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ABSTRACT: We utilized high temporal resolution, near-surface observations of sustained winds and gusts from two net-
works, the primarily airport-based Automated Surface Observing System (ASOS) and the New York State Mesonet
(NYSM), to evaluate forecasts from the operational High-Resolution Rapid Refresh (HRRR) model, versions 3 and 4.
Consistent with past studies, we showed the model has a high degree of skill in reproducing the diurnal variation of
network-averaged wind speed of ASOS stations, but also revealed several areas where improvements could be made. Fore-
casts were found to be underdispersive, deficient in both temporal and spatial variability, with significant errors occurring
during local nighttime hours in all regions and in forested environments for all hours of the day. This explained why the
model overpredicted the network-averaged wind in the NYSM because much of that network’s stations are in forested
areas. A simple gust parameterization was shown not only to have skill in predicting gusts in both networks but also to
mitigate systemic biases found in the sustained wind forecasts.

SIGNIFICANCE STATEMENT: Many users depend on forecasts from operational models and need to know their
strengths, weaknesses, and limitations. We examined generally high-quality near-surface observations of sustained
winds and gusts from the nationwide Automated Surface Observing System (ASOS) and the New York State Mesonet
(NYSM) and used them to evaluate forecasts from the previous (version 3) and current (version 4) operational High-
Resolution Rapid Refresh (HRRR) model for a selected month. Evidence indicated that the wind forecasts are excel-
lent yet imperfect and areas for further improvement remain. In particular, we showed there is a high degree of skill in
representing the diurnal variation of sustained wind at ASOS stations but insufficient spatial and temporal forecast vari-
ability and overprediction at night everywhere, in forested areas at all times of day, and at NYSM sites in particular,
which are more likely to be sited in the forest. Gusts are subgrid even at the fine grid spacing of the HRRR (3 km) and
thus must be parameterized. Our simple gust algorithm corrected for some of these systemic biases, resulting in very
good predictions of the maximum hourly gust.

KEYWORDS: Forecast verification/skill; Numerical weather prediction/forecasting; Surface observations

1. Introduction

Accurate wind forecasts are important in a number of
areas, including and not limited to wind energy (Piccardo and
Solari 1998; Petersen et al. 1998), pollution transport (Arya
1999), and anticipation and mitigation of damage resulting
from strong winds (Holmes et al. 2014). An example of the
latter is the “Santa Ana” weather event (cf. Rolinski et al.
2019), a cool-season pattern of offshore flow in Southern Cali-
fornia that is known to dramatically increase the risk of large
wildfires (Westerling et al. 2004; Rolinski et al. 2016). Numeri-
cal modeling of Santa Ana events using the Weather Research
and Forecasting (WRF) Model’s Advanced Research WRF
(ARW) core (Skamarock et al. 2019) for the purposes of model
verification and wind reconstruction (e.g., Cao and Fovell
2016; Fovell and Cao 2017; Cao and Fovell 2018; Fovell and
Gallagher 2018) has revealed strengths and weaknesses of both
the forecasts and the observations of the sustained wind, which
in practice implies averaging over periods of time such as 2 or
10 min. At mesoscale grid spacings, short-period (e.g., 3-s) gusts
are a subgrid-scale phenomenon, necessitating parameteriza-
tion in all operational numerical weather prediction models at

this writing. There have been many such parameterizations pro-
posed (cf. Sheridan 2011), some being rather complex (Panofsky
et al. 1977; Nakamura et al. 1996; Brasseur 2001; Gray 2003;
Stucki et al. 2016; Gutiérrez and Fovell 2018; Benjamin et al.
2021, to name a few).

Many users rely on wind predictions from operational mod-
els such as NOAA’s operational High-Resolution Rapid
Refresh (HRRR) (cf. Benjamin et al. 2016; Dowell et al.
2022). HRRR is based on WRF-ARW and has 3-km horizon-
tal grid spacing covering the conterminous United States
(CONUS). A number of studies have focused on verification
of HRRR forecast fields, including wind speed (cf. Olson et al.
2019b; Pichugina et al. 2019; Wilczak et al. 2019). In particu-
lar, Fovell and Gallagher (2020, hereafter FG20), presented a
forecast verification of HRRR version 3’s (HRRRV3 or V3)
0000 and 1200 UTC cycles, which were selected for their rela-
tively long (36-h) forecast periods. (Although new HRRR
cycles were launched hourly, only the 0000 and 1200 UTC
model runs ran longer than 18 h in V3.) Also, while other
select months were also examined, the primary focus was on
April 2019 as a representative time period.

In addition to the boundary layer analysis that employed high-
resolution radiosonde data, an evaluation of 2-m temperature
and 10-m wind speed forecasts for ≈800 Automated SurfaceCorresponding author: Robert G. Fovell, rfovell@albany.edu
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Observing System (ASOS) sites was conducted. These installa-
tions are typically, but not always, found at airports. FG20
demonstrated that the HRRRV3 produced skillful forecasts
when averaged over the ASOS network although temperature
biases were robustly related to station elevation and wind
biases were negatively correlated with observed speed. The lat-
ter means that “sites characterized by slower observed winds
were systematically more likely to be overpredicted while
windier sites were underestimated” (FG20), consistent with the
results of prior studies focusing specifically on Santa Ana
events (cf. Cao and Fovell 2016; Fovell and Cao 2017; Cao and
Fovell 2018; Fovell and Gallagher 2018).

In this work, FG20’s evaluation of forecasts for ASOS sta-
tions was reconsidered from scratch and considerably
extended and improved. As in FG20, we started with April
2019, but the specific emphasis is on hourly mean winds and
maximum gusts with the discussion confined to the 0000 UTC
cycle in order to streamline the presentation. In this effort,
data from the NewYork State Mesonet (NYSM; Brotzge et al.
2020) were also analyzed and gust forecasts made using a sim-
ple parameterization suggested by Cao and Fovell (2018,
hereafter CF18) were considered. As version 4 of the HRRR
(HRRRV4 or V4) became operational in December 2020, an
analysis of April 2021 is also provided to highlight improve-
ments and identify remaining challenges.

This work diagnoses systemic errors and weaknesses of a
very skillful operational model for the purposes of highlight-
ing areas for potential future improvements. Another goal
was to identify and understand issues with available observa-
tional data. This paper is organized as follows. Section 2
describes the data and methods used in this study. Sections 3
and 4 present our analyses of April 2019 (HRRRV3) and
April 2021 (HRRRV4), respectively, the latter emphasizing
comparisons with the section 3 findings. Finally, section 5 pre-
sents some conclusions and recommendations.

2. Data and methods

Anemometers of different types, including the sonic, cup
and vane, and propeller varieties, are used to sample the wind
at some period we will term the sampling interval. These sam-
ples are then averaged over a certain period, the averaging
interval. The World Meteorological Organization (WMO)
standard (WMO 2018) specifies averaging intervals of 3-s and
10-min for the gust and sustained (mean) wind, respectively.
In a given report consisting of sustained wind (hereafter usu-
ally termed simply as “wind”) and gust readings, the gust is
conventionally the highest 3-s value within the averaging
interval used for the wind.1 The standard also specifies an
anemometer mounting height at 10 m above ground level

(AGL) with adequate clearance around the instrument. Ide-
ally, the surrounding environment would consist of open flat
terrain with obstacles no taller than 4 m and more than 30
times their height (28 above the horizon) away from the ane-
mometer (WMO wind class 1). Adherence to these guide-
lines, however, is not all that common in practice.

NOAA makes HRRR model outputs available hourly and
on the hour, providing forecasts of 10 m AGL wind speed
representing an instant of time.2 However, because the winds
at any grid point only vary over time periods that are much
longer than the model time step (20 s), these are interpreted
as sustained winds. As in FG20, 1-min ASOS observations
were obtained from the National Centers for Environmental
Information (NCEI) archive, which are available for more
than 850 sites in the CONUS. The 1-min observations provide
measurements of sustained winds and gusts made from sonic
anemometers nominally at 10 m AGL. Although the internal
processing is complicated,3 the sustained wind readings we
used effectively represent an average of samples taken over
the 2-min period prior to the report, with the highest 3-s aver-
age during the 1-min interval provided as the gust. The conse-
quences of the relatively coarse (1 kt or 0.5144 m s21)
precision of ASOS wind and gust reports will be noted in the
analyses to come.

The FG20 analysis used top-of-the-hour ASOS reports and
model fields were interpolated to station locations in the usual
fashion. However, owing to the model’s horizontal resolution,
which does not resolve small turbulent eddies, there is very
likely less temporal and spatial variability in the forecasts
than in the observations. To assess whether this unduly influ-
enced the results, we elected to pursue an alternative strategy
in this new effort, using the observed hourly mean wind speed
and hourly maximum gust. Sustained wind observations from
each site were averaged through a 60-min window centered at
the top of each hour and the largest gust report within that
window was identified. For each station, only hours without
missing or invalid data in a given hour were retained. Thus,
we used hourly averaged winds instead of 2-min averages in
the sustained wind verifications. Owing to Harper et al.
(2010), who argued that different averaging intervals repre-
sent “equivalent measures of the true mean wind but with
differing variance,” we expected that the results for the sus-
tained wind would be nearly unchanged, and this proved to
be true.

In contrast, the altered handling of the gusts did make a dif-
ference. In prior work using 1-min ASOS observations
(including Cao and Fovell 2016, 2018; Fovell and Gallagher
2018), the gust in each station record represented the largest
speed sample during the 1-min interval at the top of each
hour. Because this covers only 1.7% of the hour, we believe
the hourly maximum gust is a better measure of the wind
threat. This caused a reasonable and anticipated change in the1 In the United States, a significant exception to this is the

Remote AutomatedWeather Station (RAWS) network, for which
hourly reports consist of the past hour’s highest speed sample
(peak wind) along with the mean wind of the last 10 min prior to
the report (National Wildfire Coordinating Group 2019). Thus,
there is no guarantee the peak came from the samples used to
compute the sustained wind.

2 The lowest horizontal wind model level is close to 10 m AGL
and the 10-m wind speed value is obtained via vertical interpola-
tion (see Benjamin et al. 2021).

3 See documentation at https://www.weather.gov/asos/.

WEATHER AND FORECAS T ING VOLUME 371050

Brought to you by SUNY ALBANY LIBR SB23 | Unauthenticated | Downloaded 06/13/22 04:12 PM UTC

https://www.weather.gov/asos/


gust factor (GF), being the gust divided by the sustained
wind. Averaged over the CONUS, the 1-min ASOS GF was
about 1.29 and this increased to 1.86 with the new strategy.
Further discussion may be found in the appendix.

Although most ASOS stations are at airports there are
some significant exceptions, such as the consistently windi-
est site (KDGP}Guadalupe Pass, Texas), a non-airport
installation sited near a steep cliff. There are some very low
wind speed stations, including non-airport sites such as
KMEH (Meacham, Oregon), KP69 (Lowell, Idaho), and
KMHS (Mt. Shasta, California), and small airports possess-
ing significant along-runway obstructions, examples being
KVPC (Carterville, Georgia) and K1JO (Bonifay, Florida).
A fraction of installations reportedly has anemometers
mounted below 10 m AGL (e.g., KMTP}Montauk, New
York). None of these problem stations were excluded from
our analyses because they were not found to alter our
results or conclusions.

The New York State Mesonet (Brotzge et al. 2020) con-
tains 126 surface stations distributed across the state with
an average spacing of 27 km. Each station possesses sonic
and propeller anemometers mounted (apart from five roof-
top installations in New York City) at 10 m AGL. Reten-
tion of these rooftop sites did not change our results or
conclusions. The precision of the sonic and propeller ane-
mometer readings are 0.1 and 0.17 m s21, respectively (Lufft
2021; R. M. Young Company 2000). Quality-controlled, 3-s
observations from both sensors were obtained directly
from the Mesonet. This would seem to represent an oppor-
tunity to evaluate the influence of hardware on the wind
measurements but there are some unfortunate complica-
tions. The NYSM propeller instrument provided a 3-s aver-
age wind every 3 s, consistent with the WMO gust standard
and being the same gust averaging interval employed by
the ASOS sonic anemometers. In contrast, the NYSM’s sonic

instrument sampled once per second but only every third read-
ing was recorded, meaning its gusts are actually 1-s and not 3-s
averages.

As with the ASOS data, we used the NYSM readings to
construct hourly average winds and hourly maximum gusts
centered on the hour for both instruments, but retained only
hours with valid data from both instruments. Over April 2019
and 2021, mean propeller winds were about 0.25 m s21

(10.7%) lower than for the sonic, and gusts were 0.6 m s21

(12%) slower, these differences being large enough to be rele-
vant to our analyses. The propeller anemometer reported rel-
atively more readings close to calm. The network-averaged
GFs for April 2019 were 2.21 and 2.24 from the propeller and
sonic instruments, respectively. The shorter interval used with
the sonic gust data could be expected to increase the GF
slightly (cf. Durst 1960).

FG20 did not consider gust forecasts. Herein we verified
forecasts made using the simple CF18 parameterization for
10-m gusts, which consisted of multiplying the (sustained)
wind forecast by the network-averaged GF after correcting
for the mean network-averaged bias. We note the HRRR
model also provides “gust potential” forecasts created using
boundary layer depths and winds (Benjamin et al. 2021).
However, in the hourly HRRR outputs, these forecasts are
instantaneous values. It would be inappropriate to consider
them as predictions of the hourly maximum gust and they do
not verify well against them anyway (not shown). The HRRR
makes subhourly (every 15-min) forecasts available, but these
neither fully sample the hour nor are available beyond fore-
cast hour 18, even in HRRRV4. As a consequence, we did
not consider the HRRR’s gust forecasts in this study.

3. HRRRV3 wind and gust evaluation for April 2019

Figures 1 and 2a show the topography and primary land-
use assignments used by the HRRRV3. Land-use and terrain

FIG. 1. Topography of the HRRRV3 domain, superposed with locations of 807 ASOS stations
(red) and 126 NYSM sites (blue, in inset) retained in the April 2019 analysis. Marker sizes indi-
cate monthly average wind speed from April 2019, using observations from all times of day.
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information was obtained from the WRF Geogrid file made
available on NOAA’s HRRR website (http://rapidrefresh.
noaa.gov/hrrr/). In WRF-ARW version 3, on which HRRRV3
was based, there were two separate land-use databases
derived from Moderate Resolution Imaging Spectroradiome-
ter (MODIS) satellite information available with HRRRV3
employing the lower-resolution version. Surface roughness
lengths (z0), constructed as described in He et al. (2021), were
extracted from model outputs at forecast hour 12.4

The locations of 807 ASOS and 126 NYSM sites are also
shown on Fig. 1, with marker size reflecting mean wind speed
for April 2019. Sites with fewer than 500 observations in the
month were excluded from the analysis and are not shown.
Owing to finite resolution, a few stations were misclassified as
being over water (including having z0 , 0.01 m), and these
were also removed. WRF-ARW and the HRRR’s Rapid
Update Cycle (RUC) land surface model utilize fractional
land-use assignments and more than half (53%) of the ASOS
stations were associated with more than one class (Fig. 2b).
This can and does influence surface characteristics (including
roughness) used in a given grid cell. That being said, the class
representing the primary assignment had an average land-use
fraction of 0.84 over the 807 ASOS sites, this ranging from
0.74 among the forested lands to 0.88 for the cropland and
urban classes.

a. Analysis by forecast hour and local time

As in FG20, we first considered ASOS network-averaged
winds expressed in terms of forecast hour, which extended out
to 36 h for the 0000 UTC cycle. The present result (Fig. 3a) is
nearly identical to that shown in FG20 (their Fig. 7a), illustrat-
ing that the adoption of hourly mean observations made
essentially no difference. Again, the model started with a small
negative bias (defined as forecast minus observation) of about
20.5 m s21 that became smaller in magnitude with time over
the first 24 forecast hours. This bias is small compared to the
spatial variation of the observations (illustrated by the gray
vertical bars) owing to fact we are averaging across a very
wide area spanning four time zones.

New to this evaluation are examinations of forecast and
observation spatial and temporal variability and an analysis
by local time (LT). Figure 4a reveals that the spatial variation
of the forecasts valid at ASOS sites (henceforth, “ASOS fore-
casts”), expressed as the standard deviation, was smaller than
that of the observations at all forecast hours. There is a diur-
nal cycle in both, again smeared by averaging across time
zones. This may be in part a consequence of local landscape
features (valleys, hills, obstacles and/or land surface varia-
tions) that cannot be resolved in the model. Since the mean
forecast and observed winds were quite similar, it can be
anticipated that the model would fail to represent the fre-
quency of both lower and higher wind speeds. This will be
examined presently. Additionally, Fig. 4b presents time series
of the difference between forecast and observation spatial

FIG. 2. Primary land-use assignments used in the (a) HRRRV3 and (c) HRRRV4, color coded by land-use cate-
gory, showing ocean and lakes (blue); croplands (gold); grasslands (light green); evergreen, deciduous, and mixed for-
ests and woody savannas (dark green); open shrublands (maroon); and urban (bright red) and barren (white) lands.
Fraction (0–1) of the primary land-use classification in the (b) HRRRV3 and (d) HRRRV4.

4 In WRF-ARW, roughness lengths reported in the 0-h model
output has not yet been updated, and thus may not be correct.
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standard deviation and the forecast wind bias. They are simi-
lar in that they both were negative but became less so with
time.

Expressed in terms of LT, the network-averaged forecasts
retained a negative bias through the day (Fig. 3b), with the
model apparently ramping up the late morning winds too
slowly and diminishing them too quickly into the evening.5

The HRRR model employs the Mellor–Yamada–Nakanishi–
Niino Level 2.5 (MYNN2) planetary boundary and surface
layer parameterizations (Nakanishi and Niino 2004), which
have been refined in recent years (cf. Olson et al. 2019a).
This finding may hold clues for further parameterization
improvements. There was a diurnal cycle in both forecast and
observation spatial variation (Fig. 5a), but again the forecast
variability was slightly smaller and the diurnal variation in
spatial standard deviation difference and forecast bias was
very small (Fig. 5b). It is emphasized that this is an excellent,
if not completely perfect, forecast, at least with respect to the
network average.

In pointed contrast, the HRRRV3 overpredicted wind speeds
averaged over the 126 NYSM sites by more than 1 m s21

(Fig. 6a). Part of this gap is due to the propeller instrument
that, as noted above, reports lower sustained wind speeds than
its sonic counterpart. However, the forecast bias with respect to
the sonic observations was 0.77 m s21, which is still sizable.
Another difference is that the spatial variability of the forecasts
(Fig. 6b) was larger than the observations at every forecast hour

with the biases and spatial standard deviation differences being
relatively constant with forecast hour (Fig. 6c). We need to
emphasize at this point that the ASOS and NYSM networks
serve different needs and represent markedly different siting
philosophies. Instead of being largely collocated with airports,
NYSM stations sample the landscapes and geography of the
state.

b. Analysis by station

The present study also enhanced the station-based analysis
of FG20 and the previously cited work on Santa Ana winds.
We started by comparing forecast and observed sustained
winds averaged over all available pairs for each station (Fig. 7a).
Each dot is an ASOS (black) or NYSM (orange) station.
Regarding the ASOS sites, while there are a few, non-impact-
ful outliers, the squared linear correlation coefficient between
the series is moderately high (R2 5 0.56) and largely arrayed
along the 1:1 correspondence line. NYSM stations are gener-
ally found beneath the 1:1 line, consistent with the overpredic-
tion already demonstrated. The least squares fit shown was
based solely on the 807 ASOS sites.

The relationship between forecast wind bias and various
variables is examined in Fig. 8. Similar to previous studies
already cited, the forecasts were not correlated with the bias
(Fig. 8a), even for NYSM stations (orange circles). However,
the observations were significantly and negatively correlated
with bias (Fig. 8b), indicating overprediction of calmer sites
and underprediction at windier locations. The NYSM stations
do not appear to be exceptional, apart from the fact that as a
relatively low wind speed network their sites are more likely
to be associated with positive biases. A comparable analysis

FIG. 3. Time series of ASOS observations (red) and HRRR forecasts (black) of 10-m sustained wind speeds, aver-
aged spatially across the ASOS network and temporally over the month of (a),(b) April 2019 and (c),(d) April 2021
presented with respect to HRRR (left) forecast hour and (right) local time. On all plots, the vertical gray bars denote
61 standard deviation of the averaged observations.

5 The analysis time, forecast hour 0, was removed from this anal-
ysis owing to the shift in bias behavior seen between the analysis
and forecast hour 1 in Figs. 4a and 4b.
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using the NYSM’s sonic observations was only subtly differ-
ent (not shown).

CF18 demonstrated (their Fig. 11d) that the forecast wind
bias was also positively correlated with the station gust factor,
which could be expected because GF incorporates the
observed wind. They used station GF relative to the network
average value to interpret the forecast bias and infer site
exposure. Locations with significant obstructions would be
expected to have relatively lower wind speeds than similar
although unobstructed sites, but short-period gusts might be
anticipated to be less impacted, leading to higher GF values.
Wind speeds at these stations would be expected to be over-
forecast because the model cannot “see” and account for
these obstructions. In contrast, sites with lower GFs might
have local features, such as hills, that might help speed up the
wind relative to a more average setting. These stations would
likely be underpredicted.

In Fig. 8c, we see a sizable negative correlation between
bias and GF, although here we have instead elected to employ

its reciprocal, the inverse gust factor (iGF), because it improves
the linear relationship with bias and is bounded between
0 and 1. GF and iGF are functions of the observational data
only and we see the model tended to overpredict when the sus-
tained wind speeds were particularly small relative to the gust
and underpredict when they were more comparable.

CF18 also considered a simple gust parameterization that
was inspired by the association between bias and GF (and
thus iGF). That strategy partially compensated for the biases in
the sustained wind forecasts by applying the network-average
gust factor to all wind forecasts, yielding less biased gust pre-
dictions. Underpredicted stations also tended to have smaller
GF (larger iGF) values than average, so multiplying the too-
low speed forecasts by the network average at least partially
mitigated the model’s negative sustained wind bias. Similarly,
overpredicted sites often had larger than average GFs
(smaller iGFs) so multiplying the positively biased forecasts
by the smaller network-average GF compensated for some of
the overprediction.

FIG. 4. Time series of (top) the spatial standard deviation of ASOS observations (red) and HRRR forecasts (black)
of 10-m wind speed for April 2019 and April 2021 and (bottom) of forecast minus observation average wind speed
(bias, red) and spatial standard deviation (black) for these same two months. All are shown with respect to HRRR
forecast hour.

FIG. 5. As in Fig. 4, but expressed in terms of local time.
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This idea was applied to the April 2019 HRRR forecasts
and is shown in Fig. 7b. In this case, ASOS wind forecasts
were multiplied by 1.86, being roughly the network’s average
GF for the hourly maximum gust. This GF was applied to
forecasts made for the top of the hour because we have insuf-
ficient information to determine the hourly mean forecast
wind speed. With that caveat, we note this very simple gust
parameterization performed quite well, with an even higher
R2 (0.62) than the forecast–observed wind relationship. Again
there is a tendency for forecast–observation pairs to spread
along the 1:1 line.

The CF18 parameterization implicitly presumed the net-
work-averaged forecast wind bias was negligible so applica-
tion of a single GF value could mitigate errors relative to the
average. That is not the case for the NYSM. Figure 7b also
shows (again in orange) NYSM gust forecasts made using that
network’s average GF (2.21), after adjustment for the mean
forecast wind bias of about 1 m s21. Compared to the sus-
tained winds, these gust forecast–observation pairs clustered
much closer to the 1:1 line.

Finally, Fig. 8d demonstrates that the difference between
forecast and observation temporal standard deviation was
also well correlated with forecast bias. Note now the standard
deviations represent the temporal variability of the forecasts
and observations at each station. Stations at which the fore-
casts have more variability than the observations tended to be
overpredicted with respect to wind speed and underprediction
often resulted at stations where the observations had more
variation. However, as with GF and iGF, this variable is not
independent of the observed wind. The standard deviation of
a variable like wind speed, which has the hard constraint of
being nonnegative, can (and, although not shown, generally
does) increase with the variable magnitude.

Spatial plots (Fig. 9) were examined to look for patterns.
While the average forecast wind bias, computed over all sta-
tions and forecast hours, was only 20.2 m s21 (cf. Fig. 3a), it
remains that 507 of the 807 stations (63%) were underpre-
dicted in the mean. Figure 9a shows that the positively biased
stations were concentrated in the Southeast, the Appalachians
generally, and into the Northeast where forested land is more
common (Fig. 2a). In Fig. 9b, marker size reflects the squared
linear correlation between the forecast and observed winds,

based on an average of 1000 1 forecast–observation pairs
from each site. The R2 values ranged between 0.03 (KP69)
and 0.77 (KARR}Aurora, Illinois) with a mean of 0.57
and median of 0.59. Correlations were high throughout
most of the country, even in the Southeast where mean
winds were relatively light, and lowest in the mountainous
West. Like the correlation coefficient, R2 is not sensitive to
means or mean differences between series and is most
likely low where the predictions are somewhat out of phase
with the measurements. The concentration of low correla-
tions in the western CONUS may reflect the influence of
local features on diurnal winds that the model fails to prop-
erly represent.

Figure 9c reveals how the temporal standard deviation dif-
ference between the forecasts and observations varied spa-
tially. Figure 8d showed that the former tended to be the
larger when observed wind speeds were low and forecasts
were positively biased. The mean and median differences
were 20.15 and 20.17 m s21, respectively, with 581 (72%) of
the sites having less variability among the forecasts than the
observations. Note that the large red dots (representing larger
forecast than observation variability) are few in number and
widely scattered. These are stations having significant local
obstructions near the ASOS installations. For those sites,
observation variability was likely suppressed by limited ane-
mometer exposure. This measure could be used to identify
problem sites for potential removal from analyses and data
assimilations.

Taken together, this analysis suggests that the small nega-
tive forecast bias seen in the network averaged winds
(Fig. 3) is more significant than it might appear at first
glance. The majority of locations have insufficient forecast
variability that is strongly correlated with negative biases.
This suggests the model is not capturing something that is
important to determining real winds measured in the field.
However, this is partly compensated by the inclusion of sta-
tions that are not at airports and/or have obvious siting
issues. Had those sites been removed from the analysis, the
underprediction would have been more pronounced. The
model is still very skillful but steps could be taken to
address its tendency to understate the mean winds at better
exposed locations.

FIG. 6. As in Figs. 3a, 5a, and 5b, but for the NYSM propeller observations and forecasts.
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c. Analysis of forecast–observation pairs

In their analysis, FG20 examined scatterplots involving all
individual ASOS forecast and observation pairs over a full
month and this provided insight into the source of forecast
biases. Here, we improve and extend that analysis, examining
all 827230 April 2019 pairs.6 This represents the concatenation
of forecasts and observations from 807 ASOS stations and all
forecast hours from the daily 36-h HRRRV3 0000 UTC cycle
forecasts. Note that many observations were paired with more
than one forecast.

All ASOS forecast–observation pairs are presented as a heat
map, color coded by point density, in Fig. 10a. Although there
is scatter about the 1:1 correspondence line, there is a reason-
ably good relationship (R2 5 0.56) between these variables,
comparable to that seen in the station-averaged analysis (Fig.
7a). The majority of observations and forecasts represented
speeds less than 5 m s21, and this fact drives the relationship.
For higher observed winds, however, the forecasts still largely
spread along the 1:1 line, indicating some usable skill. Similarly,
all forecast gusts}created via the constant GF of 1.86}are
plotted against observed gusts in Fig. 10b. As was the case with
the station-averaged analysis, the correlation is higher for the
gust forecasts than their sustained wind counterparts.

However, these same data viewed as histograms (Fig. 11)
demonstrate that the forecast and observed wind and gust

FIG. 7. Forecast vs observed (a) wind and (b) gust speeds averaged over all forecast–observation pairs from April 2019,
aggregated by station. Here each dot is an individual station, either ASOS (black) or NYSMpropeller (orange). Gust forecasts
used the CF18 strategy (see text). Least squares fits (red lines) are based only on ASOS sites. (c),(d) As in (a) and (b), but for
April 2021. For April 2019, ASOS station KDGP is identified. This station had insufficient observations for April 2021.

6 There are fewer pairs in the present analysis than in FG20
(851 550) owing to the more stringent restrictions employed in the
construction of hourly averaged observations.
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distributions had distinctly different shapes. The forecasts
possessed a narrower peak such that the occurrence of both
lower and higher observed winds was relatively more fre-
quent. This result was suspected in the discussion of Fig. 4a
above. Motivated by Fig. 8c, we also examined histograms of
winds and gusts partitioned into lower and higher GF seg-
ments (Fig. 12). Forecast and observation pairs were sepa-
rated into two groups based on the GF associated with the
observation relative to the median value (about 1.81). With
respect to winds (Figs. 12a,b) there is a much larger shift
between the segments in the shapes of the observed wind dis-
tributions than for the forecasts. When the GF is lower, the
observed distribution is shifted rightward, resulting in more
observations than forecasts of values exceeding 3.5 m s21. In
contrast, observations in the high GF half are skewed toward
lower speeds, resulting in a mean positive bias.

To reiterate, the network mean bias of ASOS forecasts was
nearly zero (Figs. 3a,b), but the bias was biased such that sta-
tions having lower average wind speeds were overpredicted
while windier ones were underforecast (Figs. 8c and 11a). The
constant GF algorithm exploits this systemic tendency to
underpredict at sites where GFs lower than the network aver-
age and overpredict at the others by multiplying these biased
wind forecasts by a single number (the network average GF),
the result being less biased gust forecasts (Figs. 12c,d). For
locations in space and/or instances in time where the observed

GF was lower than the network average, multiplying by the
larger average value helped shift the forecast gusts more into
alignment with the observations (Fig. 12c). Similarly, multi-
plying forecasts of high GF instances or locations by the
smaller network average helped correct for the deficiencies
seen among the sustained winds. The result is not perfect and
we have already seen that when the two segments are recom-
bined (i.e., Fig. 11a), the forecast range is too narrow relative
to the observations. In the next section, we will discover rea-
sons for the excessive sharpness in the forecast distributions.

d. The roles of land use and local time

The potential roles of land-use type and local time were inves-
tigated to understand the differences between the observations
and forecasts, especially with respect to their distributional
shapes as seen in Fig. 11. As noted earlier, WRF-ARW uses
fractional land-use allocations (cf. Fig. 2b) and the focus here is
on the largest, or primary, assignment. For HRRRV3 and April
2019, 41% of the ASOS stations had a primary classification of
cropland, 24% were urban, 14% had grassland, and 6% were
given open shrubland assignments. The various forested land
classes, including deciduous, evergreen, and mixed forests,
accounted for about 11% of the ASOS sites. While unsurprising,
it is clear that the urban land-use type is substantially overrepre-
sented in the ASOS network relative to the CONUS landscape
(see e.g., the bright red areas in Figs. 2a,c).

FIG. 8. Station averages from April 2019 of (a) forecast wind speed, (b) observed wind speed, (c) inverse gust factor,
and (d) temporal standard deviation difference (forecast–observation) presented vs station average forecast wind bias
for ASOS (black) and NYSM (orange) stations. Least squares fits (red lines) shown only incorporated ASOS sites.
ASOS station KDGP is identified.
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Figure 13 reveals the existence of a robust association
between primary assignment and forecast wind bias. Each
class possesses two horizontal bars, representing the average
bias (blue, units m s21) among stations with that classification
and their weighted contribution (red, units dm s21 for conve-
nience) reflecting station count toward the network-average
bias of 20.2 m s21. The most negative bias (20.6 m s21) was
associated with the open shrublands stations but the urban
and grassland sites had larger weighted shares owing to their
larger station counts. Similarly, although cropland stations
had a small class-average bias (20.08 m s21), their aggregate
effect was not minor owing to their ubiquity (41% of stations).
In contrast, the roughly 11% of installations residing in forested
grid cells were positively biased, by as much as 10.52 m s21 in
the evergreen needleleaf cells.7 If these overpredictions were
resolved in isolation, the network-averaged skill would actually
decrease.

Figure 14 presents histograms of forecast and observed
sustained wind similar to Fig. 11a but have been segregated
by selected primary land-use classes. All of the forecast dis-
tributions are too sharp and narrow relative to the observa-
tions. In urban areas (Fig. 14a), the observed wind
distribution has spread farther to the right, revealing under-
forecasts of speeds exceeding about 3.5 m s21. That tendency
was even more pronounced in the grassland and open

shrubland group (Fig. 14b), which have been combined owing
to their similarity. The small negative bias in the cropland class
(Fig. 14c) occurred despite general overprediction of winds
weaker than 1.5 m s21.

Importantly, the model has obviously failed to properly
represent the general slowness of the winds in the forested
areas (Fig. 14d). This elucidates why the network-averaged
sustained winds from the NYSM were so overpredicted. Note
that the Mesonet’s sustained wind histograms (Fig. 15) bear a
strong resemblance to that of the ASOS forested class, inde-
pendent of anenometer type. While only 11% of the ASOS
sites were classified as forested in the HRRRV3, that category
represented 43% of the Mesonet stations, and thus it exerts a
powerful influence on this network’s average. Land-use type
can affect wind forecasts through the roughness length z0.
Although this would require testing, it is not clear that simply
raising z0 would improve these predictions because the more
serious issue is site exposure.

When the day is subdivided into four 6-h segments as in
Fig. 16, we clearly see the underprediction of observed ASOS
winds exceeding 4 m s21 seen in Fig. 11 is largely confined to
the nocturnal period between 1800 and 0600 local time (LT),
when the boundary layer is likely to be stable.8 This period is

FIG. 9. Spatial plots of (a) average forecast wind bias, (b) forecast–observation squared correlation R2, and (c) tem-
poral standard deviation difference (forecast–observed) for April 2019. (d) Average forecast wind bias for April 2021.
For (a), (c), and (d) positive values are red, and the negative values are blue.

7 Precise percentages vary slightly between the station and fore-
cast–observation pair analyses owing to minor data dropouts.

8 The number of forecast–observation pairs vary among the seg-
ments because we are only using the 0000 UTC cycle and its 36-h
simulations, which means some times have more forecasts than
others.
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also largely responsible for the distributional differences
between the forecasts and observations noted above. The fre-
quency of relatively larger observed wind speeds at night was
sufficient to make the mean bias of forecast–observation pairs
to be negative, even though the model generated too few low
speed predictions. This may represent a problem with how
the model handles the stable boundary layer and its intermit-
tent, localized turbulence (cf. Medeiros and Fitzjarrald 2014,
2015). In contrast, the daytime period of 0600–1800 LT (Figs.
16b,c) seems to be rather well represented in the HRRRV3
forecasts, albeit with a small underrepresentation at higher
wind speeds ($8 m s21) that also led to small negative net
biases.

Those histograms aggregated all land-use classes. Figure 17
focuses on the 1800–2400 LT period differentiated by the
land-use groupings examined in Fig. 14. Only the forested
lands (Fig. 17d) did not have characteristic underprediction of
relatively faster winds, again reflecting the less than optimal
handling of those areas in the model. For the afternoon
(1200–1800 LT) period (Fig. 18), however, only the urban

classification (Fig. 18a) failed to capture the frequency of
stronger winds. Thus, except in the vicinity of cities, the
model’s inability to capture the frequency of stronger winds
appears to be a nocturnal issue and one that might be
addressed by reconsidering assumptions employed in the
stable boundary layer regime. It is surmised that the urban
issue may also stem from overly high specifications of sur-
face roughness in those areas. While many airports are
located in grids designated as urban, that does not mean
that the local environment of the airport is truly city-like.
Finally, we reiterate that resolving the issue with forested
land or removing those stations from the analysis would
tend to make the nocturnal underprediction issue appear
worse.

4. HRRRV4 wind and gust evaluation for April 2021

Version 4 of the HRRR became operational on 2 Decem-
ber 2020. The revised model incorporated a number of
improvements to the planetary boundary layer and radiation

FIG. 10. All forecast–observation pairs of (left) wind speed and (right) gust for ASOS stations during (a),(b) April
2019 and (c),(d) April 2021. Color shading indicates point density, and the linear regression line for each is shown in
red. Gust forecasts were produced using the ASOS network average GF. The black dot is the joint mean; z0 . 0.01
indicates that sites misclassified as being over water have been removed. This is true for all analyses in this study.
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schemes, the land surface model, and numerical methods and
diffusion, and adopted a new gravity wave drag treatment (cf.
Dowell et al. 2022). It also shifted to the higher-resolution
version of the MODIS land-use database that was released
with WRF Preprocessing System (WPS) version 3.9 in 2017,
with consequences as discussed presently.

Our examination of 10-m wind forecasts at ASOS stations
from April 2021 from HRRRV4 emphasizes points of similar-
ity and difference with the April 2019 HRRRV3 results. The
verification was again restricted to the 0000 UTC cycle and
through forecast hour 36, even though V4 now integrates out
two full days for that start time. Although not shown, monthly

FIG. 11. Histograms of all forecast (blue) and observed (red) (left) wind speeds and (right) gusts for (a),(b) April
2019 and (c),(d) April 2021. MAE stands for mean absolute error. Vertical solid lines indicate mean values and
dashed lines represent median values. A wider bin size was used for gusts owing to the coarse (1 kt) precision of
hourly maximum gust observations.

FIG. 12. As in Figs. 11a and 11b, but showing the April 2019 wind and gust distributions subdivided at the median
GF (about 1.81). The dotted red curves in (a) and (c) represent the higher GF observation distributions, to facilitate
comparison. Similarly, the dotted blue curves in (b) and (d) represent the lower GF forecast distributions. The saw-
tooth variation in the observations in (a) and (b) is another consequence of the gust data precision.
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mean wind speeds were very comparable to April 2019 (Fig. 1).
Unfortunately, relative to April 2019, there were more missing
observations in the ASOS 1-min database in April 2021. As a
consequence, the database of hourly mean sustained wind and
maximum gust had 32% fewer observations than for April 2019,
averaging about 15400 observation/forecast pairs per forecast
hour instead of 22650. Only 766 sites remained after removal of
misclassified stations and those with 500 or fewer observations.
In our judgment, this does not negatively affect the evaluation.

There are more differences between these two MODIS-
derived databases than just the resolution enhancement. In
HRRRV4 (Fig. 2c), a large fraction of the original croplands
class (12, gold), especially in the eastern CONUS, has been
transferred into the previously existing but unused “cropland/
vegetation mosaic” group (14, cyan). The croplands category
presently accounts for only 18.3% of ASOS station primary
assignments while the mosaic claims 14.9%. In the west, a

portion of the open shrublands (7, maroon) primary assign-
ments have been reassigned as grasslands (10, light green),
constituting 4.3% and 21.0% of ASOS sites in the newer
MODIS database, respectively. We have continued combin-
ing those land-use types owing to their similarity with respect
to model performance. The HRRRV4 grassland area has also
spread eastward into the former croplands, so the grassland
and open shrubland combination now represented 25% of the
April 2021 ASOS primary assignments, an increase of 5 per-
centage points. Some areas that had been assigned to one of
the forest classes (categories 1–5) have been reclassified as
woody savannas (8), increasing its share of the network from
2.6% to 7.2%. Owing to their similarity, class 8 was analyzed
with the forested land, and this combination represented 13%
of the ASOS stations retained in the April 2021 analysis.

As in section 3, above, these are primary land-use assign-
ments. The fractional land-use apportionments represent
another difference with HRRRV3. In HRRRV4, 87% of
ASOS stations reside in grid cells assigned more than one
land-use class, up from 53% in V3 (cf. Figs. 2d,b), a conse-
quence of V4’s higher land-use resolution. The average frac-
tion claimed by the primary class was 0.7, a decrease from
0.83 for V3. Again, this was relatively smaller for the forested
group and also the new cropland/vegetation mosaic classes
(both about 0.6) than for the urban and croplands (both ≈0.7)
and grasslands (0.8). The HRRRV4 landscape is more finely
divided and this makes analyzing by primary land-use assign-
ment less precise, but again we find some value in this effort.

Figures 3c, 4c, and 4d present the April 2021 forecast hour
analysis. The small negative forecast bias that was previously
seen in V3 has vanished (indeed, the mean bias is now essen-
tially zero) although the spatial standard deviation of the fore-
casts was still smaller than that of the observations at all
forecast hours. The local time versions of these figures also
revealed some improvements (Figs. 3d and 5c,d). Despite
involving fewer sites, the station analysis results and conclu-
sions were little changed. The R2 values for the sustained
wind and gust fits were higher for both station-average
(Figs. 7c,d) and pairwise (Figs. 10c,d) comparisons and
(although not shown, see Gallagher 2021) the average fore-
cast wind was again uncorrelated with bias but the higher
wind stations were still underpredicted and lower sites over-
forecast in a manner that is predictable from iGF or GF.9 In
addition, the association between bias and the difference
between forecast and observed temporal standard deviation
remained (also not shown, cf. Gallagher 2021). Viewed spa-
tially (Fig. 9d), forecast bias was still concentrated in the east
CONUS in general and southeast in particular, although
errors were somewhat smaller in magnitude.

The wind and gust histograms (Figs. 11c,d) also suggest
improvements relative to April 2019. However, the compen-
sating errors between more densely treed areas (the forest
and woody savannas categories) and the urban and grassland
areas persisted (Fig. 13b). The now more spatially confined

FIG. 13. Average forecast wind bias (blue bars) aggregated over
ASOS stations having same HRRR primary land-use assignments
for (a) April 2019 and (b) April 2021. Red bars represent the
weighted contribution of that class toward the network-average
bias. Land-use classes are ordered by weighted bias. The right axis
shows the percentage of stations having this primary classification.
Precise percentages vary slightly between the station and forecas-
t–observation pair analyses owing to minor data dropouts.

9 Station KDGP, which was an outlier in the April 2019 analysis,
did not have sufficient April 2021 observations for inclusion.
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croplands class was still the best modeled and the newly sepa-
rate mosaic group had a positive bias, which is unsurprising
because much of the this group’s stations are in the southeast,
the site of lower wind observations (not shown, but similar to
Fig. 1) and positive biases (Fig. 9d). Still, the histograms rep-
resenting the urban and combined grassland and open shrub-
land categories (Fig. 19, top row) also reveal better model
behavior at relatively higher wind speeds compared to

HRRRV3 (Fig. 14). For convenience, we have combined the
cropland and mosaic classes in Fig. 19c, despite their differ-
ences, and note that the forested and woody savanna group-
ing remained the most poorly handled (Fig. 19d).

In the end, and despite the improvements in model perfor-
mance, we see that the glaringly different distributional
shapes noted previously are still present and that this is still
driven by the 1800–0600 period (Fig. 20). Clearly, more work
on the stable boundary layer remains to be done. Although
10-m wind speeds during this period are typically not strong,
sizable wind errors may have implications for boundary layer
pollution transport, wind energy, etc.

5. Summary and recommendations

Our previous study, Fovell and Gallagher (2020; FG20),
presented a detailed verification of Version 3 of the HRRR
model focusing on surface and boundary layer winds and tem-
peratures. It was motivated by prior findings of systemic
biases in forecast wind speeds at individual locations even
when network-average bias was insignificant (Cao and Fovell
2016; Fovell and Cao 2017; CF18; Fovell and Gallagher 2018).
FG20 leveraged underutilized observations (1-min ASOS and
high-frequency radiosonde) to investigate pervasive back-
ground biases across the entirety of the CONUS in the
operational HRRR model. The conclusions of FG20 were
consistent with previous work, detailing a pervasive bias in
forecasts of surface sustained wind speed that was highly
(negatively) correlated with the observed value itself. Stations
having lower average wind speeds were being overpredicted
while the wind threat was being underestimated at windy
locations.

FIG. 14. As in Fig. 11a, but segregated by primary land-use (LU) category from the MODIS 21-class database used
by HRRRV3: (a) urban, (b) grasslands and open shrublands, (c) croplands, and (d) forested land (including decidu-
ous, evergreen, and mixed forest).

FIG. 15. As in Fig. 11a, but for April 2019 wind forecasts for
NYSM sites compared to (a) propeller and (b) sonic observations.
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The present examination represented a deeper analysis into
the nature and cause of these biases and also covered the now
current version, HRRRV4. Analysis enhancements included
verification against hourly mean winds, consideration of local
time and land-use classification, inspection of the temporal
and spatial variability of forecast and observed winds and
biases, and the incorporation of additional surface observa-
tions from the New York State Mesonet (NYSM). Addition-
ally, hourly maximum gusts were assessed and verified, using
the network-average gust factor (GF) approach as proposed
in Cao and Fovell (2018; CF18). Since GF was also correlated

with bias, with smaller and larger factors associated with
under and overprediction, respectively, multiplying the biased
wind forecasts by a fixed value (the network average) was
found to reduce the bias in the gust predictions compared to
those of the sustained winds.

For two spring months in 2019 and 2021, we showed the
network average sustained wind forecasts for ASOS stations
were excellent in version 3 and even better in the current con-
figuration. That said, the negative correlation between bias
and mean observed wind speed persisted in Version 4, and we
also demonstrated that the forecast and wind distributions

FIG. 16. As in Figs. 11a and 14, but segmented with respect to local time (LT).

FIG. 17. As in Fig. 16a, but focusing on the 1800–2400 LT period and separated into different land-use groupings.
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were distinctly different overall, with ASOS forecasts in both
versions having less spread about their modal value of about
2.5 m s21 than in reality. Furthermore, observations associ-
ated with below-median GFs skewed toward higher speeds
and those with above-median values skewed sharply leftward,
characteristics not captured in the forecasts. The inclusion of
stations classified as forested land in the model actually
worked to obscure the model’s tendency to underpredict
winds across the bulk of the ASOS network. A large fraction
of the NYSM sites are situated in forested areas and that

explained why the wind speeds at those stations were substan-
tially overpredicted in the model.

Regarding local time, forecast wind distributions during the
daytime looked quite good but less so at night, when the
boundary and surface layer are usually stable. This demon-
strates that further work needs to be done in the nocturnal
regime. Even that systemic bias was landscape-dependent,
however. Especially in urban and grassland areas, stronger
winds at night were more common in the observations than in
the model forecasts.

FIG. 18. As in Fig. 17, but focusing on the 1200–1800 LT period.

FIG. 19. As in Fig. 14, but for April 2021 and referencing primary assignments from the higher resolution MODIS
land-use database used by HRRRV4.
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Taken together, we see evidence of further improvement in
the HRRRV4 relative to its already skillful predecessor, at
least in the spring month selected for close analysis. The gust
parameterization inspired by CF18 continued to work well,
despite its simplicity. Because it helped mitigate systemic
biases, the CF18 gust can supply a starting point for a more
sophisticated approach that might also factor in boundary
layer depth, winds, and stability for even better-verifying pre-
dictions, especially in particularly challenging or dangerous
situations (e.g., downslope windstorms, tropical cyclones, con-
vective storms, etc.). Challenges with respect to the stable
boundary layer and the treatment of some land-use classes
(especially forested areas) remain. Other important variables,
such as temperature, moisture, and the HRRR’s own gust
potential, have not yet been assessed. These should be foci of
future work.
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APPENDIX

Additional Information

In Figs. 16 and 20, we demonstrated that the 10-m wind
speed distributions for forecasts and observations were less
comparable at night for both versions of the HRRR exam-
ined. A reviewer pointed out that our study design incorpo-
rated more nighttime than daytime hours and wondered how
that influenced the results. We thank the reviewer for alerting
us to this. We performed our analyses again, limiting them to
forecast hours 0–24, inclusive, which makes the number of
night and day hours much more comparable. However, we
found few discernible changes to the figures, with the caveat
noted below, and there was no impact on our conclusions. As
a consequence, we have retained all forecast hours (0–36)
common to both HRRR versions for the 0000 UTC cycle.

The reason for the insensitivity is that many of our analyses
involved medians, means, and differences between means (i.e.,
biases). Even at night, the means and medians of the forecasts
and observations were very similar, as were biases and mean
absolute errors (Figs. 16 and 20), and that is why removing
some of the nocturnal hours did not materially alter the results.
The distributional differences at night, however, imply larger
scatter among forecast–observation pairs. Figure A1 is a ver-
sion of Fig. 10 in which only pairs for forecast hours 0–24 were
retained. Reflecting the reduced scatter, the R2 values are
somewhat higher in this version, but the conclusions from
our analyses remain unchanged.

FIG. 20. As in Fig. 16, but for April 2021.
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Another reviewer wondered about the large change in
gust factor (GF), from 1.29 to 1.86, that occurred when we
shifted from top-of-hour to hourly maximum gusts. First,
we note that our GFs are usually computed as ratios of
means, such that a station’s mean gust is being divided by
its average sustained wind. The network-averaged GF then
represents the ratio of the average of the gusts and sus-
tained winds over all included stations. The mean-of-ratios
approach is also valid but typically results in higher gust
factors because wind and gust distributions have long tails
(cf. Fig. 11 and Gallagher 2021).

In previous work (e.g., Fovell and Gallagher 2018), we
used ASOS reports from the 1-min database, each of which
consisted of a 2-min running average wind (i.e., sustained
wind) and the peak 3-s average (gust) during that one
minute interval. Over the ASOS network, the gust factor
for the 1-min reports averaged to about 1.29. For this study,
we adopted the hourly maximum gust as a better measure
of the wind threat. This GF is an hour’s fastest 3-s gust
report divided by that hour’s mean sustained wind, so both
the numerator and denominator of the gust factor have
been redefined. However, consistent with Harper et al.

(2010), the mean wind is nearly the same when averaged
over 2- and 60-min periods. Yet, the largest gust discover-
able within a given interval logically increases with interval
length.

Figure A2 presents the ratio-of-means GFs obtained
from about 840 ASOS sites versus the time interval for
which the maximum 3-s gust was identified. For each sta-
tion, for each of four months considered, the station’s entire
record length T was subdivided into non-overlapping seg-
ments of length t in minutes, where 1 # t # 60. Then, for
each segment without missing data, the maximum gust
report was identified and the mean sustained wind was
computed. These were first averaged over all available seg-
ments of length t and then over all stations and the four
months, yielding the ratio-of-means network-averaged GF
representing time interval t. Because the average sustained
wind for each interval represented the same information,
only the numerator of the GF varied among the time inter-
vals. Figure A2 demonstrates that the 1-min GF is about
1.29 (red star) while the 60-min value is about 1.84 (green
star), about 1.4 times larger. This curve varies somewhat
among seasons and more prominently among networks

FIG. A1. As in Fig. 10, but for analyses restricted to forecast hours 0–24, inclusive.
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owing to differences in mean wind speeds, mounting heights,
anemometer hardware, characteristic exposures, and possibly
other factors, but the shape of the curve is typically logarith-
mic in time.

REFERENCES

Arya, S., 1999: Air Pollution Meteorology and Dispersion. Oxford
University Press, 305 pp.

Benjamin, S. G., and Coauthors, 2016: A North American hourly
assimilation and model forecast cycle: The Rapid Refresh.
Mon. Wea. Rev., 144, 1669–1694, https://doi.org/10.1175/
MWR-D-15-0242.1.

}}, E. P. James, J. M. Brown, E. J. Szoke, J. S. Kenyon, R.
Ahmadov, and D. D. Turner, 2021: Diagnostic fields devel-
oped for hourly updated NOAA weather models. Tech.
Rep., Earth System Research Laboratory, Global Systems
Laboratory, NOAA Tech. Doc. OAR GSL-66, 55 pp.,
https://repository.library.noaa.gov/view/noaa/32904.

Brasseur, O., 2001: Development and application of a physical
approach to estimating wind gusts. Mon. Wea. Rev., 129, 5–25,
https://doi.org/10.1175/1520-0493(2001)129,0005:DAAOAP.2.
0.CO;2.

Brotzge, J. A., and Coauthors, 2020: A technical overview of the
New York State Mesonet standard network. J. Atmos. Oce-
anic Technol., 37, 1827–1845, https://doi.org/10.1175/JTECH-
D-19-0220.1.

Cao, Y., and R. G. Fovell, 2016: Downslope windstorms of San
Diego County. Part I: A case study. Mon. Wea. Rev., 144,
529–552, https://doi.org/10.1175/MWR-D-15-0147.1.

}}, and }}, 2018: Downslope windstorms of San Diego
County. Part II: Physics ensemble analyses and gust forecast-
ing. Wea. Forecasting, 33, 539–559, https://doi.org/10.1175/
WAF-D-17-0177.1.

Dowell, D. C., and Coauthors, 2022: The High-Resolution Rapid
Refresh (HRRR): An hourly updating convection-allowing
forecast model. Part I: Motivation and system description. Wea.
Forecasting, https://doi.org/10.1175/WAF-D-21-0151.1, in press.

Durst, C. S., 1960: Wind speeds over short periods of time.
Meteor. Mag., 89, 181–186.

Fovell, R. G., and Y. Cao, 2017: The Santa Ana winds of Southern
California: Winds, gusts, and the 2007 Witch fire. Wind Struct.,
24, 529–564, https://doi.org/10.12989/was.2017.24.6.529.

}}, and A. Gallagher, 2018: Winds and gusts during the Thomas
fire. Fire, 1, 47, https://doi.org/10.3390/fire1030047.

}}, and }}, 2020: Boundary layer and surface verification of
the High-Resolution Rapid Refresh, version 3. Wea. Forecast-
ing, 35, 2255–2278, https://doi.org/10.1175/WAF-D-20-0101.1.

Gallagher, A. R., 2021: Exploring environmental and methodolog-
ical sensitivities of forecasted and observed surface winds and
gusts using underutilized datasets. Ph.D. thesis, University at
Albany, State University of New York, 260 pp.

Gray, M. E. B., 2003: The use of a cloud resolving model in the
development and evaluation of a probabilistic forecasting
algorithm for convective gusts. Meteor. Appl., 10, 239–252,
https://doi.org/10.1017/S1350482703003049.

Gutiérrez, A., and R. G. Fovell, 2018: A new gust parameteriza-
tion for weather prediction models. J. Wind Eng. Ind. Aero-
dyn., 177, 45–59, https://doi.org/10.1016/j.jweia.2018.04.005.

Harper, B., J. D. Kepert, and J. D. Ginger, 2010: Guidelines for
converting between various wind averaging periods in tropi-
cal cyclone conditions. Tech. Rep., World Meteorological
Organization Tech. Doc. WMO/TD-1555, 64 pp., https://
library.wmo.int/doc_num.php?explnum_id=290.

He, S., T. G. Smirnova, and S. G. Benjamin, 2021: Single-column
validation of a snow subgrid parameterization in the Rapid
Update Cycle Land-Surface Model (RUC LSM). Water
Resour. Res., 57, e2021WR029955, https://doi.org/10.1029/
2021WR029955.

Holmes, J. D., A. C. Allsop, and J. D. Ginger, 2014: Gust dura-
tions, gust factors and gust response factors in wind codes
and standards. Wind Struct., 19, 339–352, https://doi.org/10.
12989/was.2014.19.3.339.

Lufft, 2021: Technical Data V200A Ultrasonic Wind Sensor. Lufft,
Fellbach, Germany, 3 pp., https://www.lufft.com/products/wind-
sensors-anemometers-289/v200a-ultrasonic-wind-sensor-2295/
productAction/outputAsPdf/.

Medeiros, L. E., and D. R. Fitzjarrald, 2014: Stable boundary
layer in complex terrain. Part I: Linking fluxes and intermit-
tency to an average stability index. J. Appl. Meteor. Climatol.,
53, 2196–2215, https://doi.org/10.1175/JAMC-D-13-0345.1.

}}, and }}, 2015: Stable boundary layer in complex terrain.
Part II: Geometrical and sheltering effects on mixing. J.
Appl. Meteor. Climatol., 54, 170–188, https://doi.org/10.1175/
JAMC-D-13-0346.1.

Nakamura, K., R. Kershaw, and N. Gait, 1996: Prediction of near-
surface gusts generated by deep convection. Meteor. Appl., 3,
157–167, https://doi.org/10.1002/met.5060030206.

Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada
Level-3 model with condensation physics: Its design and veri-
fication. Bound.-Layer Meteor., 112, 1–31, https://doi.org/10.
1023/B:BOUN.0000020164.04146.98.

National Wildfire Coordinating Group, 2019: NWCG Standards
for Fire Weather Stations (PMS 426-3). National Wildfire
Coordinating Group, 50 pp., https://www.nwcg.gov/sites/default/
files/publications/pms426-3.pdf.

Olson, J. B., J. S. Kenyon, W. A. Angevine, J. M. Brown, M.
Pagowski, and K. Suselj, 2019a: A description of the MYNN-
EDMF scheme and the coupling to other components in
WRF-ARW. NOAA Tech. Memo. OAR GSD-61, National
Oceanic and Atmospheric Administration, Office of Oceanic
and Atmospheric Research, 42 pp., https://doi.org/10.25923/
n9wm-be49.

FIG. A2. Gust factor curve for the ASOS network representing a
composite of about 840 stations sampling four seasons. For each
time interval considered, the network-average maximum 3-s wind
(gust) was divided by the network-average sustained wind repre-
senting that interval. Red and blue stars represent the 1-min GF
used in Fovell and Gallagher (2018) and the 60-min GF used in
this study, respectively.

F O V E L L AND GAL LAGHER 1067JUNE 2022

Brought to you by SUNY ALBANY LIBR SB23 | Unauthenticated | Downloaded 06/13/22 04:12 PM UTC

https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1175/MWR-D-15-0242.1
https://repository.library.noaa.gov/view/noaa/32904
https://doi.org/10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2
https://doi.org/10.1175/JTECH-D-19-0220.1
https://doi.org/10.1175/JTECH-D-19-0220.1
https://doi.org/10.1175/MWR-D-15-0147.1
https://doi.org/10.1175/WAF-D-17-0177.1
https://doi.org/10.1175/WAF-D-17-0177.1
https://doi.org/10.1175/WAF-D-21-0151.1
https://doi.org/10.12989/was.2017.24.6.529
https://doi.org/10.3390/fire1030047
https://doi.org/10.1175/WAF-D-20-0101.1
https://doi.org/10.1017/S1350482703003049
https://doi.org/10.1016/j.jweia.2018.04.005
https://library.wmo.int/doc_num.php?explnum_id&hx003D;290
https://library.wmo.int/doc_num.php?explnum_id&hx003D;290
https://doi.org/10.1029/2021WR029955
https://doi.org/10.1029/2021WR029955
https://doi.org/10.12989/was.2014.19.3.339
https://doi.org/10.12989/was.2014.19.3.339
https://www.lufft.com/products/wind-sensors-anemometers-289/v200a-ultrasonic-wind-sensor-2295/productAction/outputAsPdf/
https://www.lufft.com/products/wind-sensors-anemometers-289/v200a-ultrasonic-wind-sensor-2295/productAction/outputAsPdf/
https://www.lufft.com/products/wind-sensors-anemometers-289/v200a-ultrasonic-wind-sensor-2295/productAction/outputAsPdf/
https://doi.org/10.1175/JAMC-D-13-0345.1
https://doi.org/10.1175/JAMC-D-13-0346.1
https://doi.org/10.1175/JAMC-D-13-0346.1
https://doi.org/10.1002/met.5060030206
https://doi.org/10.1023/B:BOUN.0000020164.04146.98
https://doi.org/10.1023/B:BOUN.0000020164.04146.98
https://www.nwcg.gov/sites/default/files/publications/pms426-3.pdf
https://www.nwcg.gov/sites/default/files/publications/pms426-3.pdf
https://doi.org/10.25923/n9wm-be49
https://doi.org/10.25923/n9wm-be49


}}, and Coauthors, 2019b: Improving wind energy forecasting
through numerical weather prediction model development.
Bull. Amer. Meteor. Soc., 100, 2201–2220, https://doi.org/10.
1175/BAMS-D-18-0040.1.

Panofsky, H. A., H. Tennekes, D. H. Lenschow, and J. C. Wyngaard,
1977: The characteristics of turbulent velocity components in
the surface layer under convective conditions. Bound.-Layer
Meteor., 11, 355–361, https://doi.org/10.1007/BF02186086.

Petersen, E., N. Mortensen, L. Landberg, J. Højstrup, and H.
Frank, 1998: Wind power meteorology. Part 1: Climate and
turbulence. Wind Energy, 1, 2–22, https://doi.org/10.1002/
(SICI)1099-1824(199809)1:1,2::AID-WE15.3.0.CO;2-Y.

Piccardo, G., and G. Solari, 1998: Closed form prediction of 3-D
wind-excited response of slender structures. J. Wind Eng.
Ind. Aerodyn., 74–76, 697–708, https://doi.org/10.1016/S0167-
6105(98)00063-4.

Pichugina, Y. L., and Coauthors, 2019: Spatial variability of winds
and HRRR–NCEP model error statistics at three Doppler-
lidar sites in the wind-energy generation region of the
Columbia River Basin. J. Appl. Meteor. Climatol., 58, 1633–
1656, https://doi.org/10.1175/JAMC-D-18-0244.1.

R. M. Young Company, 2000: Meteorological instruments:
Instructions}Wind monitor-HD Model 05108. R. M. Young
Company, Traverse City, MI, 12 pp., https://s.campbellsci.
com/documents/ca/manuals/05108-10_man.pdf.

Rolinski, T., S. B. Capps, R. G. Fovell, Y. Cao, B. J. D’Agostino,
and S. Vanderburg, 2016: The Santa Ana wildfire threat
index: Methodology and operational implementation. Wea.
Forecasting, 31, 1881–1897, https://doi.org/10.1175/WAF-D-
15-0141.1.

}}, }}, and W. Zhuang, 2019: Santa Ana winds: A descriptive
climatology. Wea. Forecasting, 34, 257–275, https://doi.org/10.
1175/WAF-D-18-0160.1.

Sheridan, P., 2011: Review of techniques and research for gust
forecasting and parameterisation. Tech. Rep., Met Office
Research Tech. Rep. 570, 22 pp., https://www.researchgate.
net/profile/Peter-Sheridan-2/publication/268744498_Review_
of_techniques_and_research_for_gust_forecasting_and_
parameterisation/links/5474c0b00cf245eb436e0791/
Review-of-techniques-and-research-for-gust-forecasting-and-
parameterisation.pdf.

Skamarock, W. C., and Coauthors, 2019: A description of the
Advanced Research WRF Model version 4. NCAR Tech.
Note NCAR/TN-5561STR, 145 pp., https://doi.org/10.5065/
1dfh-6p97.

Stucki, P., S. Dierer, C. Welker, J. J. Gómez-Navarro, C. C.
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