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ABSTRACT

A statistical downscaling algorithm is introduced to forecast surface wind speed at a location. The down-

scaling algorithm consists of resolved and unresolved components to yield a time series of synthetic wind

speeds at high time resolution. The resolved component is a bias-corrected numerical weather prediction

model forecast of the 10-mwind speed at the location. The unresolved component is a simulated time series of

the high-frequency component of the wind speed that is trained to match the variance and power spectral

density of wind observations at the location. Because of the stochastic nature of the unresolved wind speed,

the downscaling algorithmmay be repeated to yield an ensemble of synthetic wind speeds. The ensemblemay

be used to generate probabilistic predictions of the sustained wind speed or wind gusts. Verification of the

synthetic winds produced by the downscaling algorithm indicates that it can accurately predict various fea-

tures of the observed wind, such as the probability distribution function of wind speeds, the power spectral

density, daily maximum wind gust, and daily maximum sustained wind speed. Thus, the downscaling algo-

rithm may be broadly applicable to any application that requires a computationally efficient, accurate way of

generating probabilistic forecasts of wind speed at various time averages or forecast horizons.

1. Introduction

Forecasting surface wind speed has broad importance

for aviation, wind energy, engineering, public safety, and

other applications (Young and Kristensen 1992; Peterka

and Shahid 1998; Ashley and Black 2008; Emeis 2014).

Accurate sustained and gust wind speed forecasts at the

surface at a variety of spatial and temporal resolutions are

necessary for planning and warning decisions in these ap-

plications on both short and long time scales (Okumus and

Dinler 2016). One challenge in predicting wind speed is

that available numerical weather prediction (NWP)

models and general circulation models (GCMs) do not

have the necessary temporal resolution needed to inform

ormake decisions. For example, current operational NWP

models have model time steps ranging from about 20 s to

several minutes, depending on the resolution of themodel,

and usually only have output available at a much

larger time step (e.g., 1h). This challenge has led to the

development of downscaling techniques to produce wind

information at higher spatial and/or temporal resolution.

One possible method is dynamical downscaling.

Dynamical downscaling involves running a high-

resolution model over a limited domain using the ini-

tial and boundary conditions from a coarser NWPmodel

or GCM (e.g., Horvath et al. 2012; Cao and Fovell 2016;

Daines et al. 2016). The spatial and temporal resolution

can be controlled to get tailored output for a particular

application. However, dynamical downscaling can be

computationally expensive, especially if there is a need

to explicitly resolve the turbulent eddies within the

boundary and surface layers (e.g., Talbot et al. 2012;

Mirocha et al. 2014), resolve winds around complex

terrain features (e.g., Horvath et al. 2012; Cao and

Fovell 2016), or generate many years of wind data for

climate change studies (e.g., Daines et al. 2016).

Another possible method is statistical downscaling.

Statistical downscaling involves deriving transfer func-

tions that relate NWP model or GCM fields to a more

realistic representation of the local- to regional-scale

surface wind speed or wind speed distribution.Corresponding author: Brian H. Tang, btang@albany.edu
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A number of methods have been developed, including

varieties of regression (deRooy andKok 2004; Pryor et al.

2005; Cheng et al. 2012; Curry et al. 2012; Huang et al.

2015;Winstral et al. 2017), generalized linearmodels (Yan

et al. 2002;Kirchmeier et al. 2014), cumulative distribution

function transformations (Michelangeli et al. 2009), and

Kalman filters (Cassola and Burlando 2012). Oftentimes,

statistical downscaling methods are applied to the model

output from dynamical downscaling in order to

correct model biases and gain further detail (e.g.,

Daines et al. 2016).

When simulating or forecasting the wind speed, es-

pecially when trying to compare with observations, one

has to be mindful of the averaging periods used to

define the wind speed. Downscaling studies have

encompassed a range of time averages, such as hourly

averages (Curry et al. 2012; Winstral et al. 2017),

multiple-hourly averages (Daines et al. 2016), daily av-

erages (Kirchmeier et al. 2014; Huang et al. 2015), and

daily maxima (Yan et al. 2002; Hewston and Dorling

2011). Sustained wind speeds, conventionally consisting

of an average of instantaneous wind speeds over the

duration of minutes, and wind gusts, conventionally

consisting of an average of instantaneous wind speeds

over the duration of seconds, are also needed at higher

frequencies for some applications (e.g., Spark and

Connor 2004). Given that NWP models and GCMs lack

the ability to directly simulate wind gusts, a number of

statistical and physical methods have been developed to

parameterize wind gusts (Wieringa 1973; Brasseur 2001;

Sheridan 2011; Cheng et al. 2012; Suomi et al. 2013). It

would be advantageous to create a downscaling method

that could encompass all the above time averages.

The goal is to present a statistical downscaling tech-

nique that is capable of realistically simulating the wind

at a required temporal resolution to extract any flavor

of wind speed, from wind gusts to daily averages

(or potentially longer), applied at a point. While other

methods have been employed to generate high-

resolution time series of the wind at a point, such as

simulating the wind as an autoregressive process (Brown

et al. 1984; Poggi et al. 2003) or using single-column

models (Traiteur et al. 2012), these methods are typi-

cally only accurate over short periods of time (less than

1h). Our goals are to provide a method that can be used

over longer periods of time, is computationally cheap

and accurate, and can be used to make probabilistic

forecasts of wind speed.

The remainder of the paper is organized as follows:

Section 2 gives an example in order to motivate the

problem. Section 3 introduces the downscaling algo-

rithm. Section 4 describes the data used to train the al-

gorithm. Section 5 discusses the training of parameters

that make up the algorithm. Section 6 gives a few ex-

amples of the simulated wind speed produced by the

algorithm. Section 7 reviews verification metrics for

an independent sample of days. Section 8 ends with

conclusions.

2. Motivating example

Let us presume we have a time series of wind speed,

sampled every 5 s, at an observation site, as shown by the

black line in Fig. 1a. The details of these data will be

elaborated upon in section 4, but the details are not

critical for the motivation. Let us also presume we

have a model forecast of the wind speed that perfectly

matches the 2-min sustained wind speed at each hour

(pink dots in Fig. 1a), which we call a perfect-prog

forecast. However, we do not have forecasts between

each hour, which is usually the case when using actual

operational NWPmodel forecasts. As a first guess to get

information between hours, we cubicly interpolate the

perfect-prog forecasts to a 5-s time step (pink, dotted

line in Fig. 1a).

This interpolated wind speed, which we call the ‘‘re-

solved’’ wind speed, clearly is not representative of the

variability of the observed wind speed. Figure 1b shows

the error, that is, the observed wind minus the in-

terpolated perfect-prog wind. The error, which we call

the ‘‘unresolved’’ wind speed, is what we seek to simu-

late through the downscaling algorithm presented in the

next section.

3. Downscaling algorithm

The total wind speed y is the sum of the resolved y and

unresolved components y0:

y5 y1 y0 . (1)

The unresolved component (e.g., Fig. 1b) contains the

subhourly variability in the wind speed due to a com-

bination of the unresolved boundary layer turbulence

and forecast (interpolation) errors. The statistical

properties of the unresolved component, particularly its

standard deviation and power spectral density, may be

used to generate a synthetic time series that mimics the

unresolved component, such that
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where s is the standard deviation of the wind speed,N is

the total number of points in the time series, F is the

power spectral density of the normalized wind speed

(y0s21), an and bn are random numbers drawn from a

Gaussian distribution with a mean of zero and a stan-

dard deviation equal toF, T5NDt is the total time, and

Dt is the time resolution of y. Note thatF is a function of

frequency, s 5 nT21. The term inside the curly braces

is constrained to have unit standard deviation and a

power spectral density that is given by F. A similar

method was used by Emanuel et al. (2006) to generate

synthetic time series of the flow at different levels of the

troposphere to advect hypothetical tropical cyclones in a

risk assessment study.

Because of the stochastic nature of the last term in

Eq. (2), multiple evaluations of Eq. (2) yield different

time series simulating the unresolved component. This

method is advantageous because it allows probabilistic

approaches, since one does not know the unresolved

component deterministically.

When Eq. (2) is added to the resolved component,

explained in section 5c, the combined result yields a

synthetic wind speed forecast with the time step of Dt
over a total time of T. The synthetic wind speed forecast

has subhourly variance and a power spectral density that

mimics observations of the unresolved component of the

wind speed. To apply Eqs. (1) and (2), one needs to

estimate F, s, and y.

4. Data

To estimate these parameters, we use one year (Oc-

tober 2016–October 2017) of New York State Mesonet

(NYSM) observations from ‘‘standard’’ sites that ob-

serve common meteorological variables (Fig. 2). The

wind data are produced by an RM Young 05103 Wind

Monitor, which measures wind speed and direction at

10m above ground level. This device is a propeller-style

anemometer with an expected accuracy of 60.3m s21

for wind speed and 638 for wind direction. The data

sampling rate is 3 s, and the data are quality controlled.

More information about the NYSM can be found in

Brotzge et al. (2017).

We selected a subset of NYSM sites based on two cri-

teria. The first criterion is that the site has data going back

to 2016. A full year of data allows for a sufficiently large

sample size to begin to assess how the downscaling al-

gorithm performs in different seasons. The second crite-

rion is that the site be in close proximity to a long-term

climate reporting Automated Surface Observing System

(ASOS) station. For an NYSM site to be paired to an

ASOS station, they have to be less than 20km apart and

have an elevation difference less than 100m. The prox-

imity to long-term climate reporting ASOS stations al-

lows us to determine precipitation type, which is not

observed by the NYSM. Days that had freezing rain or

drizzle are filtered out to eliminate any possibility of ice

accretion leading to erroneous wind readings. Addition-

ally, the proximity to ASOS stations means that archived

forecasts of wind speed are available to estimate y at

these sites. Based on these two criteria, six standard sites

are selected: Beacon (BEAC), Binghamton (BING),

Fayetteville (FAYE), Gabriels (GABR), Rush (RUSH),

and Voorheesville (VOOR). Note that the selection of

these six sites is not meant to be representative of all

environments, such as topography, surface roughness, or

sheltering in the NYSM network.

Surface and point sounding forecasts (Hart et al. 1998;

Hart and Forbes 1999) from the North American Meso-

scale Forecast System (NAM) model are obtained

from archived Buffalo Toolkit for Lake Effect Snow

(BUFKIT;Niziol andMahoney 1997) input files at the six

corresponding ASOS stations: Poughkeepsie (KPOU),

Binghamton (KBGM), Syracuse (KSYR), Saranac Lake

(KSLK), Rochester (KROC), and Albany (KALB)

(Fig. 2). For each 0000 UTC NAM BUFKIT input file

FIG. 2. NYSM standard site locations (gray dots), NYSM sites

used herein (red dots), and corresponding nearby ASOS sites

(blue dots).

FIG. 1. (a) Observed wind speed (black; m s21), perfect-prog

2-min sustained wind speed at each hour (pink dots), and in-

terpolated perfect-prog 2-min sustained wind speed (pink dotted

line) at Fayetteville on 23 Oct 2016. (b) Error between observed

wind speed and interpolated perfect-prog wind speed (m s21).
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from October 2016 to October 2017, forecasts of NAM

10-m wind are extracted for the first 24-h period begin-

ning atmidnight eastern standard time (EST; 0500UTC).

Wind forecasts are available at hourly resolution. As in

the motivating example, the forecast data are cubicly

interpolated between hours, which we define as ys,f, to

generate NAM forecasts of the resolved wind speed. A

cubic interpolation is chosen because it represents in-

creases and decreases inwind speed between hours better

than a lower-degree interpolation, but themethodology is

not sensitive to the choice of interpolation.

In preparing the NYSM wind data for the estimation

of parameters in the downscaling algorithm, we conform

to past ASOS standards (Nadolski 1998). The NYSM

wind data are downsampled from a 3-s interval to a 5-s

interval by applying a Fourier transform to the 3-s time

series, phase shifting the components of the transform,

and then applying an inverse Fourier transform to yield

the downsampled 5-s time series (Prichard and Theiler

1994). The raw 5-s wind data are defined as yo. The

sustained wind speed, ys,o, is a moving average of yo
over a 2-min period. The gust wind speed yg,o is the

maximum value of yo within the same 2-min period.

Additionally, we define perfect-prog forecasts of the

sustained wind speed ys,pp. As in the motivating exam-

ple, the perfect-prog wind speed matches the observed

wind speed at the top of every hour, and the perfect-prog

wind speeds are then cubicly interpolated between

hours. The purpose of having a perfect-prog forecast is

to evaluate the downscaling algorithm without the

presence of NAM forecast errors. Table 1 summarizes

all the wind speed variables used herein.

To train and validate the downscaling algorithm, we

divide the wind data at each site into six portions. Each

portion is noncontiguous (i.e., every sixth element is

selected) and nonoverlapping. The first five portions are

used to conduct a fivefold cross validation, in which

four-fifths of the data is used to train the downscaling

algorithm, and one-fifth is used for validation. This

procedure is repeated 5 times for all possible combina-

tions of training and validation folds. The validation is

used to arrive at a selected downscaling algorithm for

each NYSM site. Finally, the sixth portion is used to test

and verify the selected downscaling algorithm at

each site.

5. Parameters

a. Power spectral density F

The power spectral density (Chatfield 2003) is com-

puted from 1-h segments of the observed, normalized

wind speed at each NYSM site. The choice of 1-h seg-

ments represents the spacing between consecutive

NAM or perfect-prog wind forecasts, and is hence

the time interval over which we wish to simulate the

unresolved wind speed. The normalized wind speed is

defined as

y*5 y0/s
y0 , (3)

where y* is the normalized wind speed, y0 5 yo 2 ys,pp,

and sy0 is the standard deviation of y0. It is necessary to

perform the normalization before calculating the power

spectral densities; otherwise the power spectral density

for each segment would be offset in magnitude because

of conservation of total energy in both time and fre-

quency space (Parseval’s theorem).

The power spectral density is computed usingWelch’s

method (Welch 1967). Each 1-h segment is broken into

five pieces with 50% overlap using a Hanning window.

The power spectral density is computed for each piece

and then averaged.

The mean power spectral density of the 1-h segments

of y* (colored, dashed lines in Fig. 3) serves as an em-

pirical estimate of F at each site. It is important to em-

phasize that these estimates are not the power spectral

densities of the observed wind itself but rather the error

between an imperfect forecast and the observed wind

speed, and therefore they have different characteristics.

Namely, the power spectral density of the normalized

wind represents a combination of unresolved subhourly

TABLE 1. Wind speed variables, names, and definitions.

Variable Name Definition

y Wind speed 5-s sample wind speed

yo Observed wind speed 5-s sample wind speed from NYSM sites

ys Sustained wind speed 2-min avg of y

ys,o Observed sustained wind speed 2-min avg of yo
ys,pp Perfect-prog sustained wind speed Interpolated hourly ys,o
ys,f Forecast sustained wind speed Interpolated hourly NAM 10-m wind speed

ybcs,f Bias-corrected forecast sustained wind speed Bias-corrected interpolated hourly NAM 10-m wind speed

yg Gust wind speed Max y within a 2-min interval

yg,o Observed gust wind speed Max yo within a 2-min interval

662 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 57



variability, such as turbulence in the eddy-containing

range and in the inertial subrange where the power

spectral density parallels the 25/3 power law (Stull

1988), and forecast errors caused by the interpolation

that do not have any physical relationship to boundary

layer physics. These forecast errors are unavoidable and

should be incorporated into the algorithm design.

The range in the empirical estimates of F across all

hours and across the five cross-validation folds is small.

In fact, the range is barely discernible in Fig. 3. There-

fore, there is confidence that the estimates of F do not

depend on the hour or sample of days. However, there

are differences in F between sites, which are possibly

due to unique mesoscale and microscale heterogeneities

in the local environment at each site. Note that there is

spread about the mean when considering all the power

spectral densities (gray shading in Fig. 3). It is not pos-

sible to capture all the spread with a single estimate ofF
at each site, so it represents a typical power spectral

density of the unresolved component of the wind speed.

b. Standard deviation s

Recall that the term inside the curly braces in Eq. (2)

is constrained to have unit standard deviation. The

standard deviation of the wind speed is needed to de-

normalize this term. Following Harper et al. (2010) and

Suomi et al. (2013), the standard deviation of the wind

speed can be estimated as

s5
y
g
2 y

s

a
. (4)

The empirically estimated parameter a is called the

normalized gust. Using the observed wind data from the

NYSM observations, a can be estimated by regressing

(yg,o 2 ys,o) on syo and calculating the slope of the least

squares linear fit. Figure 4 shows that the mean a for all

the cross-validation folds ranges between 1.98 and 2.04

at the six sites. In other words, the gust wind speed

tends to be about two standard deviations away from

the sustained wind speed. There is a very small range

FIG. 3. Mean power spectral densities of 1-h segments of the normalized wind at (a) BEAC, (b) BING, (c) FAYE, (d) GABR,

(e) RUSH, and (f) VOOR (dashed lines; m2 s21). Shading of the same color about each dashed line gives the range ofmean power spectral

densities for all hours and all cross-validation folds. Gray shading shows the bin counts (log scale) of power spectral density points for all

1-h segments. The thin black line is a reference 25/3 power law.
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(,0.01) in a across the folds, and in the 95% confidence

interval of a in each fold, lending high confidence in the

estimation of a. Similar results are obtained if using

the perfect-prog winds in place of the observed winds on

the rhs of Eq. (4).

For forecasting applications, wemust parameterize yg.

The simplest parameterization is to use a gust factor b,

where

y
g
5by

s
. (5)

A similar approach may then be taken by regressing yg,o
on ys,o, as shown in Fig. 5. Figure 5 shows that the mean

b for all the cross-validation folds ranges between 1.40

and 1.57 at the six sites. In other words, the gust wind

speed tends to be about 40%–57% higher than the sus-

tained wind speed. There is also a very small range

(,0.01) in b across the folds, and in the 95% confidence

interval of b in each fold, lending high confidence in the

estimation of b.

Both a and b have diurnal variability that is important

to consider (Gallagher 2016). To explore this diurnal

variability, the regressions used to calculate a and b are

repeated, but controlling for hour, as shown in Fig. 6.

The highest values of a occur in the evening and over-

night hours, and the lowest values occur in the morning

hours. At BEAC, BING, FAYE, andGABR, the lowest

values of b occur overnight, and the highest values occur

during the day. There is little diurnal variability in b at

RUSH and VOOR. The combined diurnal variability

of a and b can result in about a 10% difference in

s between night and day, which is nontrivial. Therefore,

we incorporate this diurnal variability of a and b into the

downscaling algorithm by making both parameters a

function of hour.

There are a few of caveats that should be kept inmind.

Expressing s with Eqs. (4) and (5) is a major simplifi-

cation that circumvents the physical relationship be-

tween surface wind variability (including wind gusts)

and boundary layer structure. A more physically based

expression relating s to boundary layer parameters, like

the vertical stability, would be more useful in situations

that deviate from typical diurnal variability. In addition

to diurnal variability, there is likely seasonal variability

FIG. 4. Linear regression (dashed line) of (yg,o 2 ys,o) on syo for (a) BEAC, (b) BING, (c) FAYE, (d) GABR, (e) RUSH, and (f) VOOR.

Shading of the same color about each dashed line gives the range of linear regressions for all cross-validation folds. Gray shading shows bin

counts (log scale) of all the data in [syo, (yg,o2 ys,o)] parameter space. Themeana (slopeof the linear regression line) is given in the upper left.
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in both a and b (Gallagher 2016). We do not have

multiple years of NYSMwind data to rigorously explore

the seasonal variability further, since the NYSM was

recently installed. Additionally, both a and b depend on

the time averages used to calculate both the sustained

and gust wind speeds (Suomi et al. 2013; Gallagher

2016), so the values here are particular to the past ASOS

standards that we have adopted.

c. Resolved wind speed y

The last piece needed for the downscaling algorithm is

the choice of y. One may simply use ys,f directly as y, but

FIG. 5. Linear regression (dashed line) of yg,o on ys,o for (a) BEAC, (b) BING, (c) FAYE, (d) GABR, (e) RUSH, and (f) VOOR. Shading

of the same color about each dashed line gives the range of linear regressions for all cross-validation folds. Gray shading shows bin counts

(log scale) of all the data in (ys,o, yg,o) parameter space. The mean b (slope of the linear regression line) is given in the upper left.

FIG. 6. (a) a and (b) b as a function of hour for each of the six sites. Shading of the same color about each dashed line

gives the range of a and b for all cross-validation folds.
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one must be cautious that ys,f is not biased. Biases in ys,f
would introduce the same biases in the synthetically

generated wind time series and cause systematic errors

in s, resulting in potentially poor forecasts.

We employ an empirical quantile mapping bias cor-

rection (Michelangeli et al. 2009; Gudmundsson et al.

2012) on ys,f:

ybcs,f 5F21
o [F

f
(y

s,f
)], (6)

where Ff is the cumulative distribution function (CDF)

operator on the sample of forecasts, Fo is the CDF op-

erator on the sample of observations, and ybcs,f is the bias-

corrected forecast sustained wind speed. The CDFs are

estimated at each individual NYSM site from the sam-

ples of ys,o and ys,f within the cross-validation folds

(Fig. 7).

Since the bias may have diurnal dependence, the sam-

ples of ys,o and ys,f are partitioned into hourly segments,

and theCDFs are recomputed. Figure 7 shows that there is

substantial spread in the hourly CDFs, as given by the

shading about the dashed lines, in both the forecast and

observed sustained wind speeds because of diurnal vari-

ability. Very little of the spread is due to variability in

CDFs between cross-validation folds (not shown).

At all six sites, the ys,f CDF is to the right of the ys,o
CDF, meaning that the NAM 10-m sustained wind

speeds tend to be too high relative to observations. We

speculate that the positive bias in the NAM wind speed

may be because all six sites are located in valleys

(Winstral et al. 2017). Application of Eq. (6) tends to

reduce the NAM 10-m wind speeds at these sites. The

bias-corrected ybcs,f is then substituted where y appears

in Eq. (1) and where ys appears in Eqs. (4) and (5).

6. Examples of simulated wind

We now have all the pieces needed to apply the

downscaling algorithm to simulate the wind speed. We

arbitrarily choose one day at three of the sites. The first

FIG. 7. CDFs of the observed sustained wind speed ys,o (dashed black lines) at (a) BEAC, (b) BING, (c) FAYE, (d) GABR, (e) RUSH,

and (f) VOOR. Also shown are CDFs of the NAM forecast 10-m wind speed, ys,f, (dashed colored lines) at (a) KPOU, (b) KBGM,

(c) KSYR, (d) KSLK, (e) KROC, and (f) KALB. Shading of the same color about each dashed line gives the range of CDFs for all hours

and all cross-validation folds.
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example is 23 May 2017 at BEAC, which is a relatively

calm day (Figs. 8a–c). The second example is 21 No-

vember 2016 at BING, which is a relatively windy day

(Figs. 8d–f). The third example is 23 October 2016 at

FAYE, which starts out relatively windy, and then the

wind lessens later in the day (Figs. 8g–i).

The parameters F, s (a and b), and y are obtained

from the cross-validation fold that has the particular site

and day in the validation portion. Also recall that F, a,

and b are functions of hour and differ for each site. For

one iteration, we use the perfect-prog winds ys,pp in

Eqs. (4) and (5), and as y in Eq. (1), to yield the ‘‘perfect-

prog synthetic wind.’’ For the second iteration, we use

the bias-corrected NAM 10-m winds ybcs,f in a similar

manner to yield the ‘‘NAM forecast synthetic wind.’’

After obtaining the necessary parameters, we simulate

the wind speed over a full day by applying Eqs. (1) and

(2) with a 1-h interval (T 5 3600 s) and a 5-s time step

(Dt 5 5 s), and then concatenate the intervals.

Both synthetic winds reproduce the qualitative fea-

tures of the observed winds. The perfect-prog synthetic

winds (Figs. 8b,e,h) and the NAM forecast synthetic

winds (Figs. 8c,f,i) appear to approximately match the

range of observed winds (Figs. 8a,d,g). Additionally, the

FIG. 8. (a) Observed wind speed (m s21) at BEAC on 23 May 2017. (b) Interpolated per-

fect-prog sustained wind speed (pink) and perfect-prog synthetic wind speed (dark red).

(c) Interpolated, bias-corrected NAM forecast sustained wind speed (cyan) and NAM

forecast synthetic wind speed (dark blue), using the NAM initialized at 0000 UTC 23 May

2017 at KPOU. (d)–(f)As in (a)–(c), but for BINGon 21Nov 2016 and theNAM initialized at

0000 UTC 21 Nov 2016 at KBGM in (f). (g)–(i) As in (a)–(c), but for FAYE on 23 Oct 2016

and the NAM initialized at 0000 UTC 23 Oct 2016 at KSYR in (i).
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standard deviation tends to be higher as the wind speed

increases, which matches observations. However, the

NAM forecast synthetic winds have less interhourly

variability.

To conduct a more rigorous evaluation of these ex-

amples, we compare their distributions and power

spectral densities. The distributions of synthetic winds

are similar to the distribution of observed winds on these

three example days (Figs. 9a,c,e). As expected, the

perfect-prog synthetic wind distribution is closer to the

observed distribution, because there are forecast errors

in the resolved component of the NAM forecast syn-

thetic wind. The power spectral densities of the synthetic

winds mimic the shape of the observed power spectral

densities (Figs. 9b,d,f). We will show verification metrics

for a larger sample of days in the next section.

The synthetic winds shown in Fig. 8 are single re-

alizations of a plausible evolution, but the exact wind

speed at a given time cannot be forecast deterministically.

One principal advantage of the downscaling algorithm

is that it can be repeated to yield an ensemble of

plausible evolutions, yielding probabilistic forecasts

of wind speed.

For instance, say we wish to forecast the daily maxi-

mum 1-, 2-, and 10-min average sustained wind speeds at

FAYE on 23 October 2016. The algorithm is repeated

30 times to yield a 30-member ensemble of NAM fore-

cast synthetic winds. Figure 10 shows the forecast

probabilities of daily maximum 1-, 2-, and 10-min aver-

age sustained wind speeds obtained from the ensemble.

The mean of the forecast distribution may serve as a

‘‘best guess’’ forecast, and the spread about the mean

gives a sense of the uncertainty.

In summary, this algorithm can be applied to any ap-

plication that requires probabilistic wind guidance at

high time resolution or over specific averaging periods.

For example, in an educational application the daily

maximum 2-min average sustained wind speed is a

forecast variable in the WxChallenge forecast competi-

tion (Illston et al. 2013). This algorithm could be used to

provide probabilistic guidance of the daily maximum

2-min average sustained wind speed at WxChallenge

forecast cities.

7. Verification

The cross validation shows that there is little variation

in the parameters for each fold, as indicated by little

difference in the estimates ofF, a, b, and the CDFs used

to bias correct ys,f when considering differences across

folds only (controlling for hour) in Figs. 3–7. Therefore,

these parameters are stable for different samples of days

used to train the algorithm. We average the parameters

across all folds to arrive at the selected downscaling al-

gorithm, since the individual downscaling algorithms

from each fold are nearly identical.

Recall that one-sixth of the data (56–58 days at each

site) was withheld from the training and validation in

order to verify the selected downscaling algorithm. For

each of these days at each site, we use the downscaling

algorithm to generate perfect-prog synthetic winds and

NAM forecast synthetic winds, following the examples

in the previous section. Both synthetic winds are verified

in multiple ways against the observed winds. The first

verification metric is the Bhattacharyya distance

(Bhattacharyya 1943), which measures differences be-

tween two probability distribution functions. The two

probability distribution functions are that of the ob-

served wind speeds p(y) and that of the synthetic wind

speeds q(y). The Bhattacharyya distanceBd is defined as

B
d
52log

�
�
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(y)q(y)

p �
, (7)

where the sum is taken over all y in 0.1m s21 bin widths.

Thus, if the two distributions are identical, Bd 5 0. If the

two distributions have no overlap, then Bd / ‘. The
Bhattacharyya distance is calculated for each day in

the verification dataset and then averaged over all days.

We also generate a 30-member ensemble of perfect-

prog synthetic winds and a 30-member ensemble of

NAM forecast synthetic winds for each day and site. The

ensemblemean of the dailymaximumwind gust, and the

daily maximum 1-, 2-, and 10-min average sustained

wind speeds are verified against their corresponding

observed values by calculating the mean absolute error

(MAE) across all days.

The results of the verification are shown in Table 2.

The Bhattacharyya distance is nearly zero, which in-

dicates that there is almost complete overlap between

the normalized distributions of the observed winds and

synthetic winds. The mean absolute errors for the daily

maximum wind at various averaging periods are also

reasonably low. For the perfect-prog synthetic wind, the

mean absolute errors are between 0.48 and 1.66m s21.

The error is lower for longer averaging periods. For the

NAM forecast synthetic wind, the Bhattacharyya dis-

tance and mean absolute errors are all larger than the

perfect-prog counterparts, but this is expected in the

presence of NAM forecast error. However, the mean

absolute errors are still small (0.95–2.66m s21), which

indicates that the downscaling algorithm is useful for

predicting wind speeds over a variety of averaging pe-

riods characterizing different operational standards.

Figure 11 shows the predicted versus observed daily

maximum wind speeds for each of the verification days
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at each site. The predictions using the perfect-prog

synthetic wind (Figs. 11a,c) are tightly clustered about

the one-to-one line, consistent with the lower mean

absolute errors in Table 2. There does not appear to be

any particular bias at specific sites or different wind

speeds, at least in the range observed, in the absence of

NWP forecast error. When using the NAM forecast

synthetic winds (Figs. 11b,d), there is more spread about

the one-to-one line, consistent with the higher mean

absolute errors in Table 2 with the addition of NWP

forecast error. Additionally, there is tendency for the

NAM forecast synthetic winds to slightly under-

predict the daily maximumwind speeds, especially the

wind gust speed. Some of the outlier points with

large error at BEAC and FAYE are associated with

transient high winds associated with convection

(not shown), which the NAM model does not

represent well.

FIG. 9. (left) Normalized frequency histogram and (right) power spectral density (m2 s21) of the observed wind

(black), perfect-prog synthetic wind (dark red), and NAM forecast synthetic wind (dark blue) at (a),(b) BEAC on

23 May 2017, (c),(d) BING on 21 Nov 2016, and (e),(f) FAYE on 23 Oct 2016.
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Since we have 1 year of wind data, we can also begin to

assess how the downscaling algorithm performs as a

function of month and hour in order to determine the

seasonal and diurnal performance of the downscaling

algorithm. Figure 12 shows there are generally higher

errors in the hourly maximum wind speed in meteoro-

logical winter and spring (December–May) than in

meteorological summer and fall (June–November). The

errors tend to be lower in the overnight hours and higher

in the daytime hours. The higher errors tend to be as-

sociated with when the wind speeds are typically also

higher, that is, during the daytime and when there is a

larger frequency of strong synoptic-scale storm systems

and convection. Nonetheless, over all months and hours,

the mean absolute errors of the hourly maximum wind

speed are less than 3m s21.

8. Conclusions

Wehave presented amethod to downscale NWPwind

forecasts to yield synthetic, high-time-resolution wind

speed forecasts at a point. These synthetic wind speeds

are designed to match past ASOS specifications, namely

10-m instrument height, 5-s wind speed sampling interval,

2-min sustained wind speed averaging interval, and the

gust wind speed defined as the maximum 5-s wind speed

within the 2-min interval. From NYSM observations with

the same specifications, the empirical power spectral den-

sity, normalized gust, and gust factor are estimated and

used to simulate the unresolved component of the

wind. The NAM 10-m forecast wind speeds are bias

corrected with a quantile mapping algorithm and used

to determine the resolved component of the wind. The

combination of the resolved and unresolved compo-

nents results in a synthetic wind speed forecast.

The unresolved component of the wind is stochastic in

the downscaling algorithm, because the unresolved

component cannot be predicted deterministically. As a

result, the downscaling algorithm can be repeated to

yield an ensemble of synthetic wind speed forecasts.

Ensemble wind speeds at various averaging periods may

be extracted; yielding probabilistic forecasts of gusts and

n-min averages, where n is a specified time length, as a

function of time. Thus, the algorithm may be used to

inform ormake decisions for any number of applications

that may benefit from probabilistic wind speed forecasts

tailored to the needs of the application.

TABLE 2. Verification statistics for the downscaling algorithm. The first column gives the site. The second column indicates whether the

synthetic winds are generated using the perfect-prog (ys,pp) or bias-correctedNAM forecast sustained winds (ybcs,f ). The remaining columns

give verification metrics: Bhattacharyya distance Bd; the MAE of the daily max wind gust; and the daily max 1-, 2-, and 10-min avg

sustained wind speeds (m s21). See the text for details on the verification metrics.

Site ys input Bd MAE gust MAE 1-min MAE 2-min MAE 10-min

BEAC ys,pp 0.016 1.32 0.86 0.74 0.57

BEAC ybcs,f 0.081 2.66 1.71 1.45 1.07

BING ys,pp 0.012 1.19 0.78 0.69 0.48

BING ybcs,f 0.058 2.05 1.34 1.14 0.95

FAYE ys,pp 0.014 1.66 1.02 0.87 0.59

FAYE ybcs,f 0.084 2.52 1.92 1.73 1.31

GABR ys,pp 0.018 1.47 0.92 0.82 0.60

GABR ybcs,f 0.089 2.57 1.83 1.61 1.38

RUSH ys,pp 0.014 1.11 0.71 0.64 0.52

RUSH ybcs,f 0.086 2.23 1.36 1.22 0.99

VOOR ys,pp 0.018 1.18 0.75 0.69 0.56

VOOR ybcs,f 0.094 2.44 1.68 1.49 1.24

FIG. 10. Ensemble forecast probabilities of the daily max 1-min

(blue), 2-min (green), and 10-min (red) sustained wind speed at

FAYE on 23Oct 2016. Triangles show the verifying sustained wind

speeds, rounded to the nearest meter per second.
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Verification metrics show that the algorithm is accu-

rate. The algorithm closely reproduces the observed

distributions of wind speed, provided the NAM wind

forecast is skillful itself, and closely parallels the ob-

served power spectral densities. When comparing the

forecast daily maximum wind gust, and the daily maxi-

mum 1-, 2-, and 10-min average sustained wind speeds

with the observed values, mean absolute errors are

0.95–2.66ms21. Mean absolute errors of the hourly

maximum wind gust and 2-min average sustained wind

speeds are generally ,3m s21 over all months and

hours. It would be interesting to compare this algorithm

with other dynamical and statistical downscaling algo-

rithms in terms of its accuracy in forecastingmeasures of

the daily wind and wind speed distributions (Horvath

et al. 2012; Kirchmeier et al. 2014; Huang et al. 2015).

One advantage of this algorithm is that it is modular.

The time period of simulation T and the time step

Dt may be changed provided one has estimates of F for

the range of frequencies encompassed by the choice of

T and Dt. In lieu of using a simple gust factor, one may

use a more sophisticated algorithm based on the turbu-

lent kinetic energy and buoyancy profiles within the

boundary layer to determinewind gusts (Brasseur 2001).

Instead of the quantile mapping bias correction, one can

employ any number of bias correction methods, in-

cluding model output statistics (Glahn and Lowry 1972).

One can generatemore realistic ensemble uncertainty in

the resolved wind speed by using bias-corrected, 10-m

winds from a NWP ensemble forecast, like the Global

Ensemble Forecast System, or combinations of NWP

model forecasts. Although we have focused on NWP

and forecasts on short time scales, one could also train

this algorithm and repeat the methods herein with a

GCM to study winds on longer time scales.

There are several caveats to keep in mind. First, since

the algorithm requires observed data to train the algo-

rithm, it requires reliable and high-resolution observed

wind data to be available at the desired forecast point.

Thus, the algorithm cannot be used in a data-void area.

FIG. 11. Predicted vs observed (a), (b) daily max 2-min avg sustained wind speed (m s21) and (c), (d) daily max

wind gust speed (m s21) at the six NYSM sites. Predicted wind speeds are generated using the perfect-prog ap-

proach in (a) and (c) and the bias-corrected NAM forecast approach in (b) and (d).
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One possible way around this problem is to use high-

resolution dynamical downscaling to determine the

covariance between points that have observations and

points that do not have observations. One can then

extend the methods presented here from a single point

to a local area if the covariances are well constrained and

meaningful (Emanuel et al. 2006). Second, different

wind measurement specifications would yield different

parameters in the downscaling algorithm, so the algo-

rithm is not directly transferable to forecast winds

between networks with different specifications or at

nonconforming sites within networks. Third, we do not

attempt to account for heterogeneity in the normalized

gust and gust factor due to season (Gallagher 2016),

terrain (Howard and Clark 2007; Winstral et al. 2017),

and surface roughness (de Rooy and Kok 2004; Paulsen

and Schroeder 2005; Huang et al. 2015), which may be

important to account for when estimating these pa-

rameters. Fourth, the algorithm would likely have

trouble simulating extreme events, when the wind speed

forecast is beyond the tail of the CDF of the observed

wind speeds, and convective wind gusts, when there are

sudden increases in wind that are not representative of

typical variability. Regardless of these caveats, we have

presented a computationally efficient, accurate method

for forecasting wind speed at high time resolution, and

in a probabilistic manner, that may be useful for a va-

riety of applications that require wind forecasts at vari-

ous time averages and forecast horizons.
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