MAP D-PHASE – High Resolution Guidance in Steep Terrain
Recherche en Prevision Numerique

Doug Bender Steph Chamberland Jason Milbrandt
Martin Charron Yves Chartier Paul Pestieau
Michel Desgagne Michel Flibotte Andre Plante
Amin Erfani Vivian Lee Michel Valin
Michel Flibotte Claude Girard Vincent Vu
Vivian Lee Jocelyn Mailhot Ayrton Zadra

2 November 2007
Contents

1) Description of the MAP D-PHASE project
2) Canadian contribution to MAP D-PHASE
3) Preliminary analysis of results:
 i) Roughness length case study (23 July 2007)
 ii) Mountain wave case study (26 July 2007)
4) Precipitation verification and model comparison
5) Impact on 2010 Olympics project
MAP D-PHASE Description

• Fourth phase of the Mesoscale Alpine Project (MAP), a Swiss-led project that evaluated high resolution numerical guidance in the Swiss Alps (MC2)

• Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region

• 2nd WWRP Forecast Demonstration Project
MAP D-PHASE Description

Project Steering Committee:

Bouttier, Francois Météo France
Buzzi, Andrea Institute of Atmospheric Sciences and Climate (ISAC-CNR)
Dorninger, Manfred Universität Wien
Frustaci, Giuseppe CNMCA
Mylne, Ken UK Met Office
Ranzi, Roberto Università di Brescia
Richard, Evelyne Laboratoire d’Aéorologie CNRS/UPS
Rossa, Andrea Centro Meteorologico Teolo ARPA Veneto
Rotach, Mathias MeteoSwiss
Schär, Christoph Institute for Atmospheric and Climate Science (IACETH)
Staudinger, Michael ZAMG - Wetterdienststelle Salzburg
Volkert, Hans Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Wulfmeyer, Volker Universität Hohenheim

MeteoSwiss Leads: Marco Arpagaus and Felix Ament

WG Data Interface: Andrea Montani (ARPA-SIM Emilia-Romagna)

WG Hydrology: Roberto Ranzi (Università di Brescia) and Christoph Hegg (Eidg. Forschungsanstalt WSL)

WG Verification: Manfred Doringer (Universität Wien)

WG Data Policy: Mathias Rotach (MeteoSwiss)

Participants: Over 130 participants, primarily from Europe
D-PHASE forecasting strategy for heavy precipitation and flash flood events is to establish:

“an end-to-end forecasting system for Alpine flood events that will be set up to demonstrate state-of-the-art forecasting of precipitation-related high impact weather”.

MAP D-PHASE Implementation Plan
MAP D-PHASE Description

Research problems relevant to D-PHASE:

– Numerical simulation of the physical mechanisms responsible for heavy orographic precipitation
– Ensemble prediction approach (standard and high resolution)
– High resolution (< 4 km) operational numerical guidance for use in the forecasting and decision-making process
– Coupled and offline hydrological models
– Evaluation of radar estimates of precipitation in steep terrain
MAP D-PHASE Description

- Models provide guidance on European domain
- Forecasts for Alpine region only
<table>
<thead>
<tr>
<th>D-PHASE Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOP Limited-Area Ensemble</td>
</tr>
<tr>
<td>Prediction Systems (5)</td>
</tr>
<tr>
<td>ARPA – Italy (CLEPS [16: 10km])</td>
</tr>
<tr>
<td>ARPA – Italy (CSREPS [16: 10km])</td>
</tr>
<tr>
<td>UK Met – England (MOGREPS [24: 25km])</td>
</tr>
<tr>
<td>INM – Spain (INMSERPS [20: 27km])</td>
</tr>
<tr>
<td>DWD – Germany (PEPS [X: 7km])</td>
</tr>
</tbody>
</table>

| **DOP High Resolution Ensembles (1)** |
| DWD – Germany (MPEPS [5: ~2]) |
| AROME - France |
| CMCGEM – Canada |
| COSMOCH2 – Switzerland |
| ISACMOL2 - Italy |
| LMK - Germany |

| **DOP High Resolution Deterministic Models (11)** |
| MeteoSwiss – Switzerland (COSMO [7,2.2]) |
| U.Hohenheim – Germany (MM5 [10,3.3,1.1]) |
| Meteo-Fance – France (AROME [11, 4.4]) |
| ARPA – Italy (COSMO [7,2.8]) |
| CNMCA – Italy (COSMO [7,2.8]) |
| DWD – Germany (COSMO [7,2.8]) |
| CNR – Italy (MOLOCH [2.2]) |
| ARPA – Italy (BOLAM/MOLOCH [7,2.2]) |
| APAT – Italy (BOLAM [33,11]) |
| IMK – Germany (MM5 [50,15,3.75]) |
| IMK – Germany (WRF [60,20,5]) |
| ZAMG – Austria (ALADIN [9.6]) |
| CMC – Canada (GEM [15,2.5]) |
DOP forecasters use an “alerts” system:

- 2-5 day lead: probabilistic
- 48 h lead: mixed deterministic
- 6 h lead: nowcasting
MAP D-PHASE Description

- Links to other projects in the region:
 - COPS: Convection and Orographically-induced Precipitation Study – enhanced ground-based and airborne observations over the German Alps [June-Aug]
 - GOP: General Observation Period [Jan-Dec]

- Shared implementation plan and data archive at the World Data Centre for Climate (WDCC)
MAP D-PHASE Description

- Enhanced precipitation observations from both *in-situ* and remote sensed platforms
- Only preliminary data is available in real-time
- “Quicklooks” are currently available, with WDCC entries to occur before the end of the GOP

Source: GOP Overview
MAP D-PHASE Description

• Collaborators for each of the European projects has access to data collected in all projects
• Projects maintain separate real time protected websites

Time line for coordinated European projects D-PHASE, COPS and GOP.
Canadian Contribution to D-PHASE

• Canada provided daily high resolution (3 km) guidance during MAP (Sept-Nov 1999) using MC2

• MSC researchers supported forecasting at the MAP operational centre in Innsbruck, and collaborated extensively with European researchers

• Participation in D-PHASE consists of delivering high resolution (2.5 km) forecast guidance products
Canadian Contribution to D-PHASE

- High resolution (2.5 km) GEM model run once-daily over the MAP D-PHASE domain
- Analysis from meso-global used as IC for driving model
- High resolution forecast to 18 h lead
Canadian Contribution to D-PHASE

- GEM model runs daily in LAM configuration driven by the meso-global
- Nesting 35 : 15 : 2.5 km
Canadian Contribution to D-PHASE

- Model and version: GEM (LAM) v3.3.0
- Summary of configuration:

<table>
<thead>
<tr>
<th></th>
<th>GEM Driving Model</th>
<th>High Resolution Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Grid (km)</td>
<td>15 km</td>
<td>2.5 km</td>
</tr>
<tr>
<td>Vertical Levels (#)</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Domain size (#x;#y)</td>
<td>174; 199</td>
<td>600; 413</td>
</tr>
<tr>
<td>Step length (s)</td>
<td>300 s</td>
<td>60 s</td>
</tr>
<tr>
<td>Orography Growth (h)</td>
<td>4 h</td>
<td>4 h</td>
</tr>
<tr>
<td>PBL Scheme</td>
<td>Moist TKE</td>
<td>Moist TKE</td>
</tr>
<tr>
<td>Convective Scheme</td>
<td>Kain-Fritsch</td>
<td>–</td>
</tr>
<tr>
<td>Explicit Scheme</td>
<td>Milbrandt-Yau (single) yes</td>
<td>Milbrandt-Yau (single)</td>
</tr>
<tr>
<td>Roughness Reduction</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>
Canadian Contribution to D-PHASE

- D-PHASE runs are class experimental
- Daily runs are completed by ~0730 UTC (30 min)
- Guidance: ~0800 UTC
- Archive: ~1030 UTC
Canadian Contribution to D-PHASE

- GEM Driving Model (15 km)
 - Grib Encoding
 - Gridpt Creation
- GEM HiRes Model (2.5 km)
 - Grib Encoding
 - Gridpt Creation

Gridpt Creation

CFS Gridpt Database

D-PHASE Images

D-PHASE Alerts

- D-PHASE Visualization Platform (MeteoSwiss)
- Hamburg Data Archive (WDCC)
- COPS OC
- U. Vienna
- DWD

Internal

External

VERA Grids

PEPS Grids

D-PHASE Images

COPS Images

11/02/07

Page 19
Canadian Contribution to D-PHASE

Key features of GEM v3.3.0 exploited during D-PHASE:

- “Hollow cube” initialization and updates parallelizes nesting and improves delivery time by >1h for the D-PHASE grid

- Nested M-Y microphysics allows for continued development of the advanced bulk parameterization scheme

- “Growing orography” reduces initial gravity wave generation

- Roughness length reduction limits sub-gridscale impact
Canadian Contribution to D-PHASE

- Experimental implementation for D-PHASE from 1 June – 30 Nov 2007
- Three major upgrades to the experimental system since 1 June:
 - Roughness length reduction
 - Reduced hydrometeor fall speeds
 - Reduced source/sink in microphysics
Case Study: Roughness Length

- 12 h forecast initialized 0000 UTC 23 July
- “Low” resolution orographic database leads to very large effective roughness length (z_{eff}) in steep terrain
- Using vegetation-only roughness length in the model improves wind speed predictions
Case Study: Roughness Length

In statically neutral conditions:

\[U(z) = \left(\frac{u_*}{k} \right) \ln \left[\frac{(z - d)}{z_o} \right] \]

- \(U(z) \) wind speed at height \(z \)
- \(u_* \) friction velocity
- \(k \) von Karman constant
- \(d \) displacement height
- \(z_o \) aerodynamic roughness length

The aerodynamic roughness length corresponds to the height and density of individual roughness elements but is **not** equal to their height.
Case Study: Roughness Length

• Effective roughness lengths are used in models instead of the “vegetative” (aerodynamic) value to account for:
 – turbulent shear stresses
 – pressure forces

• The total surface drag is therefore represented in z_{oeff}

• Subgrid orographic effect on z_{oeff} is poorly computed with a low resolution orographic database
Case Study: Roughness Length

Original Surface Roughness Fields

1 June - 25 July

Modified Surface Roughness Fields

26 July - 30 Nov
Case Study: Roughness Length

6h forecast near-surface winds (colour bar) and observations (white numbers) valid 1200 UTC 23 July

Full Roughness vs Observations

Modified Roughness vs Observations
Case Study: Roughness Length

Reduced effective roughness length eliminates severely underpredicted wind speeds, most of which occur over the Alps.
Case Study: Roughness Length

Reduced effective roughness length eliminates severely underpredicted wind speeds, most of which occur over the Alps.
Case Study: Roughness Length

<table>
<thead>
<tr>
<th></th>
<th>Original zoeff</th>
<th>Modified zoeff</th>
<th>Meso-Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias (kt)</td>
<td>-1.6</td>
<td>0.6</td>
<td>-4.5</td>
</tr>
<tr>
<td>RMSE (kt)</td>
<td>6.3</td>
<td>5.3</td>
<td>8.1</td>
</tr>
<tr>
<td>MAE (kt)</td>
<td>3.9</td>
<td>3.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Observations: 141

- Reduction of the effective roughness length improves the forecast for near-surface winds in the Alpine region
- More detailed study of the effective roughness length at high resolution are planned (Alexander and Ayrton)
Case Study: Mountain Wave

• Mountain wave observed at Baden Airpark in southwestern Germany at 1700 UTC 26 July 2007

• Unlike MAP, the main objective of D-PHASE is not processes-based so no flights were scheduled

• The GEM forecasts show internal gravity wave development and feedback on moist physics

Source: Bernhard Mühr
Case Study: Mountain Wave

A consistent formulation of the hybrid coordinate vertical motion eliminates noise from the idealized Schar mountain wave case (Claude and Andre).

Source: Claude Girard

11/02/07
Case Study: Mountain Wave

Omega vertical motion shows a perturbed mountain wave structure upshear (southwest) of Baden Airpark in the 11h forecast (valid 1700 UTC)
As a result of a locally-increased Brunt-Vaisala frequency, internal gravity waves are generated upshear of the Rhine Valley but not downshear.
Case Study: Mountain Wave

Upwards motion in the mountain waves feeds back on the model through microphysical processes by 2300 UTC.
Case Study: Mountain Wave

- Observed mountain wave is represented in the GEM forecast for 23 July 2007
- Fine structures suggest that the new hybrid coordinate vertical motion computation may improve the prediction
- The importance of moist process feedbacks suggests that correct handling of internal gravity waves is potentially very important in complex terrain
Precipitation Verification

• Upgrades to the Milbrandt-Yau microphysics scheme (Jason) eliminate an observed dry bias and result in a wet bias

• Verification against Swiss radar precipitation accumulation retrievals supports in-house verification of M/Y
The GEM driving (CMCGEML) and high resolution (CMCGEMH) forecasts are too dry for the JJA period compared to both observations and the other D-PHASE models.
A 50% domain-averaged underprediction bias (JJA) has been replaced with an October overprediction bias following September M/Y upgrades suggesting that further sensitivity testing will be beneficial.
Summary

• The MAP D-PHASE DOP runs 1 June – 30 Nov 2007
• Primary focus is QPF and extreme event forecasting
• Canadian contribution is 2.5 km deterministic guidance
• Recent version of GEM with additional features designed for steep terrain simulation is used
• Case studies and verification provide guide development
Context

• Feedback, case studies and verification results continue to guide development for the experimental NA LAMs

• The D-PHASE model and configuration serve as a prototype for the Vancouver 2010 system

The D-PHASE data is available for all researchers – collaboration on projects to improve steep terrain guidance will be very important for the lead up to the 2010 Olympics.
Resources

MAP D-PHASE DOP URL: http://www.d-phase.info
(contact Ron for user name and password)
MAP D-PHASE Homepage:
http://www.map.meteoswiss.ch/map-doc/dphase/dphase_info.htm
COPS IOP URL: http://www.cops2007.de
(contact Ron for user name and password)
COPS Homepage: https://www.uni-hohenheim.de/spp-iop
GOP Homepage: http://gop.meteo.uni-koeln.de
WDCC (Hamburg) Data Archive: http://cera-www.dkrz.de/WDCC/ui/Index.jsp
OCM Suite and Job Names: gemlam/DL00, gemlam/DH06
CMC GRIDPT Database Path:
 driving model: /data/gridpt/dbase/prog/lam.spinup/dphase.[(eta)(pres)]
 high resolution: /data/gridpt/dbase/prog/lam/dphase.[(eta)(pres)]
It's over ...
What are you doing, Dave?
MAP D-PHASE Description

Primary D-PHASE and collaborations products:
• Production of daily hydrometeorological forecasts
• Generation of high resolution ensemble products
• DOP Forecaster evaluation of numerical guidance
• Real time radar and VERA-based objective verification
• Model and observational data archival for future evaluations and comparisons
Case Study: Mixed Precipitation

• Moderate/heavy mixed precipitation event on 22 October 2007 (runs from 0000 UTC 22 October)
• Low centre over eastern Italy with rain/cloud extending from Italy to the Ukraine
• Single and double moment versions of the M/Y scheme are compared against extensive observations
Case Study: Mixed Precipitation

Eumetsat infrared image for 2200 UTC 22 October shows the low centre over the Adriatic and extensive cloud over eastern Europe.
Case Study: Mixed Precipitation

Total run (18h) precipitation accumulations from both single and double moment M/Y schemes compare well with AMSU-retrieved values.

Source: http://kermit.bham.ac.uk
Case Study: Mixed Precipitation

M/Y single moment D-PHASE 9h forecast valid 1500 UTC 22 October and verifying obs / radar imagery

Forecast precipitation generally matches synop observations

Source: http://www.smr.arpa.emr.it
Case Study: Mixed Precipitation

M/Y double moment experimental 9h forecast valid 1500 UTC 22 October and verifying obs / radar imagery

ENE/WSW band over Croatia is better handled in double moment M/Y
Case Study: Mixed Precipitation

Rain (red hash on black), snow (white hash) and mixed precipitation (red hash on colour) and temperature (colour bar) for D-PHASE 6-h forecast valid 1200 UTC 22 October
Case Study: Mixed Precipitation

Rain (red hash on black), snow (white hash) and mixed precipitation (red hash on colour) and temperature (colour bar) for double moment 6-h forecast valid 1200 UTC 22 October
VERA analyses are performed hourly using a background “fingerprint” conceptual models appropriate to the regional topography.
Case Study: Mixed Precipitation

- Both schemes accurately predict sustained heavy precipitation over Forli, Italy
- Double moment produces more precipitation and a stronger band that moves northwestward across Croatia and Slovenia after 1200 UTC
- Schemes perform similarly for mixing to snow
Precipitation Verification

APPENDIX

Radar-based verification scores for the pre-upgrade (JJA) M/Y scheme
The size of the PEPS ensemble varies daily and within the forecast range as lagged high resolution (<4km) members are added and dropped from the system.

Source: http://www.dwd.de