ATM 320: Atmospheric Thermodynamics
Fall Semester 2019 (3 credits), Class Number 6789

Lecture: Tuesday & Thursday 8:45-10:05 in ES B13
http://www.atmos.albany.edu/facstaff/torn/atm320/

Instructor:
Professor Ryan Torn
Office: ES 229
Phone: 442.4560
Fax: 442.5825
rtorn@albany.edu
Office hours: Monday 12:30-1:30, Wednesday 1:00-2:00, and by appointment

Teaching Assistant:
Adolfo Lugo Rios
Office: ES 323
alugorios@albany.edu
Office hours: Tuesday 4:00-5:00, Thursday 5:00-6:00, and by appointment

Course Objective:
The goal of this course is to understand the physical laws that govern how energy and heat are transmitted in the atmosphere.

Prerequisites:
ATM 211

Text:
Atmospheric Science: An Introductory Survey, 2nd ed. by J. M. Wallace and P. V. Hobbs (W&H)

Supplementary reading:
A First Course in Atmospheric Thermodynamics by G. W. Petty (P)

Course Requirements:
6 Homework assignments: 25%
2 In-class quizzes: 10%
2 In-class exams: 17.5% each
Final exam (Monday December 16, 3:30-5:30 pm): 30%
Grading: A-E
Late Homework and off-time exams are only allowed for University-recognized reasons (http://www.albany.edu/health_center/medicalexcelcuse.shtml). Homework assignments lose 25% of their value per day it is late (i.e., an assignment turned in two days late cannot get better than a 50%).
Quiz Policy:
Most lectures will begin with a 2 question quiz that covers information from the previous lecture. At the end of the semester, the quiz average will be computed, excluding the lowest three scores. Missed quizzes will count as a zero; however, missing quiz scores can be included in the three dropped quizzes at the end of the semester. More than three missing quizzes will count against the student’s final quiz score, unless the student has a university-recognized reason for missing classes on specific dates (see http://www.albany.edu/health_center/medicalexcelcuse.shtml). There are no make-up quizzes.

Religious Observance:
Students must notify the instructor of any lectures and assignment due dates that conflict with recognized religious observances (https://www.albany.edu/registrar/registrar_assets/Religious_Calendar.pdf) well in advance. The instructor will work with the student to provide an alternative arrangement.

Academic Integrity:
Although students can work together, all homework assignments must be completed independently. Homework assignments that are substantially similar to other students will be given a zero for that assignment. Copying from other students on quizzes and exams may result in a zero for that work and referral for disciplinary action under the University’s policy on academic integrity (http://www.albany.edu/undergraduate_bulletin/regulations.html). Every student has the responsibility to become familiar with the standards of academic integrity at the University. Claims of ignorance, unintentional error, or personal or academic pressures cannot be excuses for violation of academic integrity.

Course Outline:

1. Basic Definitions and Laws (3 weeks)
 - definitions and quantities that describe gases (W&H 1.3, P1)
 - laws and equations of state (W&H 3.1, P3)
 - moisture-related definitions

2. Dry Thermodynamics (4 Weeks)
 - work and the First law of thermodynamics (W&H 3.3, P5.1, 5.2)
 - application to air parcels (W&H 3.4.1)
 - adiabatic processes (W&H 3.4, P5.4)
 - buoyancy, static stability (W&H 3.6.1)
 - entropy and the Second law of thermodynamics (W&H 3.3, 3.7, P5.7, 6)

3. Moist Thermodynamics (8 Weeks)
 - phase changes of water and latent heat (W&H 3.5.1-3.5.2, P7.1-7.2)
- Clausius-Clapeyron equation (W&H 3.7.3, P7.3)
- dew point temperature (P7.1)
- Bergeron-Findeisen process
- pseudo-adiabatic processes (W&H 3.5.3-3.5.4, P7.7)
- equivalent potential temperature (W&H 3.5.5, P7.8)
- skew-T diagrams and definitions (W&H 3.6, P7.6, 7.9)