"Storm of the Century" (SOC) experiment (Experiment #4)

ATM 419/563 - Fovell - Spring 2021

Workspace

• Create a directory called SOC.

```
• Copy $LAB/SOC/SETUP.TAR into that directory and unpack. TAR file contains:
{make_all_links.sh, submit_real, submit_wrf, submit_ungrib,
submit_metgrid, submit_geogrid, namelist.input,
namelist.wps, control_file.2D, control_file.real,
compare.gs, cut_east.gs, nesis.ncl, ncl_slp_narr.ncl,
ncl_slp_nnrp.ncl, analyze.sh, read_wrfinput.py}
```

Domain setup - namelist.wps file pre-configured:

- 03-12-1993 at 12Z to 03-15-1993 at 00Z (2.5 days)
- Domain is 85 x 56 points, 90 km resolution
- Lambert projection
- Reference latitude: 39.5°N
- True latitudes: 30 and 60°N [now we're spreading them apart]
- Reference and standard longitudes: 100°W
- Use plotgrids.ncl to inspect domain and run geogrid.exe
- Use ncview On geo_em.dO1.nc Or max.csh to inspect MAPFAC_M extrema

Initialization data source

- NNRP initialization data: \$LAB/DATA/NNRP_199303/*
- Make sure you are using **Vtable.NNRP** as your Vtable

• If you need new or replacement Vtables, get them from \$LAB/SOFTWARE/VTABLES

WPS and WRF real.exe for initial run RUN01

- Link to NNRP files
- In the &ungrib and &metgrid sections, call your output files 'NNRP'
- Do srun -p snow ungrib.exe and srun -p snow metgrid.exe, as usual

[you can submit the batch scripts, but these run **very quickly**, especially ungrib, because the resolution of NNRP is so **very low**]

- Check on num_metgrid_levels. Note the number of soil levels!
- The namelist.input file is **pre-configured** for RUN01. This includes
 - time_step = 240 sec
 - 51 vertical levels
 - p_top_requested = 1000 (10 mb model top)
 - mp_physics = 3
 - LW and SW radiation option 1, with 10 min time step (radt)
 - MYJ PBL and surface layer (pbl = sfclay = 2)
 - Noah LSM (sf_surface_physics = 2) with 4 soil layers
 - Cumulus option 3 in both domains, with 0 min cudt time step (standard for Grell schemes)
 - max_dom = 1
 - interval_seconds = 21600
 - 6-hourly outputs will be written to a single wrfout file

• The namelist.input file has a new option: **all_ic_times = .true.**. See PPT slide 12.

• The namelist.input has two new sections: **&fdda** and **&stoch**. See PPT slides 26, 27, 30, and 35.

• Submit the submit_real script.

• This will create 11 files called wrfinput_d01*, one for each 6-hourly period within the simulation time window. All times are available owing to the all_ic_times = .true. switch. When the real program has completed, concatenate these 11 files with:

ncrcat wrfinput_d01* SOC_NNRP_reanalysis.nc

• Use the **control_file.real** script to create GrADS files. Call the outputs "**nnrp_reanalysis**".

 This file contains the <u>NNRP reanalysis fields, interpolated to</u> <u>the WRF grid</u>, every 6 h during simulation period. All times are available owing to the all_ic_times = .true. switch. This creates a GrADS file consisting of the NNRP reanalysis, interpolated to our WRF grid, for easy comparison with our WRF simulations.

• Open **nnrp_reanalysis** and do **step.gs slvl 1 11 4** to look at evolution of SLP field in NNRP reanalysis over the 11 available times during the simulation period.

• See PPT slide 13 for NNRP SLP field at 18Z on March 13 (and commands needed to make that field).

WRF run and analysis of RUN01

• Submit the submit_wrf script. This makes your run RUN01 output. Six-hourly output is stored into a single file: wrfout_d01_1993-03-12_12:00:00

• **control_file.2D** creates a GrADS file from your wrfout file, at the same times available in "**nnrp_reanalysis**" created above. Just the 2D fields are retained. Call it "**RUN01**".

• The cut_east.gs script windows into the eastern part of the US

• Use **step.gs slvl 1 11 4** to track cyclone as it develops in the Gulf and moves up the east coast

• With TWO files open (**RUN01.ctl** and **nnrp_reanalysis.ctl**), the GrADS script **compare.gs** will superimpose SLP files at the current time. The second file opened will be color shaded/contoured and first will be superimposed with thick contours.

- sett6
- cut_east.gs
- compare.gs
- [this compares SLP fields in east part of domain at 18Z13MAR1993. See PPT slides 16 and 17.]

• The script analyze.sh calls two NCL scripts and computes NESIS and sea-level pressure root-mean-square error (RMSE SLP) relative to the NNRP reanalysis. It requires a WRF output file called wrfout_d01_1993-03-12_12:00:00. Execute the script below, and in the output note the NESIS and RMSE SLP

- analyze.sh

• If it works properly, analyze.sh writes out a NESIS value and an RMSE SLP value to the screen. For RUN01: **RMSE SLP = 2.01 mb per gridpoint.** See PPT slide 20.

FDDA (grid nudging: regular and spectral versions)

• Edit namelist.input and set **grid_fdda = 1**, **0**. This turns on regular grid nudging in D1 (the only domain).

• Redo submit_real (**NECESSARY!!**), check output. In addition to wrfinput_d01, this creates a file called **wrffdda_d01**. Then submit_wrf.

- Use control_file.2D to create GrADS file **RUN02**
- Slide 29 shows RUN01 and RUN02's SLP fields at t=6 superimposed [open RUN01, then RUN02, set t 6, cut_east.gs, compare.gs]
- Execute analyze.sh script. **RMSE SLP = 1.74 mb per gridpoint.**

• **OPTIONAL:** try grid_fdda = 2, 0, activating *spectral* grid nudging. Do real and WRF and analyze.sh. Call it **RUN03**. See slides 30-31.

SKEBS (stochastic backscatter perturbation scheme)

• SKEBS infuses random noise during the run, controlled in the &stoch namelist section, and is activated by setting skebs = 1. Boundary conditions ALSO perturbed if perturb_bdy = 1.

• WARNING: Even if skebs = 0, perturbations are still active if perturb_bdy = 1. So, once &stoch is added, turning off perturbations requires setting skebs = 0 AND perturb_bdy = 0.

- Homework (EXP04): redo RUN01 with SKEBS active
 - make sure grid_fdda = 0. FDDA OFF.
 - In the &stoch section, turn SKEBS [skebs = 1] and perturb boundaries [perturb_bdy = 1] on.
 - Set nens to your assigned value (see PPT slide 36).
 - Submit the real and wrf jobs again, and execute analyze.sh.
 - Report NESIS and error values with respect to NNRP and NARR for your nens settings to us by email. These are three separate runs, made by changing the value of nens.
 - You do NOT need to re-run real.exe after changing nens. **BUT**, **do rerun real.exe after turning fdda off.**
 - Google Docs spreadsheet for Experiment 4
 - Link also on slide 36