel)