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Inversion effects on mountain lee waves
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SUMMARY

The effect of a sharp low-level temperature inversion on flow over a mountain is investigated via a series of
two-dimensional idealized numerical model simulations. The main focus of the study is the effect of the inversion
on the formation of lee waves, lee-wave rotors, low-level hydraulic jumps and the occurrence of wave breaking
aloft. The idealized problem considered consists of an upwind velocity profile that is independent of height
(above the boundary layer) and directed normal to an isolated two-dimensional ridge. The upstream stratification
consists of a neutral layer immediately above the ground capped by a sharp temperature inversion. Above
this, the atmosphere is stably stratified and the Brunt–Väisälä frequency is independent of height. Simulations
were conducted for a range of inversion strengths (measured by the difference in potential temperature across
the inversion) and inversion heights. The effect of both a free-slip and a no-slip lower boundary condition is
investigated. Results show that, when the upwind Froude number (defined in the usual way for two-layer shallow-
water flow) falls below a critical value, a short-wavelength resonant lee wave forms downwind of the mountain
on the inversion. It is shown that both the critical Froude-number value and the wavelength of the lee wave are
accurately predicted by linear theory. The lee-wave amplitude, however, can be significantly underestimated by
linear theory if the wavelength is less than the hill length scale. In the case of a no-slip boundary condition, if the
wave amplitude is sufficiently large, boundary-layer separation occurs underneath the wave crests and closed rotor
circulations occur. In general, flow separation (and rotors) do not occur in the free-slip case. In both the free-slip
and no-slip flows, as the Froude number decreases the lee wave is eventually replaced by a stationary hydraulic
jump above the lee slope of the mountain.
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1. INTRODUCTION

Forecasting the occurrence of severe low-level turbulence over mountainous terrain
is a very challenging, yet important, aspect of weather prediction. Accurate forecasts of
downslope wind storms or lee-wave rotors, for example, could help improve aviation
safety and would be of general benefit to populations in mountainous regions. Although
the trend towards finer resolution in operational numerical weather prediction (NWP)
models means that some of the larger-scale effects of orography (e.g. wave drag) are
now starting to be resolved, many of the small-scale details remain poorly represented.
Since very-fine resolution (∼1 km) NWP is currently only practical for limited areas,
alternative methods, based for example on local knowledge of the flow behaviour, are
necessary. Clearly these methods require a good understanding of orographic flows.

It has long been recognized that regions of recirculating airflow, or rotors, and
zones of low-level turbulence are commonly occurring features of flow over mountains.
Observational studies of rotors date back to the pioneering measurements made above
the Alps (e.g. Kuettner 1939), the Sierra Nevada (e.g. Holmboe and Klieforth 1957)
and more recent observations made by Ralph et al. (1997). A comprehensive review
of these studies has been provided by Doyle and Durran (2002). It is only recently,
however, that detailed numerical studies of the link between trapped lee waves and low-
level turbulence have been conducted. Recent work by Doyle and Durran (2002) has
highlighted the importance of lee waves in the formation of rotors. Through a series
of numerical simulations, Doyle and Durran demonstrated that the existence of rotors
depends crucially on the presence of friction at the ground. When the wave response is
of sufficient amplitude, the wave-induced pressure gradient can lead to boundary-layer
separation and regions of recirculation underneath the wave crests.
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In general, most theoretical studies of stratified flows over mountains have been
restricted to idealized and simple upwind profiles of wind and stability that do not
contain any fine-scale structure, such as that due to a sharp temperature inversion, for
example. In the few studies in which sharp temperature inversions are represented,
however, it appears that inversions can have a significant influence on the gravity-
wave and near-surface flow structure. For example, in the linear theory developed
by Klemp and Lilly (1975) (valid for hydrostatic mountain waves) the depth, height
and temperature difference across the inversion play a crucial role in determining the
strength of the downslope wind at the surface. Numerical simulations (e.g. Durran 1986;
Wang and Lin 2000) also demonstrate the importance of inversions in the dynamics
of gravity-wave breaking. There is, of course, a large body of literature on shallow-
water flow over obstacles (see Baines (1995) for a comprehensive review) and, despite
the absence of stable stratification (and hence energy propagation by internal gravity
waves), the case of two-layer shallow-water flow is somewhat analogous to atmospheric
flows with a sharp inversion. Indeed, as shown by Durran (1986), in nonlinear situations
involving large-amplitude mountain waves the lee-slope flow is controlled by hydraulic
theory to a good approximation.

Recent field observations (S. D. Mobbs, personal communication) made downwind
of a mountain range on the Falkland Islands in the South Atlantic have demonstrated that
a strong temperature inversion at the top of the boundary layer can contribute to severe
low-level turbulence, the formation of rotors and strong downslope winds. Although
its precise role is not clear, a sharp temperature inversion was also present in recent
observations of a rotor cloud which formed downwind of an Arctic ice cap (Ozawa
et al. 1998). It is also well known that a strong inversion capping the boundary layer can
have a major impact on the flow in mountainous coastal regions. The strong subsidence
inversion which occurs above the Californian coastal boundary layer (Dorman and
Winant 1995), for example, is known to generate conditions favourable to flow blocking,
expansion fans and hydraulic jumps (e.g. Ström et al. 2001). Colman and Dierking
(1992) have also suggested that a strong inversion near the mountain top is one necessary
condition for downslope windstorms encountered in south-east Alaska.

The purpose of this study is, through a series of idealized numerical simulations,
to develop an understanding of how a sharp inversion can influence the gravity-wave
dynamics and lead to rotor generation, hydraulic jumps and low-level wave breaking. To
complement the simulations a linear theory is also developed. For simplicity we restrict
attention to the situation where the atmosphere consists of two layers with different
(constant) values of the Brunt–Väisälä frequency, N , and in which, in the absence of
any mountain or boundary-layer effects, the wind speed, U , is independent of height
throughout the entire depth of the atmosphere. An inversion at the interface of the two
layers is represented by a discontinuity, of magnitude �θ , in the potential temperature,
θ(z). We shall suppose that the interface between the two layers occurs at a height
zi above the ground and that the stratification is neutral below zi. This is a common
situation in strong or moderate flows over hills since the boundary layer is often only
weakly stable, or is neutral, below the inversion. A schematic diagram illustrating the
two-layer atmosphere is shown in Fig. 1. For these idealized conditions, and for a
hill with height H and width L, the dimensional scales can be combined to give four
independent non-dimensional parameters which control the flow. These can be written
as

Fi = U√
g′zi

, Z = Nzi

U
, FL = U

NL
and S = H

L
. (1)
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Figure 1. Schematic diagram illustrating the simple two-layer atmosphere. The inversion, characterized by a
discontinuity of magnitude �θ in the potential temperature, occurs at a height z = zi.

In the expression for Fi, g′ is a reduced gravitational acceleration, given by g′ = g�θ/θ0,
g is the acceleration due to gravity and θ0 is a reference potential temperature, here
taken to be the value in the neutral layer. Fi is the Froude number of the flow and is
the ratio of the flow speed to the speed of long-wavelength interfacial waves on the
inversion in stationary fluid, when the stratification above is neutral (Baines 1995). The
parameter Z is related to the ratio of inversion height to the vertical wavelength of
hydrostatic mountain waves in the upper layer, S is a measure of the mountain slope and
the parameter FL is a measure of non-hydrostatic effects in the upper layer. For values
of FL � 1 the vertically propagating mountain-wave response will be hydrostatic to a
good approximation. Note that, from combinations of the parameters in (1), two other
important non-dimensional parameters can be defined which are useful in interpreting
the flow characteristics. These are the non-dimensional mountain height, NH/U , and
the ratio of hill height to inversion height, H/zi. In terms of the parameters in (1) these
can be expressed as

NH

U
= SF−1

L and
H

zi
= SF−1

L Z−1. (2)

It is worth noting here that both U/NH and FL are also often referred to as Froude
numbers in the literature. This has been discussed in some detail by Baines (1995) who
argued that the shallow-water definition, Fi, is the most deserving of the title. Given the
analogy between the flows studied in this paper and shallow-water flow, we shall adopt
the latter convention throughout.

The remainder of this paper is set out as follows. A brief description of the
numerical model and the configuration of the simulations is presented in section 2.
Examples of results from the simulations are presented in section 3 and flow-regime
diagrams are constructed in section 4. A linear theory for flow in the presence of a sharp
temperature inversion is derived in section 5 and the theory is used to help interpret the
numerical results. Conclusions are drawn in section 6.
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2. CONFIGURATION OF THE NUMERICAL SIMULATIONS

Numerical simulations were conducted with the Met Office BLASIUS code (Wood
and Mason 1993). This model has been used extensively for studies of boundary-layer
flows over small or moderate sized hills (e.g. Wood 1995; Ross and Vosper 2003).
The model solves the time-dependent Boussinesq or anelastic equations in a terrain-
following coordinate system (Gal-Chen and Somerville 1975) whose levels follow the
mountain shape close to the surface and become horizontal at the model upper boundary.
The equations are discretized using finite differences; a second-order accurate scheme
is used for advection of velocity (Piacsek and Williams 1970) and the Leonard et al.
(1993) Ultimate-Quickest scheme is used for advection of potential temperature. The
results presented here were obtained using the Boussinesq equations and a first-order
Richardson number dependent mixing-length turbulence closure scheme. Some limited
tests with a 1 1

2 order closure scheme involving a transport equation for the turbulent
kinetic energy (Belcher and Wood 1996) revealed that the details of the closure scheme
had little impact on the results.

At the lower boundary, either a no-slip condition was imposed (via a similarity
condition for the surface stress) or, alternatively, the ground was assumed to be fric-
tionless and a free-slip condition was applied (following Durran and Klemp 1983).
Comparison of no-slip and free-slip simulations then allowed the impact of surface
friction and the presence of a developed upstream boundary layer to be investigated.
Note that the turbulence parametrization was retained in the free-slip simulations in
order to represent mixing above the surface, due to wave breaking for example. A zero
surface heat-flux condition was applied at the lower boundary in both the free-slip and
no-slip cases. For the free-slip simulations the model domain consisted of 1024 grid
points in the x (streamwise) direction, whereas 512 grid points were used in the no-
slip simulations. In all cases the vertical grid was stretched, with fine resolution near
the surface, and consisted of 150 levels. The lowest grid point above the ground was
at 2 m. The vertical grid spacing increased smoothly with height from 4 m to 324 m
adjacent to the upper boundary, which was placed at 20 km. The horizontal resolution
in all simulations was 125 m. In the no-slip simulations, a constant roughness length
of 0.05 m was assumed, and the Coriolis force was imposed with f = 10−4 s−1. The
inclusion of Coriolis force resulted in turning of the boundary-layer wind profile which
was absent in the free-slip simulations and, of course, the introduction of friction and
rotation into the problem increases the number of controlling parameters. The sensitivity
of the flow to surface roughness and Rossby number (Ro = U/fL) or Burger number
(B = (NH/fL)2) is beyond the scope of this study but, since Ro � 1 for the cases con-
sidered here, it seems likely that rotation will have little impact on the dynamics of the
flow. Note that the Coriolis parameter was, in fact, omitted in the free-slip simulations.
However, as we would expect given the lack of frictional turning of the background
wind in the free-slip case, tests in which f was included resulted in little change to the
flow.

A rigid-lid upper-boundary condition was applied and a Rayleigh damping layer
was placed above 15 km in order to minimize the reflection of upward propagating
gravity waves. The damping was applied to the perturbation velocity and potential-
temperature fields, and the damping coefficient increased smoothly from zero at the
bottom of the layer to a maximum value at the upper boundary.

Periodic lateral boundary conditions were applied in all simulations. In order to
avoid wrap-around effects, additional Rayleigh damping was applied in 8 km wide
columns adjacent to the upwind and downwind boundaries. As for the upper layer,
the damping coefficient in these columns increased smoothly towards the boundaries.
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Figure 2. The profiles of (a) wind and (b) potential temperature used to initialize the 2-D no-slip simulations. For
the case shown the geostrophic wind (U, V ) = (8, 0) m s−1, the inversion height, zi, is 1 km and �θ = 3.84 K.

These damping columns proved to reduce wrap-around effects∗ effectively, although
one side effect was the generation of grid-scale noise at their inner edges. It was found
necessary to apply a small amount of fourth-order smoothing (Durran and Klemp 1983)
to the perturbation velocity and potential-temperature fields to prevent the growth of
such noise. This smoothing was applied along the model’s terrain-following coordinate
surfaces only; no smoothing was required in the vertical direction. Note that the choice
of periodic boundary conditions combined with damping columns was preferred over
the more natural choice of inflow–outflow conditions because tests with the latter
suffered from the build-up of spurious noise near the boundaries.

The idealized ridge used in this study is of the form

h(x) =
{
H {1 + cos(Kx)}/2 for |x| � π/K

0 for |x| > π/K,
(3)

where K = 2π/L and x = 0 is the centre of the model domain. The initial basic-
state profiles of wind and potential temperature were as described in section 1. These
consisted of a constant westerly geostrophic wind, (U, 0) and a two-layer Brunt–Väisälä
frequency profile. In the lowest layer the stratification was neutral and the upper layer
was stably stratified with a typical tropospheric value for the Brunt–Väisälä frequency
(N = 0.01 s−1). The discontinuity in potential temperature between the two layers was
represented by imposing a jump, of size �θ , across a single grid level. Depending on
the height relative to the ground at which this was imposed, the grid spacing across the
jump varied between about 20 m and 70 m for inversions located at 400 m and 1600 m,
respectively. In cases where the no-slip lower-boundary condition was applied a one-
dimensional (1-D) boundary-layer solution was first obtained using a 1-D version of
the model which was run to a steady state. This resulted in a modification to the wind
profile in the lower layer (i.e. beneath the inversion) but, because of the Richardson
number dependency in the turbulence scheme, the potential-temperature structure was
unaltered. Examples of these boundary-layer profiles are shown in Fig. 2.

∗ Comparisons of otherwise identical simulations with 512 and 1024 grid points in the horizontal showed that the
flow near the mountain was insensitive to the position of the damping columns relative to the mountain.
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Simulations were conducted for a range of inversion strengths (�θ ) and inversion
heights (zi), and in all but a few cases the values of U , N and L were fixed at 8 m s−1,
0.01 s−1 and 10 km, respectively, thus fixing the value of FL at 0.08. Since FL � 1,
gravity-wave motion in the stable layer above the inversion will be hydrostatic to a good
approximation. Note also that the chosen value L means that 80 grid points span the
width of the mountain, and thus the flow in this region is very well resolved. In all but
a few cases the hill height, H , was also fixed and, unless otherwise stated, it should be
assumed that H = 400 m. The 2-D simulations were initialized with the 1-D profiles
and the integration was generally for 30 000 s, by which time transient disturbances
generated during the initial stages of the flow evolution had disappeared.

3. MODEL RESULTS

In this section we present results for a range of different inversion strengths, �θ , and
heights, zi, whilst keeping the hill height and width and all other flow properties fixed.
The values of U , H , N and L chosen for these simulations are described in section 1. For
these values, FL = 0.08, S = 0.04 and NH/U = 0.5. The specific results presented have
been chosen in order to demonstrate the wide variety of flow types which can occur, and
the sensitivity of the flow to the inversion height and strength. The results are presented
in terms of the Froude number, Fi, and the ratio of mountain height to inversion height,
H/zi.

(a) Vertically propagating mountain waves: Fi = ∞
We begin by examining a case in which no inversion is present, i.e. �θ = 0 K.

Figure 3 shows the flow field in the free-slip case (i.e. no boundary layer is present)
for which zi = 400 m (H/zi = 1) at a time t = 24L/U (30 000 s). Although there is no
inversion, the parameter zi is still of some importance since it is the depth of the neutral
layer immediately above the ground. As we might expect, Fig. 3 reveals that, above the
neutral layer, a vertically propagating wave is present over the mountain. Note that the
amplitude of the wave is not sufficient for wave breaking to occur above the mountain
and, although not shown here, results obtained with shallower neutral layers also show
no sign of wave breaking. There is, however, a clear increase of wave amplitude as
zi decreases and the wave amplitude is greatest in the case where no neutral layer
is present at all (zi = 0). The absence of wave breaking is not surprising, since here
the non-dimensional mountain height, NH/U , is considerably less than unity. Identical
simulations (not shown) conducted with the no-slip boundary condition also show no
evidence for wave breaking and, in these cases, the wave amplitude is slightly reduced
relative to the free-slip simulations. The absence of wave breaking is consistent with
the results of Lin and Wang (1996), who found that wave breaking did not occur for
NH/U � 0.89 in flow with constant upstream N and U over a 2-D ridge.

(b) Lee waves on the inversion: H/zi = 0.25, Fi = 0.6

Figure 4 shows the steady-state flow field (at t = 24L/U ) resulting from a simu-
lation in which the no-slip boundary condition was applied. In this case the inversion
strength and height were 3.26 K and 1600 m, respectively, and thus H/zi = 0.25 and
Fi = 0.6. A region of maximum wind speed, shifted slightly downstream of the moun-
tain summit, is present above the mountain and this extends throughout the neutral layer
up to the height of the inversion. As for the Fi = ∞ case, the flow above the inver-
sion contains a vertically propagating wave which is located immediately above the
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Figure 3. The flow field after an integration time of 24L/U for a free-slip simulation in which no inversion is
present (Fi = ∞). The height of the neutral layer, zi, is 400 m. Quantities shown are the x velocity component
(shaded contours, units m s−1) and potential temperature (line contours, interval 1 K). See text for further details.

mountain. In this case, however, an additional stationary short-wavelength disturbance
is present downwind of the mountain. This wave train resembles a trapped lee-wave
disturbance of the kind normally associated with the presence of a wave guide due to
vertical variations of wind speed and stability (e.g. Scorer 1949; Sawyer 1960). The
lee-wave train has a maximum amplitude on the inversion and extends far downwind
without any significant reduction in amplitude. The wavelength of the disturbance is
around 4.8 km. Note that the introduction of the free-slip condition in place of the no-
slip lower boundary condition has only a subtle impact on the flow shown in Fig. 4. The
wavelength of the lee wave appears to be quite insensitive to the choice of boundary
condition; the free-slip boundary condition causes a reduction in the wavelength of less
than 2.5%. The wave amplitude is more sensitive however. The mean maximum value
of the vertical velocity at the inversion height downwind of the mountain is increased
by 28% when the no-slip condition is replaced by free-slip.

Although not shown here, results from a no-slip simulation with a slightly stronger
inversion (�θ = 7.35 K, Fi = 0.4), but for the same inversion height, reveal that a lee
wave is again present on the inversion. In this case, however, the horizontal wavelength
of the disturbance is somewhat shorter at around 3.2 km. Examination of results for a
range of values of Fi, but fixed inversion height, reveal a general trend for the horizontal
wavelength to decrease with decreasing Fi. This is discussed further in section 5.



1730 S. B. VOSPER

(
)

( )

Figure 4. As Fig. 3, but for a no-slip simulation with Fi = 0.6 and H/zi = 0.25. The dimensional parameters
for this simulation are �θ = 3.26 K, zi = 1600 m, U = 8 m s−1 and H = 400 m. Note that only a small part of

the model domain is shown here.

(c) Lee-wave rotors and wave breaking: H/zi = 0.5, Fi = 0.6

Figure 5 shows the flow fields for the no-slip simulation in which �θ = 6.53 K
(Fi = 0.6) and zi = 800 m (H/zi = 0.5) at t = 24L/U . As in the zi = 1600 m case at
the same Froude number (Fig. 4) a short-wavelength disturbance occurs on the inversion
downwind of the mountain. When zi = 800 m, however, the amplitude of the wave
field is sufficient to force large amplitude perturbations in the boundary layer beneath
the inversion. Indeed, the flow can be seen to reverse underneath the wave crests,
overturning occurs and regions of closed recirculation, or rotors, are present. Figure 6,
which shows a close-up of the cross-stream (y) component of vorticity immediately
downwind of the mountain, illustrates a similar phenomenon to that demonstrated by
Doyle and Durran (2002). Namely a thin layer of high (positive) vorticity is present close
to the lee slope of the mountain due to the friction at the ground. This vorticity appears
to be swept up away from the surface and into the first rotor as the flow separates at the
foot of the mountain underneath the first lee-wave crest. Further downwind (x ∼ 7 km),
underneath the first lee-wave trough, a new region of high positive vorticity is formed
as the near-surface flow is accelerated. This vorticity is subsequently swept up into the
interior of the flow as the flow separates upwind of the second rotor. This continues
downstream under further lee-wave crests.

Also shown in Fig. 6 is the horizontal pressure gradient, ∂p′/∂x, where p′ is
the perturbation (mountain induced) pressure. The location of flow separation at the
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Figure 5. As Fig. 4, but for a no-slip simulation with Fi = 0.6 and H/zi = 0.5 (�θ = 6.53 K, zi = 800 m).

upwind edge of the first rotor (x ∼ 4 km) appears to coincide approximately with a
local (positive) maximum in the horizontal pressure gradient. This is also true at the
upwind edges of successive rotors downwind and the maxima in ∂p′/∂x are themselves
associated with the lee-wave train. This is consistent with the findings of Doyle and
Durran (2002) who showed that there was a strong correlation between lee-wave
amplitude (and hence lee-wave induced pressure gradient) and the strength of reversed
flow in the rotors. As discussed by Doyle and Durran (2002), it is well known that the
boundary layer will separate from the lee-slope of an obstacle when a positive (adverse)
pressure gradient exists that is sufficiently large to cause flow reversal near the surface.
Wood (1995) has shown that this occurs in neutral flow over a hill when the slope
and/or the surface roughness are sufficiently high. Figure 6 and Doyle and Durran’s
results, however, serve to illustrate that in stratified conditions flow separation can occur
a considerable distance away from the hill itself, where the terrain is flat. In this case
the pressure field forcing the separation is associated with the lee-wave field, and the
occurrence of separation is not directly linked to the mountain slope.

Given the apparent importance of surface friction in this case, it is interesting
to compare these results with the equivalent free-slip simulation. Unlike the previous
lower H/zi case (see section 3(b)), here we find that the change of boundary condition
makes a significant difference. Firstly, no flow separation occurs underneath the lee-
wave crests, and hence no closed rotor circulations form. Secondly, the lee-wave field
itself is unsteady and propagates downwind away from the mountain. Figure 7 shows
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Figure 6. A close-up view of the near-surface flow shown in Fig. 5. Quantities shown are the cross-stream
vorticity component (shaded contours s−1), wind vectors and the horizontal pressure gradient, ∂p′/∂x, (line
contours with interval 0.01 Pa m−1). Negative values of ∂p′/∂x are denoted by dashed contours and solid lines
denote regions where ∂p′/∂x � 0. Also shown is the 289 K potential-temperature contour (thick bold line), which
marks the location of the inversion. Note only positive vorticity values are displayed to help illustrate the transfer

of frictionally generated vorticity away from the surface where the flow separates.

the flow field at a time t = 12L/U . As in the no-slip case, a lee-wave train is present
at the inversion height. The horizontal wavelength of this wave train differs from that
in the no-slip simulation by less than 3% although the amplitude (measured by the
magnitude of the maximum vertical velocity at the inversion height) is almost 30%
smaller. No separation occurs under the lee waves and therefore, as found by Doyle and
Durran (2002), it would seem that friction plays a crucial role in the formation of lee-
wave rotors. Note also that in Fig. 7 the first lee-wave crest is displaced a considerable
distance downwind of the foot of the mountain. Animation of the flow after this time
reveals that the whole wave train is in fact propagating slowly downstream and this
coincides with the simultaneous growth of the vertically propagating wave immediately
above the mountain. As shown by Fig. 7, by t = 12L/U this wave has grown large
enough to force overturning at around 3 km and a region of stagnant flow is present over
the mountain. As the flow continues to evolve the wave breaks down in this region
and the lee-wave pattern continues to propagate downwind. No new lee waves are
generated in the vicinity of the mountain. Note that, despite the apparent link in this
particular case, wave breaking need not always be present in situations where lee waves
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Figure 7. As Fig. 5, but for the free-slip simulation at t = 12L/U (15 000 s) of model integration time.

propagate downwind. Durran (1986), for example, has demonstrated that transient lee-
wave development can occur in situations where only moderate-amplitude vertically
propagating waves are present.

Although not shown here, the no-slip flow field equivalent to that of Fig. 5, but for
a slightly stronger inversion with (�θ = 9.4 K) and hence a reduced value of Fi = 0.5,
again exhibits a large-amplitude lee wave on the inversion which gives rise to rotors
underneath the wave crests. Note, however, that the reduction in Fi leads to a steepening
of the streamlines in the lee-wave field due to both an increase in the amplitude of
vertical displacements and a shorter horizontal wavelength. As we see below, further
decreases in Froude number will eventually lead to the wave field overturning downwind
of the mountain.

(d) Hydraulic jumps: H/zi = 0.5, Fi = 0.4

The flow field in a no-slip simulation at t = 24L/U for which zi = 800 m and
�θ = 14.69 K (Fi = 0.4 and H/zi = 0.5) is shown in Fig. 8. The large-amplitude lee
wave present at Fi = 0.6 (see Fig. 5) has been replaced by a stationary hydraulic jump
above the lee slope of the mountain. A region of overturning and stagnant flow can be
seen immediately behind the jump which, beneath this the inversion layer itself, plunges
down across the lee slope. A strong downslope wind is present below the inversion and at
a height of 2 m above the ground the wind speed reaches 10.6 m s−1 half-way down the
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Figure 8. As Fig. 4, but for Fi = 0.4 and H/zi = 0.5 (�θ = 14.69 K and zi = 800 m).

lee slope. This corresponds to an increase of about 370% relative to the upstream value
at 2 m. It is interesting to note that, during the early stages of the evolution of this flow, a
large-amplitude lee wave, similar to that seen at Fi = 0.6, starts to develop immediately
downwind of the mountain. However, the amplitude of the wave is sufficiently large that
overturning quickly occurs (by t = 4L/U ) and that, at this point, the lee-wave motion
breaks down and is replaced by the hydraulic-jump feature.

Results obtained with the free-slip boundary condition in this case are qualitatively
very similar to those obtained with the no-slip condition. A dramatic stationary hydraulic
jump is again present over the lee slope of the mountain. The jump develops in the
early stages of the flow evolution when a large-amplitude wave overturns immediately
downwind of the mountain. The maximum in the 2 m wind over the lee slope again
occurs approximately half-way down the lee slope.

4. THE FLOW REGIMES

A large number of simulations like those presented in section 3 have been used
to generate regime diagrams for the flow types which occur with different inversion
strengths and heights. Figure 9 shows the flow regime diagram for the no-slip simula-
tions and the equivalent diagram for the free-slip case is shown in Fig. 10. Note that, as
in section 3, variation in Fi and H/zi is achieved by varying zi and �θ . The values of
H , L, U and N , and hence FL, NH/U and S, are again fixed and take the previously
defined values.
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Figure 9. The regime diagram showing the Fi and H/zi dependence of the flow when the no-slip lower boundary
condition is applied. The non-dimensional parameters FL = U/NL, NH/U and S = H/L are fixed at 0.08, 0.5
and 0.04, respectively. Also shown (solid curve) is the linear prediction of the maximum Froude number for which

a steady trapped lee-wave field is present on the inversion (Eq. 17).

Three different flow regimes have been identified for the no-slip case. These are the
lee-wave flows of the type shown in section 3(b), the hydraulic-jump flows (section 3(d))
and the regime in which only an upward propagating mountain wave is present above
the mountain and no lee waves or hydraulic jumps occur (section 3(a)). As shown by
Fig. 9, the latter regime occurs for sufficiently high values of Fi. It appears that the
critical value of Fi below which lee waves may occur falls with decreasing H/zi (or
alternatively increasing Z = Nzi/U ). This is discussed further in section 5 where linear
theory is used to predict this critical Froude number. The lee-wave regime itself can
be subdivided into two distinct regions: flows in which the wave amplitude is large
enough so that rotors form beneath the wave crests, and flows in which the waves have
too weak an amplitude for rotor formation. Figure 9 reveals that rotors will occur when
H/zi � 0.3 and when Fi is greater than about 0.5 but less than the critical value required
for lee-wave formation. In general, for a sufficiently large fixed value of H/zi (�0.4),
as the Froude number decreases the lee-wave field is eventually replaced by a stationary
hydraulic jump. Figure 9 indicates that this occurs when Fi falls below about 0.4.

The regime diagram for the free-slip flows (see Fig. 10) is broadly similar to that
in the no-slip case. Here, however, we can identify four distinct flow types. These are
the three regimes that were identified in the no-slip case plus a wave-breaking regime
in which the vertically propagating wave located above the mountain overturns. As seen
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Figure 10. As Fig. 9, but for the free-slip simulations. Also marked (dashed curve) is edge of parameter space
described by inequality (22), to the right of which linear theory predicts wave breaking above the inversion in the

hydrostatic limit.

in the example of section 3(c) (H/zi = 0.5, Fi = 0.6), the wave breaking has a major
influence on the near-surface flow and tends to dominate over other features, such as the
trapped lee wave or hydraulic jump. Indeed, the initial stages of all the wave-breaking
simulations show the formation of either a transient lee wave or a hydraulic jump that
is subsequently swept downstream as the mountain wave aloft grows in amplitude.
Figure 10 reveals that the wave-breaking regime occurs for values of Fi greater than
around 0.5 and for H/zi � 0.5. There also appears to be an upper limit to the Froude
number for which wave breaking can occur, and this increases with increasing H/zi;
wave breaking is present for values of Fi up to 0.8 when H/zi = 0.5, and for Fi as
high as 1.1 when H/zi = 1. Note that, for the region of parameter space examined here,
wave breaking is entirely absent in the no-slip simulations. Although this has not been
investigated further, it seems likely that this is due to a reduction in amplitude of the
vertically propagating wave caused by the presence of the boundary layer.

Figure 10 indicates that, as for the no-slip flows, there is a critical Froude number
above which lee waves cannot form on the inversion. Note, however, that, unlike the no-
slip case, no flow separation occurs under the wave crests and consequently no rotors
form. For sufficiently small Fi the lee wave is again replaced by a stationary hydraulic
jump above the lee slope. Comparison of Fig. 10 with Fig. 9 suggests, however, that
hydraulic jumps occur for smaller values of H/zi and higher Fi in the absence of surface
friction. This is presumably because the lee-wave amplitude is generally smaller when
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the boundary layer is present (see section 3(b)) and thus, relative to the free-slip case,
overturning will be delayed as Fi is reduced or H/zi is increased.

5. LINEAR THEORY

We now turn our attention to obtaining solutions to the linearized equations of
motion in an attempt to explain some of the features observed in the simulations. Clearly
the quantitative predictions made by linear theory may be of limited use since the
dynamics of phenomena, such as wave breaking, lee-wave rotors and hydraulic jumps,
are highly nonlinear. We might hope, however, that linear theory will help to elucidate
the important physical processes which may eventually lead to such phenomena.

We restrict attention to Boussinesq flow over 2-D ridges normal to the flow and
assume solutions take the form

φ′(x, z) = 1

2π

∫ +∞

−∞
φ̂(k, z) eikx dk, (4)

where φ′ = (u′, w′, p′, θ ′) and u′, w′, p′ and θ ′ are the perturbations to the horizontal
velocity, vertical velocity, pressure and potential temperature, respectively. The function
φ̂ = (̂u, ŵ, p̂, θ̂) gives the complex Fourier components of the wave field and k is
the horizontal wave number. For simplicity we ignore boundary-layer effects here and
restrict attention to free-slip flows in which, due to the absence of friction, the upwind
velocity is independent of height. The vertical structure equation for each Fourier
component of the vertical velocity in either layer is

d2ŵj

dz2
+
(

N2
j

U
2

− k2

)
ŵj = 0, (5)

where the subscript j = 1 or 2, and denotes either layer 1, the layer below the inversion,
or layer 2, the upper layer. Note that, unlike in Klemp and Lilly’s (1975) study, the form
of Eq. (5) adopted here is valid for non-hydrostatic gravity waves and the hydrostatic
approximation has not been made. As shown below, allowing for non-hydrostatic modes
is an important aspect of this work, since it allows the existence of resonant lee-wave
modes such as those seen in section 3. For mathematical convenience we define a new
height coordinate, z′ = z − zi, such that the inversion occurs at z′ = 0 and the ground is
at z′ = −zi. Solutions to Eq. (5) take the form

ŵ1 = A1 eim1z
′ + B1 e−im1z

′
(6)

and
ŵ2 = A2 eim2z

′
, (7)

where A1, B1 and A2 are complex constants to be determined via boundary conditions
and matching conditions at the inversion. Equation (6) expresses the fact that, due to
reflection at the inversion, solutions in the lower layer contain contributions from both
upward and downward propagating waves, whereas the absence of shear or variation
in N in the upper layer means that Eq. (7) contains only an upward propagating
contribution. The quantities mj are vertical wave numbers and are given by

m2
j = N2

j

U
2

− k2, (8)
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and, for any given wave number k, the choice of sign of m2 and m1 are governed
by either upward group-velocity arguments or the choice of exponential decay of the
upward propagating solution.

The appropriate matching conditions at z′ = 0 are obtained by requiring that the
vertical velocity and pressure are continuous across the inversion. Following Klemp and
Lilly (1975) these conditions can be written as

ŵ1 = ŵ2

dŵ1

dz′ − ŵ1
g′

U
2

= dŵ2

dz′

⎫⎬⎭ at z′ = 0, (9)

and the details of the derivation of the second matching condition are given in the
appendix. The linearized lower boundary condition for the vertical velocity is w′ =
U dh/dx. When Fourier transformed this becomes, for each mode,

ŵ(z′ = −zi) = U îhk, (10)

where ĥ(k) is the Fourier transformed terrain function.
We now restrict attention to the case where the lowest layer is neutrally stratified

(i.e. N1 = 0) and, for consistency with previous notation, we henceforth refer to the
stability in the upper layer simply as N , rather than N2. From Eq. (8) we have m2

1 = −k2

and, to ensure exponential decay with height of the upward propagating contribution in
the lower layer, we choose m1 = i|k|. Substitution of (6) and (7) into (9) and (10) then
gives, after some algebraic manipulation,

ŵ1 = U ikĥ
f̂ (k, z′)

f̂ (k, −zi)
(11)

and
ŵ2 = −2U ikĥ eim2z

′ {f̂ (k, −zi)}−1, (12)

where

f̂ (k, z′) = −2

{
cosh(|k|z′) +

(
1

F 2
i |k|zi

+ im2

|k|

)
sinh(|k|z′)

}
. (13)

(a) Resonant lee waves
It is clear from Eq. (11) that a singularity occurs when f̂ (k, −zi) = 0. Manipulation

of Eq. (13) reveals that this occurs when(
1

F 2
i |k|zi

+ im2

|k|

)
tanh(|k|zi) = 1. (14)

These singularities correspond to the presence of stationary resonant wave modes
(Sawyer 1960) whose amplitude is a maximum at z = zi (i.e. on the inversion). Note
that similar resonant modes occur when non-hydrostatic effects are accounted for in the
flow of a single layer of fluid (bounded by a free surface) over an obstacle (Baines 1995).
The dispersion relation for these interfacial waves is different, however, due to the lack
of stable stratification in a fluid layer above the free surface.

Equating real and imaginary parts of Eq. (14) we can see that the upper-layer
vertical wave number, m2, for these resonant modes must be imaginary. For exponential
decay above the inversion we then have m2 = i(k2 − N2/U

2
)1/2 from Eq. (8) and
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Figure 11. The variation of the lee-wave horizontal wave number with Fi in the free-slip and no-slip numerical
simulations and the wave number predicted by linear theory when (a) Z = 2 and (b) Z = 0.5. Both the exact
linear solution for the wave number (Eq. 15) and the approximate expression (Eq. 16) valid for |k|zi � 1 are
shown. Note that the latter curve is obscured in (a) due to the close agreement with Eq. (15). Note also that only

the no-slip numerical results are shown in (b) since no lee waves occurred in the free-slip simulations.

substitution into (14) then gives

F 2
i =

[
zi

{
|k|

tanh(|k|zi)
+
(

k2 − N2

U
2

)1/2}]−1

. (15)

Equation (15) provides an implicit formula for the resonant wave number, k. Note,
however, that for |k|zi � 1, Eq. (15) can be rearranged to give the following explicit
approximate expression for k:

|k|zi ≈ 1

2

(
1

F 2
i

+ Z2F 2
i

)
, (16)

where the non-dimensional inversion height, Z, is defined by Eq. (1).
Figure 11 shows the variation of kzi with Fi for values of Z = 2 and 0.5, obtained

both from iterative solutions to Eq. (15) and from the approximate expression, Eq. (16).
It is clear that the approximation, valid for large |k|zi, is a good one for all values of Fi
when Z = 2 and also for Z = 0.5 when Fi is sufficiently small; noticeable differences
between the two curves are only apparent in Fig. 11(b) when Fi � 0.6. The 1/F 2

i
dependency in Eq. (16) implies a rapid increase of k as Fi falls towards zero. For larger
values of Fi, |k|zi → Z as Fi increases, because the wave number cannot fall below
N/U . The consequence of this lower bound on k is discussed further below. Also shown
in Fig. 11 are the values of kzi diagnosed from all the no-slip and free-slip numerical
simulations in Figs. 9 and 10 at Z = 2 (H/zi = 0.25) and Z = 0.5 (H/zi = 1) for which
lee waves were present. For each simulation the wave numbers were determined from
the mean wavelengths of disturbances in the velocity fields downwind of the mountain
close to z = zi. It appears that linear theory provides an accurate prediction for the
wavelength of the lee waves. This is true even for the no-slip H/zi = 1 flows, where
rotors occur below the wave crests.
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Note that, since Fi must be a real number, Eq. (15) provides an upper limit on F 2
i ,

above which resonance cannot occur. The physical reason for this is simply that, for
horizontal wave numbers smaller than N/U , the waves are able to propagate freely in
the vertical above the inversion and thus no trapping mechanism exists. Substituting
k = N/U into Eq. (15) we find that we require

F 2
i � tanh(Z)/Z (17)

for resonant waves to exist on the inversion. The critical value of Fi implied by this
inequality is plotted on both regime diagrams in Figs. 9 and 10. No lee waves appear
to occur when Fi is greater than this critical value. This is true in both the free-slip and
no-slip flows and it appears that linear theory provides a useful prediction of when we
can expect resonant lee waves, and possibly rotors, to occur.

The solution for the vertical-velocity field is obtained by substitution of (6) and (7)
into the integral (4). The resonant-mode contributions then give rise to simple poles
which lie on the real k-axis. Following Sawyer (1960), we take the contour of integration
around the poles below the real axis to obtain a solution valid far downstream of the
mountain. The resonant downstream contribution to the wave field is given by

w′(x, z′) = −U

{
f̂ (kr, z′)

f̂ ′(kr, −zi)
krĥ(kr) eikrx + complex conjugate

}
, (18)

where f̂ ′ = ∂f̂ /∂k and kr is the positive resonant wave number (i.e. the positive solution
to Eq. (15)) and the contribution from the complex conjugate comes from the negative
wave number contribution.

The linear prediction of the lee-wave amplitude has been computed from Eq. (18)
and compared with the numerical results. The Froude number dependence of the
maximum vertical velocity given by Eq. (18) at z = zi is shown in Fig. 12 for an
inversion height of 1600 m. The vertical velocity shown has been normalized by
the factor UH/L. Also shown are the maximum vertical velocities downwind of the
mountain on the inversion from the relevant no-slip and free-slip simulations discussed
in section 3(b). Although both numerical results and linear theory predict a maximum
in the normalized vertical velocity at a Froude number of around 0.5, the linear theory
clearly significantly underestimates the wave amplitude at all Froude numbers. Also
shown in Fig. 12 are the results from an additional series of free-slip simulations in
which the hill height was reduced from 400 m to 20 m (H/zi = 0.0125). It appears that,
in this case, the agreement with the linear theory is more reasonable.

The discrepancy between the linear-theory wave amplitude and that observed in the
numerical simulations has been investigated further by conducting a series of free-slip
simulations with different mountain heights. Figure 13 shows the ratio of maximum
lee-wave vertical velocity on the inversion in the simulations to that predicted by linear
theory. Results are presented for two different sets of simulations, with inversion heights
of 1600 m and 3200 m. The Froude number is fixed at 0.6 for all simulations and
by choosing different values of U , namely 8 and 16 m s−1 for the zi = 1600 m and
3200 m simulations, respectively, the non-dimensional inversion height is also fixed at
Z = 2. Figure 13 shows that, for sufficiently small hill heights, there is close agreement
between the numerical results and linear theory for both values of zi. This is true for
mountains at least as high as 400 m when the inversion height is 3200 m. When zi is
reduced to 1600 m, however, the results diverge rapidly for hill heights greater than only
about 50 m and it would seem that the lee-wave amplitude is controlled by nonlinear
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Figure 12. The variation of the lee-wave maximum normalized vertical velocity at the inversion height with Fi.
Results shown are for a fixed inversion height (zi = 1600 m) and mountain heights of 400 m and 20 m. Both

free-slip and no-slip results are shown, as well as the linear theory prediction, Eq. (18).

processes for only moderate size hills. Note that this effect has also been demonstrated
for situations where no inversion is present. The work of Smith (1976) and Durran
and Klemp (1982), for example, clearly shows that, in some situations, linear theory
seriously underestimates the amplitude of trapped lee waves.

One effect of reducing the inversion height whilst keeping Fi and Z fixed is to
reduce the horizontal wavelength of the lee waves on the inversion; solutions to Eq. (15)
for zi = 3200 m and 1600 m are k = 0.654 km−1 and 1.309 km−1, respectively. Since,
according to linear theory, the wave forcing is directly proportional to the hill Fourier
transform at the resonant wave number (see Eq. 18), this change in wave number may
have a significant impact on the linear wave amplitude. This is confirmed by examination
of ĥ(k) for the cosine hill used in this study. A complicated analytic expression (not
shown) for ĥ can easily be derived for this particular hill and, as shown by Fig. 14, as
the wave number approaches 1.257 km−1 (which corresponds to a wavelength of L/2)
the Fourier transform decreases rapidly with increasing k. The linear-wave amplitude is,
therefore, very small for such wave numbers∗ and hence small in the zi = 1600 m case.
The fact that this is not the case in the simulations (and hence the ratio of nonlinear
to linear wave amplitude is large for all but very low hills) is presumably because,
in the absence of any direct forcing by the topography at the resonant wave number,

∗ The Fourier transform of the isolated cosine hill does, in fact, contain multiple zeros at k = 2K , 3K , etc. These
wave numbers correspond to wavelengths of L/2, L/3 etc.
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L = 2π/K = 10 km. Also marked are the resonant wave numbers, kr = 1.309 and 0.654 km−1 obtained from
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inversion height in the free-slip simulations to that predicted by linear theory. For all simulations the values of zi,

Fi and Z are 1600 m, 0.6 and 2, respectively.

the wave amplitude is instead determined by nonlinear processes. This effect was also
discussed by Durran (1992) who noted that linear theory can significantly underestimate
the amplitude of trapped waves generated by wide mountains.

The above idea has been tested further by repeating the zi = 1600 m free-slip
simulations for a range of different mountain widths, L. In all cases H was fixed
at 400 m. Figure 15 shows the variation of the ratio of nonlinear to linear lee-wave
amplitude with L. As seen previously, for the higher values of L the nonlinear wave
amplitude far exceeds the linear prediction. As L decreases, however, linear theory
becomes increasingly accurate. For L � 4.8 km, for example, which corresponds to
the resonant wavelength, the ratio of nonlinear to linear amplitude is less than 1.5.
For L = 2.5 km the ratio is close to unity. It would seem, therefore, that linear theory
does provide a useful prediction of wave amplitude provided the ratio of hill width
to lee wavelength is less than about 1. Note that Yang and Akylas (1996) obtained a
similar result for lee waves generated in the flow of a continuously stratified fluid (with
constant N and U ) in a channel of finite depth. Yang and Akylas found that finite-
amplitude effects dominate when ε/µp is of order unity, where ε is the ratio of hill
height to channel depth, µ is the ratio of channel depth to hill width and p is a positive
number dependent on the hill shape. For mountains that are wide compared with the
channel depth (µ � 1), the lee wavelength is comparable to the channel depth and, thus,
their result implies that nonlinear effects become increasingly important as the ratio of
wavelength to hill width decreases.
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(b) Upper-level gravity-wave breaking
In the interests of understanding the wave breaking that occurs above the inversion

in the free-slip simulations we now consider the vertically propagating wave solutions
in the upper layer. For simplicity we restrict attention to the hydrostatic limit in
which the vertical wave number m2 ∼ N/U . For the flows considered in section 3 this
approximation is valid since FL � 1. For small k, Eq. (12) can be approximated by

ŵ2 = −
(

1

F 2
i

+ iZ − 1

)−1

U îhk ei(Nz′/U). (19)

Equation (19) reveals that the amplitude of vertically propagating waves above the
inversion will increase as the non-dimensional inversion height, Z, is reduced. We
might, therefore, expect the waves to overturn for sufficiently small zi. By application of
the continuity equation an expression for û2(k, z), the Fourier transformed horizontal-
velocity perturbation (u′

2) in the upper layer, can be obtained:

û2 = îhNF2
i ei(Nz′/U)

F 2
i (iNz′/U − 1) + 1

. (20)

The maximum value of u′
2 in the upper layer can then be computed for any given

mountain shape by substituting (20) into Eq. (4). This maximum value occurs at
heights where tan(Nz′/U) = ZF2

i (1 − F 2
i )−1 directly above the mountain summit and

be written as

|u′
2/U | = NH

U

{
(1 − F 2

i )2 + Z2F 4
i

}−1/2
. (21)

The onset of wave breaking in the upper layer corresponds to the maximum value of
|u′

2/U | being greater than unity. By manipulation of Eq. (21) it can be shown that linear
theory predicts that wave breaking will occur whenever

H

zi
� NH

U
F 2

i

{(
NH

U

)2

− (1 − F 2
i )2

}−1/2

. (22)

Note also that the square root on the right-hand side of (22) implies that we further
require |1 − F 2

i | < NH/U = ZH/zi. The critical values of H/zi and Fi implied by these
inequalities are shown in the free-slip regime (Fig. 10). According to linear theory, wave
breaking will occur to the right of the dashed curve. It is clear that, while linear theory
might provide a qualitative description of the wave breaking, in reality overturning
will occur for considerably lower values of H/zi and Fi than predicted by the above
inequalities. The lowest value of H/zi for which overturning occurs in linear theory
is around 0.867, whereas it is present in the free-slip simulations for H/zi as small as
0.5. This discrepancy is by no means surprising since nonlinear effects will become
important well before the actual onset of overturning.

6. CONCLUSIONS

This study has highlighted how the presence of a sharp temperature inversion
upwind can have a significant impact on flow over mountains and illustrates how
phenomena such as lee-wave rotors, hydraulic jumps and wave breaking can occur. For
the idealized cases considered here, the flow behaviour is sensitive to the Froude number
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and the height of the inversion. The formation of rotors is related to the presence of a
resonant lee wave on the inversion downwind of the mountain. The wavelength and
conditions under which this wave forms are well predicted by linear theory. This is true
for both free-slip flows in which surface friction is neglected and for flows in which a
boundary layer is present. The wave amplitude, however, is seriously underestimated by
linear theory if the horizontal wavelength is significantly less than the hill length scale.

For fixed a Froude number, smaller than the critical value for the existence of
lee waves on the inversion, results show that the lee-wave amplitude increases as the
ratio of hill height to inversion height (H/zi) increases. When boundary-layer friction
is represented in the simulations, the amplitude can be large enough to cause flow
separation. Closed rotor circulations then form underneath the wave crests. These rotors
do not form when a free-slip boundary condition is applied however. In both the no-slip
and free-slip simulations, as the Froude number is reduced the lee wave is eventually
replaced by a stationary hydraulic jump above the lee-slope of the mountain. The results
presented here indicate that hydraulic jumps will occur provided H/zi � 0.25. Note,
however, that hydraulic jumps might also be present for smaller H/zi, provided the
Froude number is smaller than 0.2. No simulations have been designed to test this
however.

One effect of neglecting surface friction in the numerical simulations is an increase
in the amplitude of vertically propagating waves above the inversion, compared with
those when a boundary layer exists. When the ratio of mountain to inversion height
is greater than about 0.5 and the Froude number lies between around 0.5 and some
upper limit (which increases with H/zi) the wave amplitude is large enough to cause
overturning above the mountain. Wave breaking then dominates the flow at low levels
and lee waves, if they occurred in the early stages of flow development, are swept
away downstream. Given that real atmospheric flows contain a boundary layer, it is
tempting to infer that these free-slip simulations are unrealistic. One should bear in
mind, however, that for mountains higher than those studied here the wave field may
be of sufficient amplitude to break, regardless of whether a boundary layer is present or
not. In such cases, the wave-breaking regime is likely to dominate the near-surface flow.

It is perhaps worth pointing out that in the context of atmospheric flow over moun-
tains, the values of Fi, Z−1 and H/zi in Fig. 9 for which rotors and hydraulic jumps
occur, do not require extreme values of wind speed, mountain height and temperature
change across the inversion. Consequently, such values will occur frequently in real
situations. Routine radiosonde ascents from the Falkland Islands, for example, often
contain sharp inversions starting at around 500 m with �θ ∼ 10 K or greater. Mountain
heights on East Falkland are also typically 500 m and, assuming an upstream wind speed
of 10 m s−1 and N ∼ 0.01 s−1, this then implies Fi ∼ 0.7, H/zi ∼ 1 and Z−1 ∼ 2. Ac-
cording to Fig. 9 we would expect lee-wave rotors to be present under these conditions.
Recent near-surface wind measurements made on East Falkland (S. D. Mobbs, personal
communication) reveal that episodes of dramatic downslope winds and flow reversal can
occur for conditions such as these, which may indicate effects such as rotors or hydraulic
jumps aloft. Clearly there is a need to properly relate field observations to the numerical
results, but it seems likely that regime diagrams such as Fig. 9 could prove useful for
forecasting damaging winds in mountainous terrain.

The results presented here have shown how flow over mountains is sensitive to the
presence of a sharp temperature inversion. We should note, however, that the study has
been restricted to the case of a discontinuity (or rather its finite difference representation)
in potential temperature, whereas in reality inversions may occur over a depth of several
hundred metres. Although a thorough investigation of the flow dependence on the
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inversion depth is beyond the scope of this paper, some preliminary simulations, not
presented here, have shown that the lee-wave wavelength has a tendency to increase with
increasing inversion depth. Further, Klemp and Lilly’s (1975) linear hydrostatic study
demonstrated that the amplitude of the vertically propagating mountain wave increases
as the inversion depth decreases. It seems possible, therefore, that in certain situations
the whole character of the flow may change altogether when a sharp inversion is replaced
by a much deeper one. This effect undoubtedly warrants further investigation. Perhaps
more important, however, is the question of how the flow changes when the topography
is three dimensional (3-D). It is well known that phenomena such as flow splitting and
lee-vortex formation (e.g. Smolarkiewicz and Rotunno 1989; Schär and Durran 1997)
occur in both shallow-water flows and flows with uniform N and U past axisymmetric
3-D mountains. Recent investigation of constant N and U flows past long 3-D ridges
by Epifanio and Durran (2001) also reveals that the flow can be significantly different
to that over 2-D ridges; the character of wave breaking and upstream flow blocking, for
example, is sensitive to the length of the ridge. It seems likely that similar effects will
be important when the work presented here is extended to 3-D flow.
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APPENDIX

The pressure-matching condition
The linear theory presented in section 5 is based on the shallow-convection form of

the Boussinesq equations. In nonlinear form these can be written as

Du
Dt

= −∇P ′ + g(θ − θ)

θ0
k, (A.1)

Dθ

Dt
= 0 (A.2)

and
∇ · u = 0, (A.3)

where u is the velocity, θ is potential temperature, P ′ = p′/ρ0 and ρ0 is a constant ref-
erence density. The background (height dependent) potential temperature is represented
by θ , and θ0 is a constant reference value. We require that P ′ is continuous across
the inversion and, following Baines (1995, p. 165), the matching conditions across the
discontinuity can be obtained by expressing P ′ at z′ = 0 as a Taylor series expansion
about the displaced height of the inversion, z′ = η:

P ′
j (x, z′ = 0) = P ′(x, η) − η

∂P ′
j

∂z z′=η
+ O(η2), (A.4)

where the subscript j takes the values 1 or 2 and defines the layer beneath or above
inversion, respectively. Since we require P ′

1 = P ′
2 at z′ = η, Eq. (A.4) gives

(P ′
1 − P ′

2)z′=0 = η

(
∂P ′

2

∂z
− ∂P ′

1

∂z

)
z′=η

. (A.5)
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We may now use the vertical component of (A.1) to eliminate ∂P ′
j /∂z from (A.5), and

the continuity of the vertical velocity (and hence the continuity of Dwj/Dt) at z′ = η to
obtain the following matching condition:

(P ′
1 − P ′

2)z′=0 = η
g (θ2 − θ1)z′=η

θ0
= ηg′. (A.6)

We now assume wave-like solutions of the form (4) to the steady linearized versions
of Eqs. (A.1) to (A.3). In the absence of background shear, the linearized continuity
equation and the x-component of the linearized momentum equation can be combined
to give

U
dŵ

dz
= ikP̂ . (A.7)

Substituting this into the Fourier transformed (A.6), and noting that ikUη̂ = ŵ, then
gives

U

(
dŵ1

dz
− dŵ2

dz

)
= ŵ1

U
g′ (A.8)

which is the second matching condition given in Eq. (9).
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