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1) The Greenhouse Effect: Radiative equilibrium
model for a single layer atmosphere

Simple models are often applied in climate sciences as a tool for illustrating
fundamental physical processes. These models should not be considered
as compact description of the complex real world. Rather they help us
scientists to understand the complex world a little better. If we accept
this concept then we must be willing to accept its limitation, too. In the
following description it is the primary goal to provide the basic idea why the
atmosphere increases surface temperatures on Earth. Let’s start with the
simplest model that we can use for this purpose. And let’s practice to work
with the equations to quantify the greenhouse effect in this simple global
radiative energy model with a single atmospheric layer. This layer acts like
an absorber and emitter of infrared radiation. But it’s greenhouse effect is
measurable only if we define a reference climate state. This reference system
provides a surface temperature for comparison. Here we use as a reference
climate system a planet without atmosphere.
A single parameter will describe the emissivity of the layer in the infrared
wavelength range. Note that we use the physical concept that gray-body
radiative emissivity is a fraction of the blackbody emissivity, and that the
atmopshere absorbs in the same proportion the incoming radiation as it
emits the radiation. The incoming sunlight and longwave (LW) radiative
fluxes are further considered as the integral over the visible range (shortwave,
SW) and a second integral over the LW spectrum in the infrared range. The
atmosphere-free planet is given the same planetary albedo as the Earth: we
assume 30% of the SW radiation is reflected back to space. The rest is
absorbed at the surface and used to heat up the planet. In the equilibrium
state incoming and outgoing radiation must cancel each other. Now this
atmosphere-free system has only one freely adjustable climate variable, the
global mean surface temperature Ts. This temperature we equate with the
blackbody temperature at which the surface emits IR radiation back to
space. So the problem is fairly simple. On the one hand we have the
incoming radiation in the SW range Q0/4 = 1/4 ∗ 1360Wm−2 = 340Wm−2,
and with a fixed and known albedo a = 0.3 this gives a net incoming flux

Fin =
Q0

4
(1 − a) = 340Wm−2 ∗ 0.7 = 238Wm−2 (1)

We need an equation that relates now the surface equilibrium temperature
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with this net incoming radiative flux. Noting again that in equilibrium
the outgoing LW radiative flux balances the incoming flux (Fin = Fout)
and recalling that the Stefan-Boltzman law gives us the relationship for a
blackbody radiation and the body’s temperature our equation becomes

Fin = σT 4
s (2)

This assumes that in the infrared the planet emits as a blackbody. The
Stefan-Boltzmann constant 5.67 ∗ 10−8Wm−2K−4 is given, and therefore we
can solve for Ts:

Ts =

[
Fin
σ

]1/4
= 255K (3)

The equilibrium surface temperature of the planet without atmosphere would
be -19◦C.

2) Adding the single atmospheric layer (window-
gray approximation)

With a single layer atmosphere the planet is wrapped into an invisible blan-
ket. Visible light is assumed in this simple case to pass through the atmo-
sphere without any scattering or absorption. Planetary albedo does remain
the same (0.3) and surface net shortwave flux is the same as at the top
of the atmosphere. The atmosphere only affects the IR radiative flux. A
part of it is absorbed and heats the atmosphere, another part is transmitted
and escapes into space. But introducing the atmosphere means we have
another parameter and one more climate variable: the emissivity ε and the
atmosphere’s temperature Ta, respectively. For the moment we leave the
emissivity unspecified, but it is noted here that ε is a number between 0
and 1. For 1 the atmosphere becomes a blackbody and all IR that enters
the atmosphere is absorbed. Hoewever, the atmosphere would also act as
an emitter of radiation following the Stefan-Boltzmann law. For ε = 0 the
atmosphere would allow 100% of the IR coming from the surface to be trans-
mitted and to escape to space. We assume ε is somewhere between these
extremes.
In order to understand the greenhouse effect from this atmospheric layer,
consider that the system had enough time to find its equilibrium. The most
important idea in this conceptual model is that the atmospheric layer is thin
but it has two emitting surfaces: one facing outer space and the other facing
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the surface. Both surfaces emit at the same temperature Ta with the same
emissivity ε. One side sends radiation out to space the other back to the
surface in equal amounts.
In this system there is a permanent exchange of radiative energy between
surface and atmosphere (typical for systems that exchange fluxes), but all
are in balance in an equilibrium state with constant temperatures. The
radiative balance is given when the incoming radiative flux Fin is balanced
by the LW radiation emitted to space (Fout). Compared to the first case (our
reference climate system) there are two components in the balance equation
contributing to Fout: A fraction of the surface radiative flux escapes through
the atmosphere, and then the atmosphere’s upward flux; both depend on ε.
Likewise the Earth receives now some extra LW radiative flux from the
atmosphere in addition to the SW flux.
Let’s write this budget down for the top of atmosphere outgoing (LW) flux
and for the surface (for the equilibrium state Fin = Fout; hence we use Fin
in the equations below, only):

Fin = εσT 4
a + (1 − ε)σT 4

s (4)

Fin + εσT 4
a = σT 4

s (5)

Two equations with two climate variables allows us to solve for the surface
temperature and air temperature. Subtracting equation 4 from 5
gives us

εσT 4
a = σT 4

s − εσT 4
a − (1 − ε)σT 4

s (6)

Rearranging the terms that are left (note the canceling term σT 4
s on the

right hand side), leaves a simple equation relating surface and atmosphere’s
temperature.

2εσT 4
a = εσT 4

s (7)

One thing we can read immediately from this equation: atmosphere is cooler
than the surface temperature. That makes sense.
Now we want to know how much the greenhouse effect has warmed the
surface compared with our first planet.
For this we can go back to Eq. 5 and substitute the atmospheric temperature
term according to 7:

Fin = (1 − ε

2
)σT 4

s (8)
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Resolving for Ts gives us:

Ts =

[
Fin

(1 − ε
2)σ

]1/4
(9)

Now we can compare this solution with the previous atmosphere-free tem-
perature solution from Eq. 3. First, let’s check if the equation for the model
with the window-gray atmosphere is consistent with Eq. 3: If the emissivity
goes down to zero, the atmosphere becomes more and more transmittive in
the IR range. Less and less radiative energy flux can heat the atmosphere
and the emitted IR radiation going back to the surface goes down, too. For
ε = 0 the atmosphere would have no greenhouse effect and both equations
are exact the same.
Now if we on the other hand assume that the IR emissivity is high (e.g.
0.78) then hardly any IR emitted from the surface escapes to space, most
is aborbed in the atmosphere and helps to increase its temperature. This
leads to emission of more IR to space and back to surface and helps to heat
up the surface temperature. For that particular value of ε we would get a
surface temperature of about 288K (15◦C).
Note: This example was taken from Coakley and Yang ”Atmospheric Radi-
ation” Section 1.4. I emphasized here the intermediate steps.


