* Exploring microphysics options	
Move into your SQUALL	directory.
• Edit your namelist.input	to set mp_physics to your assigned option (see PPT)
 You may also need to ch 	nange the value for hail_opt
mp_physics	= ##
\$ srun -p snow ideal.exe	
\$ srun -p snow wrf.exe	
 Unpack your simulation, 	using w2g and control_file.ensemble [NOTE THIS!!!]
 Name your file mp## wh 	ere ## is your microphysics option.
 If your option is < 10, us 	e leading zero (e.g., mp02, or mp07)
 If you are using mp=6 or 	r 16 with hail, call the runs mp66 and mp77, respectively
\$ w2g control_file.ensem	ble mp##
 Copy your mp##.ctl and 	mp##.dat files to \$LAB/SQUALL/
* GrADS ensemble dimen	sion (after all runs are completed/processed)
GrADS has an ensemble	dimension that can streamline looking at a set of related
 experiments. <u>The probl</u> 	em is the files have to have identical ctl files .
• In our case, different mid	crophysics schemes output different hydrometeor arrays
 (as many as 17 [!]: mixi 	ng ratios for cloud, ice, rain, snow, graupel and hail, and
 number concentration 	variables for some or all of those species)
• Our ensemble will only c	onsider schemes that produce OCI OUD and ORAIN at a
minimum. Some schemes	also produce OICE, OSNOW, OGRAUPEL, or OHAIL but we
won't archive that even if	they are computed
,	, ,
• So control_file.ensemble	e ONLY outputs those microphysics-related hydrometeor
fields even if the scheme p	produces others

45 • Move into my SQUALL directory, where the microphysics ensemble members are 46 \$ cd \$LAB/SQUALL 47 48 • Launch GrADS and open mp ensemble.ctl 49 50 Using uthetap.gs, wthetap.gs: visualize final time U or W and perturbation theta fields 51 for some members. Feel free to explore more later! 52 53 # 1st ensemble member: Purdue Lin (mp=2) examined in Part 1 set e 1 54 uthetap.gs 55 # NSSL's version of Purdue Lin (mp=21) set e 14 56 uthetap.gs *#* note difference 57 set e 17 # Thompson with aerosol (mp=28) 58 *#* note difference uthetap.gs 59 set e 2 # Kessler scheme (no ice species, mp=1) 60 uthetap.gs # note difference 61 62 # WSM6 [qc,qi,qr,qs,qg, single moment, mp=6] set e 4 63 # W and perturbation potential temperature wthetap.gs 64 # WDM6 [qc,qi,qr,qs,qg, double moment, mp=16] set e 10 65 wthetap.gs # this version is producing pre-squall convection 66 set e 16 # WDM7 [qc,qi,qr,qs,qg, plus hail, double moment, mp=26] 67 wthetap.gs # pre-squall convection absent again 68 69 # back to Purdue Lin (essentially the oldest ice microphysics scheme) set e 1 70 uthetap.gs 71 set e 22 # the incredibly expensive bin microphysics scheme (mp=32) 72 uthetap.gs # did all of that extra computational work really matter? 73 # the somewhat less expensive version of the bin scheme (mp=30) set e 21 74 uthetap.gs # what the heck? 75 76 • A Hovmoller diagram for near-surface temperature, except the vertical axis is the 77 • ensemble dimension. Identify leading edge of cold pool and how it varies among 78 • members. On vertical axis, numbers = order, **numbers** ≠ mp scheme 79 80 reset 81 set t last # sets last available time 82 set z 1 # sets range to all ensemble members 83 set e 1 last 84 set x 1 201 85 set xaxis 0 400 50 86 # near-surface temperature (deg. C) d tc draw ylab member number not scheme number 87 88 draw xlab x (km)

89 90 91 92	• A Hovmoller diagram for ensemble precipitation. This plots rainnc , or total precipitation received at the surface accumulated to the time selected, in millimeters. (Despite the name, rainnc <i>also</i> includes precipitation in the form of snow, graupel, or hail, if any. Also, it <i>only</i> includes precipitation from the microphysics scheme, not the
93 94	cumulus scheme, which is not being used here anyway.)
95	reset
96	set t last
97	set z 1
98	set e 1 last
99	set x 1 201
100	set xaxis 0 400 50
101	set black 0 0
102	
103	d rainnc # total precip (including frozen), in mm
104	draw ylab member number not scheme number
105	draw xlab x (km)
106	
107	• Max precip accumulations for each ensemble member. Note substantial variation.
108	(100% difference from weakest to strongest precip producers. Note also bin schemes
109	tend to produce a lot less precip than most bulk schemes. Are bulk schemes overdoing
110	it?)
111	
112	C
113	set z 1
114	set x 1
115	set t last
116	set e 1 last
117	set vrange 0 300
118	d max(rainnc,x=1,x=201)
119	draw xlab ensemble member
120	
121	• A hazard of squall lines is straight-line winds associated with descended rear inflow
122	currents. This plots maximum near-surface U for each ensemble member at final time. I
123	might want to look at the max over a set of times, owing to small-scale temporal
124	variability, but which schemes are indicating the largest and smallest wind hazards?
125	
126	c
127	set z 1
128	set x 1
129	set e 1 last
130	set vrange 0 16
131	d max(u,x=1,x=201)
132	

- evolution of total domain precip RAINNC over time, for 22 ensemble members. Which
- 134 schemes produce the most and the least rain?
- 135
- 136 reset
- 137 set x 1
- 138 set z 1
- 139 set t 1 last
- ESTEP from e=1 to e=22, vrange 0-3000 == total precip range of 100%!
- 141 estep.gs tloop(sum(rainnc,x=1,x=201)) 1 22 0 3000
- 142
- 143 explore more! (end of Part 2)
- 144
- 145
- 146
- 147