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ABSTRACT

Prognostic equations are proposed for use in gridpoint models for the purpose of providing Lagrangian
information without the need for computing Lagrangian trajectories. The information provided by the proposed
methods might lead to improved representations of microphysical conversion processes. For example, the pro-
posed methods could help improve the timing and location of the onset of precipitation in cloud models.

1. Introduction

We propose Eulerian form, prognostic equations to
predict the Lagrangian age and displacement of parcels
experiencing a condition or a physical process in grid-
point models. In addition, an Eulerian form, prognostic
equation for the time-weighted mean of a variable, pro-
cess, or condition is proposed as well. Our approach is
novel in that Lagrangian information in an Eulerian
gridpoint model is shown to be available without ex-
plicitly computing Lagrangian trajectories. We suggest
that information available from these might be very use-
ful for improving various parameterizations of micro-
physical processes in Eulerian models. While the meth-
ods we propose are exceedingly simple, they have not
been used previously for improving microphysical par-
ameterizations or for other purposes in meteorology, at
least to our knowledge.

Most multidimensional, Eulerian cloud and meso-
scale models incorporate various complex microphys-
ical parameterization schemes to represent bulk hy-
drometeor characteristics and changes (e.g., Wisner et
al. 1972; Koenig and Murray 1976; Cotton et al. 1982,
1986; Lin et al. 1983; Ferrier 1994). The Eulerian na-
ture of these models has resulted in the use of micro-
physical parameterizations that depend on local grid-
point conditions. An unsolved problem in applying
some of these parameterizations is that the conversion
of one hydrometeor species to another typically does
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not commence, at least in the atmosphere, until a suf-
ficient ‘‘aging’’ period has transpired given necessary
conditions. By this we mean that there are some phys-
ical processes that must occur for certain periods of
time before the conversion parameterizations repre-
senting these processes should be activated. Typically,
though not always, this implies a nonlocal nature to
the physical processes. Stated simply, microphysical
parameterizations in Eulerian models fail to explicitly
account for the Lagrangian history of the growth of
cloud and precipitation particles.

An example of a microphysical process that depends
on a certain ‘‘aging’’ period, given necessary condi-
tions, is the transformation of cloud droplets to rain-
drop-sized hydrometeors (e.g., Cotton 1972; Cotton
and Anthes 1989). The need to account for the relevant
physics of this transformation in a simple manner for
bulk microphysical models has resulted in the devel-
opment of several autoconversion parameterizations
(e.g., Berry 1968; Kessler 1969; Simpson and Wiggert
1969; Cotton 1972; Manton and Cotton 1977; Koenig
and Murray 1976; Pruppacher and Klett 1981; Ziegler
1985). The physics represented by these parameteri-
zations includes that diffusional growth produces a few
droplets large enough to grow by collisional growth.
The collisional growth rates of these larger drops in-
creases with increasing drop size, which leads to the
production of raindrops. The physical problem of au-
toconversion is complicated by the fact that diffusion
tends to narrow cloud-drop distributions. A realistic
autoconversion scheme needs to account for the phys-
ical processes that lead to distribution widening so that
coalescence growth can become significant. Arguments
have been made that larger droplets (i) might be pro-
duced as a result of isolated regions of higher super-
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saturations that could promote rapid diffusional
growth; (ii) might be provided from turbulent mixing
of larger droplets from above; or (iii) could be provided
by giant nuclei. Other arguments have implicated the
importance of entrainment and successive small ther-
mals. Cotton (1972), and Cotton and Anthes (1989)
emphasized that one of the problems with autocon-
version parameterizations developed thus far is that
while some attempt to imply an implicit ‘‘aging’’ time
for a droplet spectrum to widen sufficiently by diffu-
sion and collisions to produce larger droplets, they all
fail to explicitly account for the ‘‘aging’’ time required,
among other factors,1 for precipitation-sized particles
to form. As a result many autoconversion schemes pro-
duce rainwater too soon and as a result too low in a
cloud (e.g., Simpson and Wiggert 1969; Cotton 1972).
Overly mature drops form assuming a constant drop
distribution intercept or size can contribute to the prob-
lem. In an attempt to correct this problem, Cotton
(1972) used a one-dimensional Lagrangian model to
develop an autoconversion parameterization scheme
that incorporated the age of a parcel with cloud drops
in it. However, Cotton’s autoconversion parameteriza-
tion philosophy has not been used in his three-dimen-
sional Eulerian cloud model (Manton and Cotton 1977;
Cotton and Tripoli 1978; Tripoli and Cotton 1980; Cot-
ton et al. 1982; Cotton et al. 1986; Flatau et al. 1989),
or any other similar model known to the authors, be-
cause of computational cost and complexity in apply-
ing it in multidimensional Eulerian models. Tripoli and
Cotton (1980) stated that a possible consequence of
ignoring a time delay in an autoconversion scheme
could make simulations of, for example, the weak-echo
region in intense convective updrafts difficult if not
impossible. As mentioned later, there are other similar
problems with potentially important consequences
when considering the ice phase.

The proposed methods are explained and developed
in section 2 of this paper. Next, results using these meth-
ods in a simple idealized model and a three-dimensional
cloud model are described in section 3. A summary,
including a short discussion on the potential for the use
of the proposed methods with other microphysical par-
ameterizations, is provided in section 4.

2. Proposed method

There are a couple of ways to attempt to include
Lagrangian information, such as age of a condition or
physical process, in an Eulerian model. First, Lagran-
gian parcels could be released at every grid point and
every time step as required for the duration of a sim-
ulation. While this sounds simple and effective, the

1 Factors that could be considered important in the transformation
of cloud drops to raindrops include water content, droplet concen-
trations, distribution dispersion, aerosol concentrations, etc.

memory and computational needs would be prohibitive,
and the bookkeeping and remapping of all of the tra-
jectories would be impractical. Alternatively, Lagran-
gian back-trajectories could be computed from each grid
point at each time step, assuming a constant or steady-
state time tendency. However, significant errors would
be admitted owing to the nonsteady conditions that exist
in most cloud systems.

To surmount the difficulties with the methods men-
tioned above, a simple means is sought for use in Eu-
lerian models to predict the approximate Lagrangian
‘‘age’’ of a process or condition of parcels passing
through grid points without explicitly computing La-
grangian trajectories. To explain the proposed method,
suppose that the ‘‘age’’ t of a condition in parcels is
required, such as the time since cloud droplets are first
produced in the parcel. Following the motion of the
parcels, the age of the cloud parcel could be accumulated
at each time interval when the mixing ratio of cloud
droplets is nonzero or exceeds a specified threshold. The
goal is to represent the essence of this aging process in
an Eulerian model at each grid point where the condition
is met.

Consider a prognostic equation for the age t of a
condition in parcels passing through grid points as a
function of x, y, z, and t,

dt ]t ]t ]t ]t
5 1 u 1 v 1 w 5 c, (1)

dt ]t ]x ]y ]z

where x, y, z, and t are the Cartesian coordinates and
time, respectively; and c is either equal to 1 when the
condition is met or 0 when it is not (c can be thought
of as the Heaviside step function). When c 5 0 (e.g.,
there is no cloud), t could be set to 0 (age should be
zero as the cloud has all evaporated), depending on the
specific application. Integrating (1) from the initial
times when the condition is first met gives the ap-
proximate ages of the condition of the parcels. As with
Lagrangian trajectories, calculation and interpretation
of Lagrangian information from (1) in flows with
subgrid turbulence must be made with caution. Note
that no information is provided by (1) concerning
where parcels have been or where they originated, al-
though the origin of parcels can be predicted by in-
tegrating equations for x, y, and z as is done for t using
(1) (discussed below). The proposed method predicts
only the Lagrangian age of a condition associated with
parcels as they pass through grid points, whereas in
the Lagrangian framework the locations and conditions
of parcels are predicted as a function of time following
their motion.

Next, the x, y, and z displacement of parcels from
where a physical condition or process first occurred or
began also can be predicted in an Eulerian model by
integrating the definition of velocity in an Eulerian
framework:
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TABLE 1. In this table, w (m s21) is vertical motion (constant in
time), qc is cloud content (constant in time), t is the age of the
condition that there is cloud in parcels as they pass through a grid
point, and q̄c is average cloud water mixing ratio that parcels have
experienced as they pass through a grid point. The results below
represent solutions to Eqs. (1) and (2).

Level w qc

t @
5 s

t @
75 s

t @
150 s

q̄c @
5 s

q̄c @
75 s

q̄c @
150 s

10
9
8
7
6

10.0
10.0
10.0
10.0
10.0

9.0
8.0
7.0
6.0
5.0

5.0
5.0
5.0
5.0
5.0

72.7
69.6
64.6
57.7
59.2

90.0
80.0
70.0
60.0
50.0

9.0
8.0
7.0
6.0
5.0

5.6
4.7
3.9
3.2
2.6

4.5
4.0
3.5
3.0
2.5

5
4
3
2
1

10.0
10.0
10.0
10.0
10.0

4.0
3.0
2.0
1.0
0.0

5.0
5.0
5.0
5.0
0.0

39.8
30.0
20.0
10.0

0.0

40.0
30.0
20.0
10.0

0.0

4.0
3.0
2.0
1.0
0.0

2.0
1.5
1.0
0.5
0.0

2.0
1.5
1.0
0.5
0.0

dj ]j ]j ]j ]j
5 1 u 1 v 1 w 5 uc

dt ]t ]x ]y ]z

dc ]c ]c ]c ]c
5 1 u 1 v 1 w 5 vc

dt ]t ]x ]y ]z

dz ]z ]z ]z ]z
5 1 u 1 v 1 w 5 wc, (2)

dt ]t ]x ]y ]z

where j, c, and z are the parcel displacements in the x,
y, and z directions. As with (1), c can be thought of as
acting as the Heaviside step function for the condition
or process. The integration of these equations are dis-
cussed later to help show that the results from (1) are
consistent with trajectory results.

Now, (1) can be used to derive a simple expression
to predict, for example, the time-weighted mean of
cloud water mixing ratio q̄c that parcels have experi-
enced as they pass through grid points. Information
about q̄c might be much more representative for indi-
cating the potential for autoconversion rather than the
value of cloud water mixing ratio at a grid point at a
given time. Time weighted means of other variables or
conditions also might be useful for other microphysical
parameterizations. First, consider the definition of q̄c

following the motion in a Lagrangian parcel where t is
used as a bound on the integrals and t9 a dummy variable
in the integration of qc(t9):

t

q (t9) dt9E c
t

0 1
q̄ 5 5 q̄ (t9) dt9. (3)c E ct t 0dt9E

0

A prognostic equation for q̄c in an Eulerian framework
can be found by substitution of (3) into the total deriv-
ative for q̄c

t tdq̄ d 1 dt d 1c 5 q (t9) dt9 5 q (t9) dt9E c E c[ ] [ ]dt dt t dt dt t0 0

t1 1 q q̄c c5 q (t) 2 q (t9) dt9 5 2 , (4)c E c2t t t t0

which permits

dq̄ ]q̄ ]q̄ ]q̄ ]q̄ q q̄c c c c c c c5 1 u 1 v 1 w 5 c 2 . (5)1 2dt ]t ]x ]y ]z t t

The value ]q̄c/]t is the local time rate of change of q̄c

of the local rate of change of the time-averaged cloud
water mixing ratio. Note the value ]q̄c/]t is not an av-
erage in the Eulerian sense but rather time weighted in
Lagrangian viewpoint with regards to the value of t,
which is predicted.

Even though the behaviors of (1) and (5) are probably
obvious, they are demonstrated, initially, using a very
simple and idealized model. Assume a column of air with
a vertical velocity w equal to 10 m s21 at all of 10 levels,

which are 100 m apart. Also assume that cloud water
appears instantaneously at the initial time at levels 2–10,
and the amounts remain constant in time. Solutions are
obtained to (1) and (5) by using forward-in-time, up-
stream-in-space differences, and integrating them with a
time step of 5 s for 150 s. The results at 5, 75, and 150
s are shown in Table 1. After one time step, the age is
equal to the time step (5 s) at each level in the cloud,
and the mean cloud content is equal to the actual cloud
content as the cloud instantaneously appears at the initial
time. After 150 s, the integration provides solutions that
have converged to the exact solution. The behavior of
(2), though not shown for this example, is similar in that
the analytic solution is readily obtained.

3. Application and discussion

To further demonstrate the proposed method, one of
the deep convective cloud simulations presented in
Klemp and Wilhelmson (1978; hereafter KW78) are re-
peated. The simulation chosen assumes 10 m s21 of shear
in the u wind over a depth of 3 km in lower atmosphere.
A spheroidal thermal perturbation placed in the center of
the model domain at the initial time is used to initiate
convection. These initial conditions result in a simulation
of a storm that is symmetric about the center of the do-
main in the north–south direction. The three-dimensional
cloud model used for the experiments described in this
paper is briefly described in Straka and Anderson (1993).
The model is set up to emulate the KW78 model. In-
cluded in the model are prognostic equations for the three
momentum variables, potential temperature, pressure,
turbulent kinetic energy, water vapor, and any number of
other hydrometeor species. In addition, (1), (2), and (5)
are included in the model to predict the age of the con-
dition that cloud droplets are present in parcels, the dis-
placement from where the condition is first met in parcels,
and the mean cloud water content in parcels that pass
through each grid point. The microphysical parameter-
ization is similar to that described by KW78 and does
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FIG. 1. Fields of (a) cloud mixing ratio qc (contour interval of 0.25
g kg21); (b) cloud age t (contour interval of 120 s starting at 60 s);
(c) mean cloud mixing ratio q̄c (contour interval of 0.25 g kg21); and
(d) rain mixing ratio qr (contour interval of 0.5 g kg21) in x–z cross
sections through the center of the domain (y 5 12 km) at 16 min.
Wind vectors are included on the plot of cloud age. The large vector
in the upper-left corner represents 30 m s21.

FIG. 2. Fields of (a) cloud mixing ratio qc (contour interval of 0.25
g kg21); (b) cloud age t (contour interval of 120 s starting at 60 s);
(c) mean cloud mixing ratio q̄c (contour interval of 0.25 g kg21); and
(d) rain mixing ratio qr (contour interval of 1.0 g kg21) in x–z cross
sections through the center of the domain (y 5 12 km) at 24 min.
Wind vectors are included on the plot of cloud age. The traces of
two trajectories, initiated at 960 s, also are indicated, with the circles
indicating the trajectory positions every 60 s.

not consider ice processes. The source and sink terms
include autoconversion of cloud water to rainwater, col-
lection of cloud water by rainwater, and evaporation and
vertical flux of rainwater. A saturation adjustment scheme
accounts for the condensation and evaporation of cloud
droplets.

Fields of cloud mixing ratio qc, cloud age t, mean
cloud mixing ratio q̄c, and rain mixing ratio qr in x–z
cross sections through the center of the domain (y 5 12
km) at 16 and 24 min are shown in Figs. 1 and 2, re-

spectively. Velocity vectors are included on the plots of
cloud age. The cloud water fields in Figs. 1a and 2a show
maximum cloud contents in the regions where updrafts
are a maximum. By 24 min, substantial amounts of the
cloud water contents have been accreted by rain. At both
times the values of cloud age, shown in Figs. 1b and 2b,
are a minimum, not surprisingly, where updrafts are a
maximum: t increases from 0 at cloud base to 540 s
surrounding the updraft summit. At 24 min, cloud ages
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FIG. 3. Fields of (a) cloud mixing ratio qc (contour interval of 0.25
g kg21); (b) cloud age t (contour interval of 120 s starting at 60 s);
(c) mean cloud mixing ratio q̄c (contour interval of 0.25 g kg21); and
(d) rain mixing ratio qr (contour interval of 1.0 g kg21), in x–z cross
sections through the center of the domain (y 5 12 km) at 24 min in
simulation with q̄c used in the autoconversion parameterazation. Wind
vectors are included on the plot of cloud age.

are greater than 540 s in a small region upwind (left) of
the updraft and greater than 1000 s downwind (right) of
the updraft in the upper-level outflow region. The max-
imum cloud age at 24 min is about 1050 s. The first cloud
formed at about 300 s. The overall structure of the q̄c

fields shown in Figs. 1c and 2c appears similar to the qc

fields. At 16 min, amounts of q̄c at any grid point typically
are about 30%–60% of the amounts of qc. However, by
24 min, maximum values of q̄c are up to 75% of the
largest values of qc. And where rain has rapidly removed
much cloud water by accretion, q̄c can exceed qc by small
amounts for a short time. It should be noted that the
autoconversion scheme used generally produces small
amounts of rain. It is accretion that produces the larger
amounts of rain, even at early times. However, cloud
amounts to be accreted are small at early times.

An additional experiment was done using q̄c instead
of cloud water in the autoconversion parameterization.
The results show some differences as should be ex-
pected. Some differences are that the mean cloud con-
tent above the autoconversion threshold (1 g kg21) is
limited to the upper parts of the updraft Fig. 3. This is
a direct result of larger cloud water contents owing to
autoconversion being delayed. With higher cloud con-
tents there are higher mean contents than the original
run. The age of the parcels looks similar to the previous
simulation. Finally, the rain has not reached as close to
the ground compared to the other simulation.

The goal in this paper is not to develop an autocon-
version scheme, only the necessary concepts so one can
be built. However, an autoconversion scheme that uses
results from integration of the stochastic equation, mean
cloud content, and predicted age is being built. This
scheme is in development and will be reported later.

The accuracies of (1), (2), and (5) are tentatively ac-
cessed by running many trajectories in real-time with
the model integration (the trajectories are stepped for-
ward during each time step of the Eulerian model in-
tegration). Two of the trajectories are shown on Fig. 2
from 16 to 28 min at 1-min intervals. Values of t and
q̄c computed along the trajectories (assumed to be the
truth values) and values of these variables produced by
the integration of (1) and (5) in the model, at the tra-
jectory locations, are compared in Fig. 4 for two of the
trajectories. Similarly, the results of j and z from (2),
the parcel displacements in the x and z directions, re-
spectively, are shown in Fig. 5. The trajectories are ini-
tiated at 960 s along the center of the domain in the
north–south direction, which is the axis of symmetry
for the storm given the unidirectional shear and the lo-
cation of the initial thermal perturbation. With no v wind
component at the center of the domain in the north–
south direction, the trajectories are confined to the x–z
plane. The trajectory traces are shown in Figs. 2 and 3
as lines with small circles, which represent ‘‘parcel’’
locations every 60 s after initiation. A comparison of
the ‘‘ages’’ predicted by (1) with the actual ages of the
trajectories shows very good agreement with errors of

less than 1%–2% as long as the trajectories are in the
cloud and away from the cloud boundary. When the
trajectories pass through the cloud boundary the errors
increase dramatically as expected. This usually is not a
problem as the important conversion physics generally
occur well inside the cloud boundary. Nevertheless, cau-
tion must be taken in evaluating results near these
boundaries. The mean cloud mixing ratios predicted by
(5) also agree very well with the values along the tra-
jectories (Fig. 4b). And as with (1), the errors with (5)
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FIG. 4. Values of t and q̄c computed along the trajectories (solid
and dashed bold lines; assumed to be the truth values) and values of
these variables produced by integration of Eqs. (1) and (5) in the
model (triangles and circles at each time step), at the trajectory lo-
cations for two trajectories. The bold dashed curve and circles cor-
respond to the eastern trajectory, whereas the bold curve and triangles
correspond to the western trajectory.

FIG. 5. Values of j and z computed along the trajectories (solid
and dashed bold lines; assumed to be the truth values) and values of
these variables produced by integration of Eq. (2) in the model (tri-
angles and circles at each time step), at the trajectory locations for
two trajectories. The bold dashed curve and circles correspond to the
eastern trajectory, whereas the bold curve and triangles correspond
to the western trajectory.

become very large as the trajectories pass through the
boundaries. Finally, parcel displacements predicted with
(2) versus the actual trajectory displacements are equal-
ly as good (Fig. 5). In addition, they suffer from similar
boundary problems. The results from the integration of
(2) help show that the results from (1) and (5) indeed
are equivalent to integrating real trajectories. Other uses
of (2) such as evaluating the origin of parcels in deep
convective simulations might be possible (as suggested
by Dr. R. Davies-Jones). However, these will not be
discussed here as they are beyond the scope of this
paper.

Next, the results of integrating (1) and (5) are put
into context of where rain was formed in the model
using the KW78 form of the microphysics parameter-
ization. Note that rain is present (Fig. 1d) in the lowest
regions of the updraft at 16 min (as well as at 24 min)
where parcels of cloudy air are on the order of

60–180 s old, qc 5 1 to 1.5 g kg21, and q̄c 5 0.5 to 1
g kg21. Careful examination of the source and sink terms
for rain shows that this rain was produced by autocon-
version (at least at 16 min): qc is greater than the thresh-
old of 1 g kg21 for autoconversion with the Kessler
scheme (KW78) (note the model’s accretion parame-
terization has been activated). Of importance is whether
rain should form there in less than 3 min. Assuming an
initial cloud droplet radius of 2.5 mm2 at cloud base, a
number concentration of 200 cm23, and a mean steady-
state supersaturation of 1.0075 [Eq. (9.10) in Young
(1993): mean updraft of 6 m s21 and a mean droplet
size of 8 mm], integration of the diffusional growth
equation [Eq. (5.12) in Young 1993] gives a droplet

2 The results are not sensitive to initial droplets radii of 1–5 mm.
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radius of 15 mm in 180 s and 19 mm in about 300 s.
Even by assuming that a few larger droplets might be
present (see footnote 1), sufficient collectional growth
for autoconversion to occur probably would not be ex-
pected in 180 s, given that a nominal collector droplet
radius of 19 mm is required for the initial collection of
smaller droplets (see Cotton and Anthes 1989 and
Young 1993 for reviews). Autoconversion thresholds
could be modified so that autoconversion does not occur
until there are larger amounts of cloud water at present
at a grid point. But then the autoconversion scheme
might prevent rain from forming where it should at some
locations, even though the amounts are below the pa-
rameterization threshold. And, as we have mentioned,
the parameterization still would not be general enough
to account for the age of the processes that lead to
autoconversion.

Before closing this section, a few words about im-
plementing the proposed methods are provided. There
are no subgrid turbulent mixing terms in the equations
for age, displacement, and mean mixing ratio solutions.
Therefore, a numerical filter or a monotonic advection
scheme must be used to keep the solutions smooth
enough for accurate advection. A sixth-order Crowley
scheme with a monotonic adjustment worked well in
preserving relatively sharp boundaries at the cloud edg-
es in the simulations presented in this paper. A high-
order filter also works well. However, significant errors
within a grid point or two of the boundaries are un-
avoidable. In these regions ages and mean contents usu-
ally are too small and meaningless. Fortunately, many
of the important conversion-type microphysics do not
occur in these regions.

4. Summary

Prognostic equations for representing the time-aver-
aged values of a quantity or age of a parcel have been
proposed for use in gridpoint models. The information
provided by these equations might be useful in im-
proving parameterizations of the autoconversion of
cloud droplets to rain. An aging problem also is present
with parameterizations of the conversion of, for ex-
ample, rimed ice crystals and aggregates to form grau-
pel, and rimed graupel and frozen rain drops to form
hail. It might be useful to know the time-weighted mean
of the rime collected as well. In the detailed Ferrier
(1994) microphysical parameterization, for example, a
constant riming time of 120 s is used, and the rime
density is dependent on local grid conditions. Prelimi-
nary model experiments using a scheme similar to Fer-
rier’s suggest that graupel and hail production can be
quite sensitive, in some situations, to the assumed rim-
ing time and local mean riming density. Improvements
for these cloud auto conversion and other types of par-
ameterizations will be reported in the near future.
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