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Abstract. A simple formulation of the boundary layer is developed for use in large-scale models and other 
situations where simplicity is required. The formulation is suited for use in models where some resolution 
is possible within the boundary layer, but where the resolution is insufficient for resolving the detailed 
boundary-layer structure and overlying capping inversion. Surface fluxes are represented in terms of 
similarity theory while turbulent diffusivities above the surface layer are formulated in terms of bulk 
similarity considerations and matching conditions at the top of the surface layer. The boundary-layer depth 
is expressed in terms of a bulk Richardson number which is modified to include the influence of thermals. 
Attention is devoted to the interrelationship between predicted boundary-layer growth, the turbulent 
diffusivity profile, ‘countergradient’ heat flux and truncation errors. 

The model predicts growth of the convectively mixed layer reasonably well and is well-behaved in cases 
of weak surface heat flux and transitions between stable and unstable cases. The evolution of the modelled 
boundary layer is studied for different ratios of surface evaporation to potential evaporation. Typical 
variations of surface evaporation result in a much greater variation in boundary-layer depth than that caused 
by the choice of the boundary-layer depth formulation. 

1. Introduction 

The present study develops a relatively simple model of the atmospheric boundary layer 
for applications where high vertical resolution is not possible. For example, the present 
development is partly motivated by the need to study interactions between the atmos- 
pheric boundary layer and soil moisture transport which is examined in a companion 
paper (Pan and Mahrt, 1986). Because the formulation of the surface evaporation is 
necessarily crude, a high-resolution sophisticated model of the boundary layer is not 
justified for such applications. 

In this study, considerable attention will be devoted to development of a boundary- 
layer depth formulation which: (l), does not require resolution of the capping inversion, 
when it exists; (2), allows for a continuous transition between the stable and unstable 
boundary layer; (3), describes the near-neutral case where the surface heat flux is 
unimportant; and (4), removes certain inconsistencies between the application of 
surface similarity theory and the ‘countergradient’ flux correction. 
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A number of boundary-layer models with low resolution have been proposed for use 
in large-scale models. One approach is to model the bulk effect of the boundary layer 
by interpolating pertinent variables from the large-scale model without attempting to 
resolve any boundary-layer structure explicitly (e.g., Clarke, 1970; Deardorff, 1972; 
Smeda, 1979; Chang, 1981; Binkowski, 1983). 

In models where some grid levels are available to resolve boundary-layer structure, 
a more direct approach is usually adopted by expressing turbulent diffusivities in terms 
of local gradients of the mean profiles. Models of this kind have been used mostly in 
cases where comparatively high resolution is available (column models); then diffusivi- 
ties are related directly to the local gradient Richardson number (Zhang and Anthes, 
1982), or to a Richardson number adjustment scheme (Chang, 1979), or computed in 
conjunction with a prescribed mixing-length profile (Busch et al., 1976; Louis, 1979). 
With coarser resolution, the sensitivity of these formulations to small changes in the 
mean profiles becomes a disadvantage. Inclusion of transport terms by employing the 
turbulence energy equation (e.g., Mailhat and Benoit, 1982; Therry and LacarrQe, 1983) 
or even higher order closure schemes (e.g., Yamada and Mellor, 1975; Andre et al., 
1978) is presently not practical for use in large-scale models because of the large 
computational requirements. 

Here we develop a model, where turbulent dif-htsivities have a prescribed profile shape 
as a function of z/h and scale parameters derived from similarity arguments, where z 
is the height above ground and h is the boundary-layer top. This approach partially 
alleviates resolution requirements and is yet more flexible than the purely ‘bulk’ models. 

Similar approaches for the simulation of the heated boundary layer have been applied 
by Pielke and Mahrer (1975), and Yu (1977). The present model, however, differs from 
these approaches both with respect to the profile formulations and the way the 
boundary-layer height is determined. The present model appears to be less specialized 
than the usual mixed-layer growth models but still does not consider the important 
problem of boundary-layer clouds. 

2. The Model 

2.1. THE SURFACE BOUNDARY LAYER 

The surface-layer parameterization scheme devised by Louis (1979) is used to relate 
surface fluxes of heat, momentum, and water vapour to the values of temperature, the 
wind components and specific humidity, all at the lowest model level. The layer between 
the surface and the lowest model level is thus considered to be in equilibrium, obeying 
surface-layer similarity. The basic advantage of this formulation is computational 
efficiency, since the formulation avoids an iterative process which is otherwise necessary 
when employing the original expressions given by Businger et al. (1971) for the usual 
range of atmospheric stability; however, the correct behaviour of such formulations is 
uncertain in the cases of extreme stability or instability. 
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2.2. THEBOUNDARYLAYERABOVETHE SURFACE LAYER 

Above the surface layer, the diffusion equation is assumed to describe the effect of 
turbulent mixing in the boundary layer except for the modification due to a ‘counter- 
gradient’ term. Thus, model closure simplifies essentially to the determination of the 
diffusivity profiles. 

As in Brost and Wyngaard (1978), the momentum diffusivity is modelled according 
to the format 

ZP 
K,=u*kz@,, 1-i ) ( > (1) 

where u * is the surface friction velocity, k is the von Karman constant taken to be 0.40, 
@.m is the nondimensional shear, z is the height above ground, and h is boundary-layer 
height. Equation (1) is consistent with surface-layer similarity where 

(2) 

For stable conditions we use Q’, from Businger et al. (197 1) given as 

am = 1 + 4.7z/L , (3) 

where L is the Monin-Obukhov length. For z % L/4.7, combination of Equations (1) 
and (3) yields the following asymtotic expression: 

Km-(k/4.7)Lu, 1 -; p. 
( > 

(4) 

That is, for the stable case L becomes the relevant length scale and U* the relevant 
velocity scale for the entire boundary layer. Here the boundary-layer depth h enters only 
as the height at which the turbulence vanishes and does not influence the boundary-layer 
velocity scale. 

For unstable conditions 

@,,(z/L) = (1 - 7z/L)- 1’3 ) zGh. (5) 

The exponent of - f is chosen to ensure the free-convection limit for z $ L. With the 
coefficient chosen to be 7, the difference between Equation (5) and the original expres- 
sion given by Businger et al. (197 1) as derived from the Kansas data differs by less than 
6% over the range of the original data ( - z/L < 2). Here we consider the surface layer 
to extend upward to z = ch where E will be arbitrarily specified to be 0.1. 

Above the surface layer for the unstable case, we arbitrarily assume that the relevant 
velocity scale U* @; ’ is constant so that using (5) 

u* Q’,’ = (u: + 7&kw;)1’3 = w,, (6) 

where a’, is evaluated at ch and w * = (g/To)mh)‘j3 is the convective velocity scale. 
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Then (1) becomes 

For h $ -L, the velocity scale approaches 

w, 1: w* (7~k)“~ ~0.65w, . (8) 

Note that the transition between stable and unstable cases is continuous. 
The expression for the mixed-layer velocity scale (6) can be compared with the 

velocity scale developed by Hojstrup (1982) from the Kansas and Minnesota experi- 
ments. Hojstrup’s expressions for the velocity variances at z/h = E = 0.1, reduce to 

w, = (02 + 0; + 02,)“~ = 2.26u, (I +2.75(0.1 $)“‘)“’ 

Apart from a constant factor of proportionality, Equations (6) and (9) differ by less than 
16% in the range of h/ - L between 0 and 5000, in which range w, changes by a factor 
of 13. 

With the factor (1 - z/h) * in (7), the turbulent mixing approaches zero at the top of 
the boundary layer. This condition should be relaxed in models which allow mixing 
above the boundary-layer top. 

3. Determination of Boundary-Layer Depth 

For well-defined diurnal variations, a rate equation for growth of the daytime mixed 
layer is often used with a separate model for the depth of the nocturnal boundary layer. 
The transition from unstable to stable conditions then requires special consideration 
(Smeda, 1979). With modest increase of complexity, it is possible to unify the depth 
prediction into one relationship (Binkowski, 1983). These models successfully predict 
the diurnal variation of the boundary layer under conditions of significant diurnal 
signature. 

With weak surface heating and complex synoptic airflow, the top of the daytime 
boundary layer and capping inversion are often not well-defined and the usual mixed- 
layer growth equations become too specialized. Even in situations with definable 
mixed-layer growth, the vertical resolution in many atmospheric models is inadequate 
to define the capping inversion and corresponding velocity jump required for mixed-layer 
growth models (e.g., Manins, 1982). 

Alternatively, Busch et al. (1976) chose the boundary-layer top to be the lowest model 
layer where the gradient Richardson number exceeds a critical value. This method, 
however, still requires good resolution, and even with high resolution may lead to large 
unphysical oscillations of h due to the sensitivity of the gradient Richardson number to 
small changes in the mean profiles. 

To be consistent with the bulk approach adopted in Section 2, we determine the 
boundary-layer top by specifying the value of a modified Richardson number such that 
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1 z 
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case 

8, (2 

z,-- 
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9,(Z) 
Fig. 1. Geometric sketch of the boundary-layer depth relationship to the profile of potential temperature 
above the surface layer (solid profile). For the unstable case, the first vertical broken line to the right of 
the profile indicates the potential temperature after enhancement due to the temperature excess associated 
with surface heating (11-12). The vertical broken line on the right indicates the potential temperature at 
the boundary-layer top after deepening due to shear-generated mixing as formulated in terms of a modified 
bulk Richardson number (lob). The latter mechanism completely determines the depth of the stable 

boundary layer. 

where 19,(h) is the virtual potential temperature at the boundary-layer top and 0, is 
defined below (Figure 1). The bulk Richardson number is frequently used to model the 
depth of the stable boundary layer where 0, is chosen to be the temperature of the air 
near the surface. By relating ~9, to the temperature of thermals via the usual ‘counter- 
gradient’ heat flux correction for the unstable case, it will be shown that relationship 
(lOa) also approximates the growth of the daytime mixed layer as well as allows 
treatment of cases with weak surface heat flux and transitions between stable and 
unstable cases. 

At each time step, the model incrementally increases the test value of h until B,(h) and 
the corresponding modified bulk Richardson number have increased to yield the 
specified critical value of the modified bulk Richardson number. In the heated boundary 

Robert Fovell


Robert Fovell


Robert Fovell




134 IB TROEN AND L. MAHRT 

layer, the boundary-layer top predicted by (10a) occurs just above the well-mixed region 
since e,,(h) is greater than 0, for nonzero wind speed and 0, is larger than the mixed-layer 
temperature for nonzero surface heat flux. This is evident by writing (10a) in the form 

em = 0, + fi, 1 v(h) ~mde,) (lob) 
This relationship shows that the thickness of the implied entrainment region, between 
the well-mixed region and predicted boundary-layer top, depends on the definition of 
the near-surface air temperature, on the wind speed, and indirectly on free-flow 
stratification (Figure 1). For significant surface heating, the second term exerts only a 
minor influence on boundary-layer depth which then becomes insensitive to the value 
of the Richardson number. 

In the case of vanishing wind speed, and thus vanishing shear generation of turbu- 
lence, relationship (10a) becomes analogous to the thermodynamic approaches applied 
in Holzworth (1964) and Zhang and Anthes (1982). In this model, (10a) reduces to the 
asymptotic prediction for free convection 

The choice of the near-surface atmospheric temperature 0, in (10a) plays an important 
role. Since the most energetic transporting scales of turbulent motion in the convective 
boundary layer are thermals, it seems more correct to define l3, as a measure of 
temperature of the thermals in the lowest part of the boundary layer as in Zhang and 
Anthes (1982). This can be estimated from the relevant velocity scale W, corresponding 
to a thermal turnover time of h/w,. The scaled virtual temperature excess near the surface 
is then 

e 

T 
= ,(w’o5)0 

w.5 
(11) 

where (m),, is the surface virtual kinematic heat flux and C is a coefficient of 
proportionality. Use of this temperature excess to estimate the boundary-layer top from 
(lOa) could be viewed as a parcel approximation which neglects the influence of 
entrainment and pressure effects on the thermal ascent. This overestimation of thermal 
ascent would be partially compensated by neglect of penetration of thermals beyond the 
buoyancy equilibrium level. The attempt to include such complexities in a limited 
resolution model would not be appropriate due to large truncation errors. Relationship 
(11) is consistent with the heat flux correction as discussed in Section 4. 

For simplicity, the temperature excess (11) is assumed to occur at the lowest 
atmospheric level in the model, z,. Then 

es = e,(zl) + e,. (12) 

For the unstable case, the modelled boundary-layer depth (10-12) depends mainly on 
the temperature excess and is insensitive to the choice of the critical Richardson number. 
An equivalent prognostic relationship between boundary-layer growth rate and surface 
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heat flux can be derived by differentiating (lo), after using (11-12). It will be found that 
use of (10) with (11-12) predicts the growth of the heated mixed layer with success 
comparable to the use of the growth relationship of DeardorlI (1974). That is, for the 
sole purpose of approximating the boundary-layer growth rate, the approximate role of 
the convective heating can be captured rather simply. Naturally in high resolution 
studies of the boundary layer, the more complete physics of mixed-layer growth models 
would be desirable. 

As we approach neutral conditions from the unstable side, 0, in (11) vanishes. 
Relationships (11) and (12) are not relevant for the stable boundary layer. Since the first 
model level may be above the nocturnal boundary layer, 0, is defined to be the surface 
virtual temperature for the stable case. In low-resolution large-scale models, the 
structure of the nocturnal boundary layer cannot be resolved so that only bulk 
formulations can be implemented. The use of the bulk Richardson number (10) to 
predict the top of the nocturnal boundary layer has been tested in a number of studies 
(some of which are surveyed in Mahrt, 1981), and provides a smooth transition to the 
unstable case in the present model. 

In such studies the critical bulk Richardson number is typically chosen between 0.3 
and 1. Such values are sometimes tested against the depth of the nocturnal inversion 
which may be considerably thicker than the depth of the layer of continuous turbulence 
(Mahrt et al., 1979; Andre and Mahrt, 1982). On the other hand, we must recognize 
that model fluxes imply both time and horizontal averaging. Such averaging would then 
include transport induced by meso-scale and terrain-induced circulations which seem 
to be important in the nocturnal boundary layer even over very weak slopes. Further- 
more, fluxes may occur locally in space and time even though the Richardson number 
evaluated from averaged variables is large. These factors suggest choosing a larger 
critical Richardson number for computing the boundary-layer depth in large-scale 
models. Here we chose a value of one-half for use in one-dimensional simulations. 

In the stable case, the modelled boundary-layer depth exerts less influence on the 
strength of the mixing as is evident by comparing (4) and (7). That is, the implied length 
scale of the mixing asymptotically becomes independent of h and proportional to L. In 
the unstable case, the value of h signihcantly influences the length scale above the surface 
layer; however, the value of h becomes insensitive to the bulk Richardson number. 

4. The Diffusivities for Heat and Water Vapour 

We make the usual assumption of equating diffusivities for heat and water vapour. The 
turbulence Prandtl number Pr = KJK,,, under unstable conditions is found to be 
strongly dependent on stability in the surface layer (Businger et al., 197 1). In the mixed 
layer above the surface layer, the Prandtl number is not very well-defined because local 
gradients may vanish and fluxes become more related to bulk gradients. Thermals and 
eddies of boundary-layer scale transport heat and other properties according to bulk 
gradients which may be much larger than, or of opposite sign from, gradients in the 
boundary-layer interior. 
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The simplest way to include this nonlocality is to incorporate a ‘countergradient’ term 
as discussed by Priestley and Swinbank (1947) and Deardor!f( 1966). Then the heat flux 
becomes 

(13) 

In the present formulation 

(14) 

This prescription is consistent with the formulation of the temperature excess for 
thermals, (11). A similar correction procedure was suggested by Deardortf (1973) and 
used in the model by Mailhat and Benoit (1982), except that the free-convection velocity 
scale w * was chosen to be the velocity scale. The use of the velocity scale w, (9) is more 
consistent with the formulation of the eddy exchange coefficient and includes the 
reduction of thermal buoyancy by mechanical mixing. 

This interrelationship is clearest at the level where the potential temperature gradient 
vanishes as it reverses with height from weakly unstable to weakly stable. At this level, 
say z = z*, Equation (13) becomes 

(w’),, = K,(z*)y 

or using (14) 

c _ hw, (w’8’),* 

Kh(z*) (w’ ’ 

This relationship exemplifies the fact that C cannot be specified independently of the 
formulation of K,, as has been done in previous studies and also shows how the 
coefficient C controls the level of vanishing temperature gradient. Substituting in the 
formulation for Kh, the expression for C becomes 

C=[pr, G (1 -Z*/h~]~‘[~]~ 

Choosing, for example, p = 2, Pr = 2, z*/h = i/z and l/z for the heat flux ratio, one 
obtains the value of C z 5. Since the results in this study were found to be not sensitive 
to the numerical value of C, we adopt the usual value of 10 for C’ (see Equation (19) 
below), corresponding to C = 6.5. 

It seems necessary to adopt a countergradient correction term for transport of 
moisture or any scalar, since thermals also transport according to the bulk moisture 
gradient and therefore create flux, even where the local mean gradient vanishes. We then 
define the counter-gradient factor for moisture by assuming that it can be formulated with 
the same coefficient C as for heat transport in which case 
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(15) 

where (&& is the surface moisture flux. An analogous correction for momentum is 
not adopted. Because of the pressure effects, thermals cannot efficiently transport 
momentum over large distances and the gradient of momentum often remains significant 
throughout the mixed layer. 

4.1. PRANDTL NUMBER 

Busch et al. (1976) assume that the Prandtl number obeys surface-layer relations for the 
entire boundary layer while Mailhot and Benoit (1982) assume that the Prandtl is 
independent of height with a value computed at 4 m. In the present development, we 
match heat and momentum fluxes at the top of the surface layer so that 

u', =K,,, @, 
az 06) 

where 8, = - (w))e/u* . Combining these two relationships, using the usual defini- 
tions of nondimensional gradients (mm, @J and the definition of w, (6), substituting for 
y from (14) and solving for the Prandtl number, we obtain 

(17) 

where z is the level where matching (16) is applied, here taken as O.lh. Lacking other 
evidence, we assume that the Prandtl number is independent of height above 0. lh. The 
Prandtl number is bounded by the asymptotic limits of unity and four. Expression (17) 
has the advantage that it is well behaved for vanishing Monin-Obukhov length L. 

4.2. COMPARISON WITH WYNGAARD AND BROST 

It is instructive to compare the dithtsivity protile used here with the one derived from 
the large eddy simulations by Wyngaard and Brost (1984). They derive expressions for 
the gradients of a scalar for the case of vanishing entrainment flux (their Equation (33)) 
and for the case of vanishing surface flux (their Equation (39)). Profile functions were 
determined by comparing with numerical simulations for the case -z/L = 64. When 
both fluxes are present, we can obtain the effective diffusivity from their individual 
relationships. Assuming the flux in the boundary layer to vary linearly with height, the 
dilhtsivity relationship derived from Wyngaard and Brost (1984) becomes 

1 - (1 - R) 
K=w,h 

,(, 2)-3’2+o.4(;)-3’2 ’ (18) 

where R = (fl)J(w)), and c is the transported quantity. 
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As discussed by Wyngaard and Brost (1984), this form is not well-behaved since the 
transport by large eddies or thermals is not directly related to the local gradients. The 
simplest way to include this transport process effectively is again to adopt a gradient 
correction factor y such that 

(19) 

where the prime notation on the coefficient C’ indicates that the free-convection velocity 
scale w * must be used instead of w, in order to be consistent with (18). Then using the 
gradient and flux from Wyngaard and Brost (1984), the diffusivity satisfying (19) and 
the gradient correction y (14), becomes 

1 - (1 - R) 
> 

K=w,h 
R(l-;)-3’2+0.4(;)-3’2+C.~ 

(20) 

The diffusivity profile modified to include the countergradient correction (20) is shown 
in Figure 2 for different values of R, the ratio of the entrainment flux to the surface flux. 

1.0 

0.8 

0.10 

Fig. 2. The profile of diffusivity from Equation (20) for different values of R, the ratio of entrainment flux 
to the surface flux. R = 0.2, - 0.1, 0.0, and 0.2. 
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C’ has been assigned the value of 10 as in previous studies. Equation (20) and Figure 2 
indicate that with the addition of the countergradient correction, the diffusivity profile 
is well behaved and only moderately sensitive to the value of the ratio R except for a 
thin layer near the boundary-layer top where the dilfusivity oscillates for R < 0 (not 
resolved in Figure 2). 

4.3. THE EXPONENT p 

In the case of the diIfusivity for heat, the ratio R is often approximated as - 0.2 
(Tennekes, 1973). The profile for the heat dilhisivity based on (17) for values of the 
exponent p between 2 and 3, agrees with the corresponding profile in Wyngaard and 
Brost (1984) for R = - 0.2 except that the heat ditIusivity is somewhat larger in the 
middle of the boundary layer (Figure 3). Comparison with Wyngaard and Brost for heat 
diIIusivity is not entirely correct for values of R other than those appearing in their model 
because of the dynamical influence of the heat flux. For the results cited here they found 
R = -0.1. 

Near the, top of the boundary layer, behavior of the ditfusivity determines the 
importance of the entrainment flux. The diffusivity appears to vanish; however, the 
computed heat flux in low-resolution models remains significant depending mainly on 

1.0 

0.8 

0.6 

F 
N 

0.2 

0 
0 0.05 0.10 

K/w* h 
Fig. 3. The profile of diffusivity for heat and water vapour in the present model in the case of a heated 
boundary layer with parameters taken from Wyngaard and Brost (1984). Numbers on the graphs give the 

values of p in Equation (1). 
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the way in which the boundary-layer height is determined and on truncation errors. This 
problem is analogous to the difficulty where mixed-layer growth predictions are sensitive 
to the way in which the ‘jumps’ are estimated at the mixed-layer top (Anthes et al., 1982). 
Since the entrainment zone cannot be resolved, we use the exponent p as an adjustable 
parameter chosen to give reasonable values for the flux ratio R in a particular model 
with a particular resolution. It is obvious that the exponent p could be dependent on 
stability. For example, Brost and Wyngaard (1978) choose 1.5 for the stable case. For 
simplicity, and lack of observational evidence, we presently specify p to be independent 
of stability with a constant value of 2. 

4.4. RESOLUTION 

For the numerical iterations of this study, a vertical resolution of 50 m is used since 
computer time is not a significant factor in the one-dimensional model. As the resolution 
is sequentially decreased to 500 m for a vertical domain of 2 km, the difference between 
the boundary-layer depth of the high-resolution and the low-resolution models is always 
less than the vertical grid spacing of the low-resolution model. As the resolution is 
decreased to less than 500 m, the predicted time-evolution of the model begins to 
rapidly degenerate. When used in concert with a general circulation model, we have used 
five levels between the surface and 2 km with reasonable results for a variety of synoptic 
situations. 

5. Boundary-Layer Depth Prediction 

Boundary-layer models operating within larger scale models must not only approximate 
the commonly studied convectively mixed layer but also must approximate cases where 
surface heating is weak and the mean wind is strong. Here we examine the response 
of the boundary layer to different values of the geostrophic wind speed and incoming 
solar radiation. We concentrate on the model performance of the boundary-layer depth 
which represents the most important deviation from previous modelling. Results are 
now compared with the frequently used boundary-layer depth formulation of DeardorIT 
(1974), which is the primary existing depth model which does not require resolution of 
the capping inversion. 

Figure 4 displays the sensitivity of these two formulations to variations of the specified 
incoming solar radiation and geostrophic wind speed for an initial vertical gradient of 
potential temperature of 6 C km - i and zero surface evaporation and zero heat exchange 
with the subsurface. The depth of the model domain is 4 km. The downward longwave 
radiation is constant at 330 W m- *. The specified downward shortwave radiation 
varies diurnally according to the zenith angle arbitrarily chosen to be that of the Wangara 
field program. The abscissa in Figure 4 represents the noontime maximum value scaled 
by the value for Wangara Day 33 (470 W m- ‘). As the noontime downward solar 
radiation becomes small, the boundary layer remains stable the entire day. 

For significant surface radiative heating, the two approaches lead to almost identical 
predictions within the vertical resolution of 50 m (Figure 4). However, with weak surface 
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Fig. 4. Isolines of maximum boundary-layer depth for the present model (solid lines) and the Deardorff 
depth formulation (broken lines) as a function of geostrophic wind and scaled noontime downward solar 

radiation (see text). 

heat flux and strong winds, the present formulation predicts boundary-layer depths 
which are signifkantly less than those obtained using Deardorh’s model. For these 
cases, comparisons between the two models depend significantly on the specified 
Richardson number of the present model, the Coriolis parameter (here the Wangara 
value) and the way in which the free-flow stratification is computed for the DeardorB 
formulation. Judgements cannot be made because of limited observational evidence for 
such conditions and the difhculties of assessing the role of advection, vertical motions, 
and surface evaporation. 

However, it is possible to delineate physical differences for the case of vanishing 
surface heat flux. The boundary-layer depth of the Deardoe model approaches f~ * /f 
at a rate which is inversely proportional to the free-flow stratification. In the present 
formulation, the boundary-layer depth with negligible surface heating approaches 
;u2/k@Wo), h w  ere A8 is again the temperature difference across the boundary layer. 
The first formulation would appear to lead to large depths at low latitudes, although any 
subsidence or advection, even if weak, helps limit the modelled boundary-layer growth. 
In the second formulation, Coriolis influences are only indirect through control of the 
wind field. The role of the Earth’s rotation on the boundary-layer depth remains an 
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unresolved issue, since this influence on the observed boundary-layer growth cannot be 
separated from constraints of stratification and subsidence. In theoretical periodic 
flows, the Earth’s rotation may even increase the boundary-layer depth (e.g., Holton 
et al., 197 1). Such near-neutral boundary layers occur often when attempting to model 
the atmosphere on a day-to-day basis. However, such cases are rarely studied rigorously 
from a boundary-layer point of view. 

6. Model Comparison 

In this section, we perform the usual comparison with Wangara days 33 and 34. The 
intention is to show that the model yields reasonable results. It will also be shown that 
these comparisons, as well as previous ones in the literature, are not very accurate 
because of uncertainties in the surface moisture flux. The importance of these uncer- 
tainties can be anticipated from the results of McCumber and Pielke (1981) and Manins 
(1982). 

In this study, the surface evaporation E is specified to be a fixed fraction /? of the 
potential evaporation ED, where the latter depends only on atmospheric variables 
(Appendix A): 

E = PEP. 
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Fig. 5. The boundary-layer depth as a function of local standard time for water availability fi = E/E, = 0 

(open circles), 0.25 (open squares), 0.5 (solid triangles), 0.75 (open triangles), and 1 (solid circles). 
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The moisture availability parameter /lwill be varied to reveal the sensitivity of the model. 
For the model runs, we specify the initial conditions to be the observed atmosphere 

at 0600 LST on Wangara day 33 (Clarke etal., 1971). The model is integrated for a 
4%hr period using the solar radiation expression of Holtslag and Van Ulden (1983) and 
computing the downward longware radiation by assuming a reference temperature of 
270Katz= co. 

As the specified water availability factor /? = E/E, increases from zero (no surface 
evaporation) to 0.25 and then 0.5, the daytime boundary-layer growth rate decreases 
significantly (Figure 5). Further increases of jl lead to progressively smaller changes. 
This nonlinear dependence of boundary-layer growth rate on water availability is due 
to the reduction of potential evaporation associated with increased relative humidity of 
the boundary layer. This negative feedback is also assisted by the reduction of surface 
heating due to surface evaporation, which in turn reduces the downward mixing of drier 
air and reduces the surface wind speed. In spite of these negative feedback mechanisms, 
the boundary-layer growth is quite sensitive to variations between no surface evapo- 
ration and modest surface evaporation. The differences between the present simple 
model of boundary-layer depth results using the depth model of Deardorlf, and the 
observed mixed-layer depth are all smaller than the influence of usual uncertainties of 
the surface evaporation rate. Most of the boundary-layer growth can be predicted in 
terms of simple conservation of heat without concern for the details of the entrainment 
rate. This suggests that models need more emphasis on correct prediction of the surface 
heat flux, which in turn requires determination of the surface evaporation. 

The evaluation of the depth of the nocturnal boundary layer is more difficult. For 
example, estimates in the literature disagree on the value of the ‘observed depth’ by more 
than a factor of two. The decreases of the modelled depth after midnight is due to the 
flow deceleration which occurs both in the model and in the observed flow. This 
deceleration appears to be associated primarily with the nocturnal inertial oscillation 
and associated variation of shear. 

7. Conclusions 

This study develops a numerical model of the atmospheric boundary layer which 
requires only modest vertical resolution and is sufficiently simple for use in concert with 
other models. For example, the formulation of boundary-layer depth includes the main 
features of mixed-layer growth but does not lead to special interpolation problems which 
occur with the use of more sophisticated mixed-layer growth formulations in models 
with low vertical resolution. The simple boundary-layer depth model adopted here 
includes the influences of mixing generated by both shear and surface heating and allows 
for a smooth transition to the stable case and well-behaved treatment of flows with weak 
surface heat flux. Tbe ‘countergradient correction’ to the heat transport by convective 
eddies of boundary-layer scale has been generalized to be consistent with surface-layer 
similarity theory and at the same time to permit continuous transition to the mechani- 
cally mixed boundary layer. 
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The boundary-layer depth formulation produces results similar to those of the 
DeardorfI (1974) formulation and the model yields results comparable to the observed 
depth for Wangara days 33 and 34. However, definitive tests are not possible because 
of uncertainties in the observed surface moisture flux. The model prediction is sensitive 
to such uncertainties in spite of compensating feedbacks. 
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Appendix A. Surface Energy Balance 

We assume that the model input from the radiation calculations in the larger scale model 
includes both short- and long-wave contributions. The surface energy balance (W m - “) 
then becomes 

(l-r)SJ+LJ-aT;f=G+H+E, (AlI 

where S1 is the downward shortwave radiation, a is the albedo, Li downward 
long-wave radiation, G the ground heat flux, positive when downward, H and E are the 
sensible and latent heat fluxes, respectively, positive when upward. 

The latent heating is related to the potential evaporation through the relationship 

where E, is the potential evaporation rate. The coefficient fiis related to the soil moisture 
deficit and plant resistance to transpiration (Monteith, 1981). In the present discussion, 
interaction between these processes and potential evaporation are not considered. 
Instead p is arbitrarily varied in order to study the potential sensitivity of the modelled 
atmospheric boundary layer to the availability of surface moisture. 

The computation of E, follows the modified Penman method presented in Mahrt and 
Ek (1984) except for modification to increase numerical efficiency and explicit depend- 
ence of upward longwave radiation on temperature. The original Penman method 
requires knowledge of the net radiation and eliminates surface temperature as a 
parameter. Here, however, we need the surface temperature for radiation and surface 
heat flux calculations, and we therefore use (Al) to dertermine To in the manner outlined 
below (A2-A3). 

The usual Penman method is based on a linearization of the saturation vapour 
pressure in terms of the temperature difference between the lowest atmospheric level and 
the surface. Linearizing the upward radiation, we obtain 
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Then use of the Penman approach leads to the following version for the potential 
evaporation : 

E, = [RA + pLchu(q,* - q,)]/(l + A + r) (A3) 

with 
ch = exchange coefficient for heat, 
P = density, 
L = heat of evaporation for water, 
5 = specific heat of air at constant pressure, 

u = Stefan-Boltzman constant, 
P = surface pressure, 
R gas = gas constant assumed equal to dry-air value, 

A = 

E = ratio of water molecular weight to that of dry air = 0.622, 
41 = specific humidity at atmospheric level, 
4: = saturation specific humidity at temperature Tr, 
T, = temperature at atmospheric level, 
R = ((1 - a)Sl + L1 - oT: - G). 
The extra factor, r, which appears in (A3) but not in the usual Penman relationship, is 
due to estimation of the upward radiation in terms of the surface temperature. 

Given E = BE,, (Al) is then used to estimate To. 
As in previous models, we do not distinguish between the surface air temperature at 

the level of the roughness elements as used in surface-layer similarity theory and the 
effective surface radiation temperature. Without this assumption, we would need a more 
detailed formulation of surface conditions than is included in the present development. 
It should also be noted that model surface temperatures have an uncertain relationship 
to the actual temperature of the soil surface or plant canopy. The latter are difficult to 
define or measure in actual field situations. 

Appendix B. Numerical Techniques 

The time integration of the change of mean profiles due to boundary-layer turbulence 
reduces to the solution of the diffusion equation 

(Bl) 

where X = [u, v, 0, q]. At each time step, the mean profiles are used first to calculate drag 
coefficients c, and ch from Louis (1979) and then to calculate the surface fluxes. Next, 
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boundary-layer height is estimated for computation using (10) with 6, = 19,, where $ is 
the surface virtual temperature obtained from the surface energy balance (Appendix A). 
Under convective conditions (positive surface heat flux), Equation (11) is then used 
together with (12) and (10) to obtain an improved estimate for the boundary-layer height 
h. Equation (B 1) is then used to step forward one time step using the difTusivity profile 
(1). The layer between the ground and the first atmospheric level is treated as an 
equilibrium surface layer and (Bl) is employed only above this layer. The boundary 
conditions thus become flux conditions at the lowest model level. The boundary-layer 
height, h, the countergradient correction term, and the surface values of temperature, 
O,, and humidity, qO, are assumed constant during each time step. In order to ensure 
computational stability with large time steps, it is necessary to use an implicit integration 
technique; here we use the fully implicit Cranck-Nicholson scheme (or Laasonen 
schema) given by 

Where the superscripts designate the time level. For the spatial operator, we employ a 
variation of the finite-element method using Chapeau functions for the mean variables. 
Some care must be taken to ensure that no unnecessary truncation errors are introduced. 
The model is intended to be used with only a few grid levels in the boundary layer. 
Therefore, the large variation of the difhrsivities near the top of the boundary layer will 
typically not be adequately resolved. To minimize truncation errors from finite different- 
ing of the diffusivity profile, we use the finite-element technique with the analytical form 
of K from (1). The method can be developed as follows: suppose X is written in terms 
of some expansion in basic functions a,&z). Multiplying by a,Jz) on both sides of (B2) 
and integrating from the lowest level to the top of the boundary layer yields 

with 

A 
( 

X(“+l) -x”’ = B,X;“+” kl I 
> 

=N 
A, = 

s 
44 ai G) dz , 

(B3) 

2, 

B, = At 
s 

ak(z) i K(z) t aj(z)dz . 

where sumation occurs over repeated indices. 
We use Chapeau functions for the basic functions defined on the grid as 

a,(z) = 

z-zi-l ____ for zip i I z I zj, 
zj - zj- , 

‘i+l -’ ~ for ziIzIz,+, , 
zi+ 1 - ‘i 

034) 
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and zero outside the interval zi _ , - zi + , . These functions span all piecewise linear 
functions on the grid. Using (B4) and (l), A, and B, are easily computed. Solution of 
the diffusion step then becomes 

(W 
The expansion coefficients Xi are simply the gridpoint values by virtue of our choice for 
txi in (B4). 

We find by integration 

Aii+ 1 = AZi/6 ) (Azi = zi+ 1 - zi) . 

Ati- 1 = Azi-116 7 A, = +(Azi- 1 + Azi) , m 

All other terms are zero. 
For Bki we find that 

ZI 
At 

Biipl =- 
AZ;- 1 s 

K(z)dz, 
z*- 1 

zi+ L 
Bii+, =; 

z,’ s 
K(z)dz, (B7) 

Bii= -(Bii&l=ItBii+,). 
The integrals of K over one grid interval are found to be sufficiently accurate when 
approximated by the center value multiplied by AZ, except for the integral over the 
interval containing the top of the boundary layer, where we instead use the approxi- 
mation zk+ 1 

j K(z)dz = j,,,,, = (h - z&C(y). WI 
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