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H u r r i c a n e 
p r e d i c t i o n

Widely varying scales of atmospheric motion make it extremely difficult to predict hurricane 
intensity, even after decades of research. A new model capable of resolving a hurricane’s 
deep convection motions was tested on a large sample of Atlantic tropical cyclones. Results 
show that using finer resolution can improve storm intensity predictions.

High-Resolution  
Hurricane Forecasts

P redicting a hurricane’s intensity re-
mains a daunting challenge even after 
four decades of research. The intrinsic 
difficulties lie in the vast range of spa-

tial and temporal scales of atmospheric motions 
that affect tropical cyclone intensity. The range of 
spatial scales is literally millimeters to 1,000 kilo-
meters or more.

Atmospheric dynamical models must account 
for all these scales simultaneously. Being a non-
linear system, these scales can interact. Although 
forecasters must make approximations to keep 
computations finite, there’s a continued push for 
finer resolution to capture as many of these scales 
as possible.

Problem overview
From the present standpoint of computational 
feasibility, a model’s minimum grid lengths that 
still allow modeling of the storm and its near 
environment are a few hundred horizontal me-
ters and approximately 50 to 100 vertical meters.  

Most current weather prediction uses grid-based 
rather than spectral-based models (such as Fourier 
or some other basis function).1 Statistical analy-
sis of energy spectra reveal that motions with 
scales smaller than approximately six to seven grid 
points aren’t well resolved.2 Therefore, the mini-
mum resolvable physical length scales are nearly 
1 km horizontally and perhaps 300 m vertically. 
Given current computing capability, however, 
timely numerical forecasts must be run on much 
coarser grids.

What does this mean for hurricane forecasts? 
We believe that it’s important to resolve clouds—
at least the largest cumulonimbus-producing 
thunderstorms. These clouds have a horizontal 
scale of at most a few kilometers and thus can be 
resolved only with a 1 km or less horizontal grid 
spacing. These clouds span the troposphere’s ver-
tical extent—12 to 16 km—and so are relatively 
easy to resolve in the vertical if 30 to 40 layers are 
used. Nevertheless, to cover the region affected 
by a hurricane in a five-day forecast requires a 
horizontal domain of perhaps 5,000 km. A volume 
with a grid increment of 500 m horizontally and 
250 m vertically over a domain of depth 25 km 
contains roughly 1010 grid points.

Because the equations of motion are first-order 
in time, knowing the model state at one time lets 
us, in principle, predict the state a short time later. 
The length of this time step must be limited to 
ensure numerical stability. This limit prohibits 
the fluid and waves within the fluid from traveling 
more than one grid increment in one time step.  

Christopher A. Davis, Wei Wang, Steven Cavallo,  
James Michael Done, Jimy Dudhia, Sherrie Fredrick,  
John Michalakes, Ginger Caldwell, and Tom Engel
US National Center for Atmospheric Research
Ryan Torn
State University of New York, Albany

1521-9615/11/$26.00 © 2011 ieee

CopubliShed by the ieee CS and the aip

CISE-13-1-Devis.indd   22 11/12/10   3:26 PM



January/February 2011  23

For grid lengths of approximately 1 km, the time 
step is roughly 10 seconds; it decreases to ap-
proximately 1 second on grids of 100 m. Given 
the need to decrease the time step inversely as the 
resolution increases for computational stability, 
a doubling of model resolution costs a factor of 
16 in computations! Hence, we’d need more than 
400,000 time steps to integrate a five-day forecast 
on a 100-m grid. Couple this with the need to in-
tegrate many variables (momentum, water in sev-
eral forms, temperature, and so on) and you have a 
problem in which the time tendencies of variables 
must be estimated about 1016 to 1017 times for a 
single forecast. Furthermore, each estimate re-
quires numerous floating-point operations, plac-
ing the total number of operations in the range 
of 1018. To produce a forecast in a few hours of 
wall-clock time requires nearly petascale comput-
ing capability.

Because actual hurricane forecasts are integrated 
on machines that have other demands, and be-
cause we currently measure the capability of these 
machines in teraflops, not petaflops, we must be 
able to integrate forecasts on coarser grids with 
other enabling strategies. What strategies and 
how coarse must these grids be? These questions 
are at the heart of NOAA’s high-resolution hur-
ricane (HRH) test. The goal was to see whether 
forecasts on grids of roughly 1 to 2 km horizon-
tally produced better forecasts of hurricane inten-
sity than those on coarser grids of roughly 10 km.

Enabling strategies to allow high resolution 
include simplifying the representation of the at-
mosphere’s physical processes because we can’t 
account for every turbulent eddy or precipitation 
particle. We can resolve some motions, but oth-
ers must be represented implicitly in terms of re-
solved scale of motion. In the case of hurricanes, 
there can be a significant advantage in represent-
ing the deep cumulonimbus clouds explicitly 
rather than implicitly. The maximum grid spac-
ing at which this explicit representation is pos-
sible is roughly 1 to 4 km; models with grids at 10 
km nearly always implicitly represent the effects 
of deep convection. Clearly, the number of com-
putations needed to explicitly represent thunder-
storm clouds is much greater than for an implicit 
representation, but as we’ll demonstrate, the finer 
resolution improves many aspects of hurricane 
forecasts.

We can mitigate part of the added cost by recog-
nizing that it’s probably more important to explic-
itly treat clouds near and within the hurricane’s 
eyewall than clouds far from the storm. Because 
most of the deep convection occurs within 100 to 

200 km of the hurricane center, this is where the 
higher model resolution must be. Local resolution 
refinement is clearly an enabling strategy for pro-
ducing timely forecasts with fine resolution, but 
how far out from the center must high-resolution 
extend? We examine this question later in this 
article.

In selecting a grid spacing near or just coarser 
than 1 km, we choose to resolve the deep con-
vective eddies that span the troposphere, but not  
to resolve the turbulent eddies that represent 
mechanically generated turbulence. Turbulence 
acts as a break on storm intensity.3 Furthermore, 
simulated storm intensity tends to increase with 
decreasing grid spacing until 3D turbulence is  
resolved explicitly.

Such a result has a practical significance. It’s 
questionable whether there’s much to be gained 
by decreasing the horizontal grid spacing below 1 

to 2 km unless we decrease it to approximately 100 m  
or less. This is perhaps a factor of 1,000 beyond 
current real-time computational capability. This 
fact supports our focus here on horizontal grid 
spacing of just over 1 km, and our comparisons of 
such grid spacing—which represents the forefront 
of hurricane forecasting—with results obtained at 
coarser resolution.

aHW Model
For the HRH test, our group used the advanced 
hurricane-research weather research and fore-
casting model (AHW),4 which was derived from 
the advanced research weather research and fore-
casting model (ARW). The AHW is a dynamic 
atmosphere model that predicts the atmospheric 
state’s time evolution. We integrate predic-
tive equations for the three Cartesian velocity  
components—entropy, mass, and numerous water  
phases (vapor, cloud droplets, rain, snow, and 
ice crystals)—using a discrete time-stepping 
technique.

The AHW uses grid nesting to locally en-
hance resolution, which can be achieved in many 

enabling strategies to allow high resolution 

include simplifying the representation of the 

atmosphere’s physical processes because we 

can’t account for every turbulent eddy or 

precipitation particle.
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ways, each of which has pros and cons. Nesting 
requires blending the model state’s update within 
and outside the nest at each time step. Nesting is 
interactive, meaning that the outer domain af-
fects the inner as information sweeps across the 
nest boundary and into the nest from the coarse 
domain. In addition, the nest produces structures 
that can flow out into the coarse domain. In prin-
ciple, the AHW lets us use an arbitrary number 
of nests to achieve any desired horizontal resolu-
tion. The AHW currently uses only horizontal 
nesting.

During AHW hurricane forecasts, the nest 
is repositioned every 15 minutes to recenter the 
vortex. The cost for moving the nest is equivalent 
to several nested time steps. Nest repositioning is 
automated based on the location of the pressure 
minimum (which defines the center of the hur-
ricane). In practice, a storm will progress only 
a few kilometers between nest movements, so 

the movements constitute a tiny fraction of the  
domain size.

We represent precipitation, turbulence, radia-
tion, and atmosphere–ocean coupling in AHW 
using a variety of parameterizations that are fairly 
simple in their conceptual design. Here, we focus 
on representing clouds and precipitation because 
the release of latent heat as water vapor, drawn 
from the ocean under the storm, condenses within  
clouds and is the essential fuel for the storm. 
When a model’s grid spacing is much larger than a 
cloud (“cloud” here refers to a typical cumulonim-
bus), the only practical strategy is to represent the 
clouds’ net effects in terms of scales of motion that 
the model can explicitly predict. In a sense, this  
amounts to prescribing the occurrence of a sub-
grid-scale thunderstorm when certain conditions 
are met. The net heating of the air from water 
condensation is thus prescribed, and the heating 
is transferred to the resolved motions. If the pro-
cess is realistically modeled, the heating realized 

drives the inflow near the surface that carries with 
it the higher angular momentum air from the sur-
roundings, resulting in stronger winds.

It’s possible to produce hurricanes in a rela-
tively coarse-resolution model to the extent that 
the parameterization of clouds realistically redis-
tributes the latent energy derived from the ocean. 
However, such redistribution isn’t a simple pro-
cess. The problem is that condensation heating is 
highly inefficient for producing winds unless you 
already have a full-fledged hurricane; heating can 
create buoyancy oscillations, which essentially 
carry away the storm center’s heat.5 The explicit 
treatment of thunderstorms produces the cloud 
and predicts its growth, time step by time step, 
with nothing predetermined. The motivation in 
doing so is to achieve a more realistic partitioning 
of the heat that goes into enhancing the storm’s 
circulation versus heat that is propagated away by 
buoyancy waves.

a Systematic test of High-resolution
The HRH test involved six research groups doing 
essentially the same task but with different models 
run in different configurations. The goal was to 
test the resolution sensitivity of forecast accuracy 
for hurricane intensity and the amount of compu-
tational power needed.

The test involved conducting two sets of 69  
simulations covering 10 Atlantic tropical  
cyclones,1 each using different horizontal reso-
lution. We then evaluated whether, and by how 
much, higher resolution improved forecasts. It 
might seem that higher resolution should always 
result in superior forecasts, but that isn’t actually 
the case. As you resolve more scales of motion and 
more variability, the increased variance can lead 
to larger errors in individual cases. The standard 
metrics for quantifying accuracy use squares of 
differences between forecast and observed in-
tensity, where intensity is defined as the maxi-
mum one-minute-sustained wind at 10-meters  
elevation. Hence, outliers are amplified. Al-
though other metrics are being considered, the 
US National Hurricane Center’s standard is  
the root-mean-squared error, which is what we 
use here.

How We use our Model
We initialized the model using an ensemble Kal-
man filter6,7 consisting of 96 members at 36-km 
grid spacing. The ensemble Kalman filter uses 
statistics from an ensemble of atmosphere state 
estimates to decide how to spread information 
contained in observations.

it’s possible to produce hurricanes in a 

relatively coarse-resolution model to the extent 

that the parameterization of clouds realistically 

redistributes the latent energy derived from 

the ocean. however, such redistribution isn’t a 

simple process.
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The filter is run in a cycle—that is, a six-hour 
forecast initialized from the previous analysis 
time—provides the background upon which ob-
servations are analyzed. Typically, the filter cycles 
for two or more days before we start our first 
forecast for a given storm. To do real-time fore-
casts, the filter runs continuously from the hur-
ricane season’s start so that an up-to-date analysis 
is always available that incorporates all past and 
present observations. For the HRH test, we initi-
ated the filter two days before our first forecast. 
Assimilated observations included surface pres-
sure, atmospheric soundings (including drop-
sonde observations from NOAA’s Gulf-Stream 
IV aircraft), data from commercial aircraft, cloud 
motion vectors from satellite observations, and 
tropical cyclone position and intensity estimates 
from the National Hurricane Center.

We initialize the high-resolution forecast from 
the ensemble member that was closest to the ob-
served storm intensity at initialization time. Pairs 
of forecasts—one with a single 12-km grid, the 
other with storm-centered moving nests of 4-km 
and 1.33-km grid spacing—were integrated to 126 
hours or until the time the observed storm dis-
sipated. The domains’ dimensions were 469 × 424 
(12 km), 201 × 201 (a 4-km nest), and 241 × 241 
(a 1.33-km nest). Because the time step decreased 
in proportion to the grid spacing, nine time steps 
of the innermost nest are required for each time 
step of the coarsest domain. Adding the two mov-
ing nests increased the overall computations by 
roughly a factor of four compared to the 12-km 
domain alone. Of the 69 pairs of forecasts initial-
ized, 57 forecasts extended for at least 72 hours, 
while 35 forecasts were integrated the full 126 
hours. Initial conditions were identical for each 
member of a pair.

Forecasts were integrated on the US National 
Center for Atmospheric Research’s bluefire su-
percomputer, an IBM Power 575 cluster com-
missioned into service on 30 June 2008 and 
consisting of 128 Power 575 nodes, each contain-
ing 32 Power6 processors. The Power6 processor 
is clocked at 4.7 GHz and capable of four floating-
point operations per clock; thus NCAR’s bluefire 
supercomputer has a peak computation rate of 
77 trillion floating-point operations per second 
(Tflops). The AHW model used five Power 575 
nodes, or 160 Power6 processors, and all runs for 
the HRH test used approximately 115,000 proces-
sor hours.

Although these runs didn’t necessarily tax the 
bluefire system’s computational capability, they’re 
significant in that they were performed during 

normal batch production computing. Just five 
years ago, a single comparable run would have 
used over half of NCAR’s most powerful com-
puter system and all runs would have required 
dedicating that system to AHW runs for two 
weeks—something we wouldn’t have considered 
at the time. It’s thus readily conceivable that five 
years hence, we’ll be able to integrate the entire 
ensemble forward at high resolution rather than 
selecting a single member for a deterministic 
forecast.

our results
The resolution test’s overarching finding is that 
increasing resolution improves forecasts of both 
hurricane intensity and some of hurricanes’ struc-
tural aspects; we’ve demonstrated the results to 
be statistically significant.8 The improvement is 
about 8 percent for the root-mean-square inten-
sity error. As we noted earlier, the inclusion of 
the nests increases the computations by a factor 
of four. An 8 percent improvement might seem 
small given the computational cost. However, 
operational hurricane intensity prediction has im-
proved by only a few percent in the past two de-
cades or more. In comparison, the present results 
are encouraging.

The intensity bias was relatively small for the 
high-resolution forecasts. At most lead times out 
to 72 hours, the high-resolution forecasts had a 
bias of only a few knots (1 knot = 0.514 ms−1). 
The coarse-resolution forecasts were biased low 
by 5 to 10 knots. This low bias of intensity got 
progressively worse as horizontal resolution de-
creased. The primary reason is that the hur-
ricane’s inner core—where the strong winds 
are—becomes poorly resolved as the grid spac-
ing becomes as large as the core. Recall that six 
to seven grid points are necessary to truly resolve 
the kinetic energy at a given spatial scale. It would 
indeed be a large hurricane that’s well resolved on 
a grid as coarse as, say, 36 km.

As Table 1 shows, the coarser resolution’s short-
comings are clearly a function of observed storm 
intensity. For tropical storms (TS) and category 1 
and 2 hurricanes on the Saffir Simpson scale, the 
high-resolution forecasts exhibited slightly larger 
errors. However, for category 4 and 5 storms, the 
low-resolution forecast errors became much larger 
than those of the high-resolution forecasts. Thus, 
high resolution is most beneficial for predicting 
the most destructive hurricanes in this particular 
sample.

An intensity forecast’s primary shortcoming is 
in predicting rapid intensity changes. Here, we 
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adopt the defi nition of “rapid” as an increase of 
the maximum sustained wind by 25 knots or more 
in 24 hours. To defi ne skill, we compute the equi-
table threat score (ETS) as

ETS=
+ +

=
+ +
+ + +

a
a b c

a b a c
a b c d

−
−
ε
ε
ε; ( )( ) ,

where

• a is the number of correct forecasts of rapid in-
tensity changes (hits),

• b is the number of forecasts of rapid intensity 
changes that didn’t occur (false alarms),

• c is the number of times rapid intensity changes 
that occurred but weren’t predicted (misses), 
and

• d is the number of correct null forecasts (correct 
forecasts of no rapid intensifi cation), and

• ε is the number of hits expected due to random 
guessing.

The ETS was 0.16 for the high-resolution 
AHW forecasts, 0.11 for the coarse-resolution 
AHW forecasts, and 0.04 for the human-generated 
forecasts. Human-generated forecasts tend to be 
conservative about intensity changes; this is a con-
scious decision that also refl ects the fact that it’s 
diffi cult to tell from observations when a storm 
will rapidly intensify. 

The skill of predicting rapid intensifi cation is 
clearly evident in the high-resolution forecasts. 
We suspect the reason for this is that although a 
storm’s environment often sets the conditions for 
rapid intensifi cation, the vortex response to this 
environment is more realistic at higher resolution. 
This is probably because there’s better inner-core 
resolution, as well as more realistic treatment of 
thunderstorms. We can thus think of the high-
resolution model as more agile.

Adding high resolution didn’t change storm 
location prediction in any statistically sig-
nifi cant way. This result isn’t surprising, and 
it echoes other researchers’ fi ndings. A hurri-
cane’s track can be well predicted even in global 
weather prediction models that don’t resolve the 
hurricane’s eye and associated inner core. Typi-
cally, this is because a large component of track 
prediction is effectively the “steering” of the 
vortex by the wind averaged over the vortex’s 
depth. This averaged fl ow typically represents 
the location and strength of weather systems 
with length scales of 1,000 km or more. Such 
scales are well resolved in a global model of even 
modest resolution.

real-time Hurricane Forecasts
We also applied the AHW forecast model to 
real-time hurricane prediction in 2009, with mi-
nor changes to the forecasting system. The pri-
mary change was to use a nested grid spacing of 
12 km in the ensemble forecasts to better capture 
stronger storms. We compared 50 forecasts from 
AHW with operational forecasts from the US 
National Centers for Environmental Prediction’s 
Hurricane Weather Research and Forecasting 
model (HWRF).

HWRF’s numerical methods and physical pa-
rameterizations are formulated differently than 
those in AHW, and HWRF integrated these 
forecasts on a coarser grid spacing (approximately 
9 km) compared to AHW’s inner nest grid spacing 
of 1.33 km. Given this, it wasn’t a controlled com-
parison. The point was to demonstrate the possi-
bility of improved capabilities for high-resolution 
forecast models. Also, the way the two systems 
treat convection is a key difference: it’s mainly 
implicit in HWRF and explicit in AHW. Finally, 
as the resolution difference imply, HWRF’s 

table 1. Mean difference of absolute error.*

Saffi r-Simpson intensity category (vobs)
Mean difference of 

absolute error (knots) number in sample
Tropical depression (< 34 knots) −1.0 61

Tropical storm (34 ≤ vobs < 64) 3.0 161

1 (64 ≤ vobs < 83) 3.0 69

2 (83 ≤ vobs < 96) 3.3 35

3 (96 ≤ vobs < 113) 0.4 43

4 (113 ≤ vobs < 135) −14.2 54

5 (vobs ≥ 135) −15.6 48

*Absolute error is | − |−| − |v v v vHR obs LR obs , where v is the maximum wind (knots); HR and LR are high-resolution and 
low-resolution, respectively; obs refers to the best track data; and the over bar indicates a sample average. Negative 
values denote larger errors in the coarse-resolution forecasts.
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computing requirements are several times smaller 
than those for AHW.

The 2009 hurricane season in the Atlantic was 
unusual. No storms made landfall as hurricanes 
and storms were generally weak. Notable excep-
tions were hurricanes Bill and Fred, but these 
posed little threat to populated areas. Figure 1a 
shows the root-mean-squared intensity errors for 
six storms: Bill, Danny, Erika, Fred, Henri, and 
Ida. Some of the major differences in model per-
formance were storm dependent: AHW forecasts 
were better for Bill, Danny, Erika, and Henri, 
while HWRF offered superior forecasts of Hur-
ricane Fred. Our forecast sample is homogeneous; 
we compared only HWRF and AHW forecasts 
with the same valid time and lead time. However, 
we didn’t perform verification after the observed 
storm’s dissipation, even when a viable storm still 
existed in the forecast.

Danny, Erika, and Henri were weak storms em-
bedded in hostile environmental conditions. The 
primary factor inhibiting their development was 
the increase of the horizontal wind with height—
or vertical wind shear—which tended to tilt the 
storms. Looked at from the side, the displacement 
from the surface circulation center to the center 
at 5 kilometers above the ground can easily be 50 
to 100 km in a tilted storm. Tilted storms tend 
to produce their convection displaced from the 
surface circulation center; this is an inefficient 
configuration for intensification. Hurricanes usu-
ally intensify when a ring of convection envelops 
the center and begins to contract radially inward. 
This tends not to happen in storms experiencing 
strong vertical shear. Here, “strong” is a relative 
term, but it usually refers to a systematic wind 
increase of at least 2 to 3 ms–1 for every vertical 
kilometer. From the boundary layer to the middle 
troposphere (5 to 6 km above ground level, or 
AGL) the corresponding wind increase would be 
10 to 15 ms–1. The AHW portrayed a more real-
istic tilted structure of the storms, and the explicit 
treatment of convection more realistically kept 
the convection displaced from the storm center by 
more than 150 km.

The results for hurricane Fred were the reverse. 
HWRF intensified and weakened Fred at nearly 
the right time, whereas AHW produced realistic 
intensification and weakening of Fred, but was 
consistently late by approximately one day. This 
created large errors for the AHW forecast. The 
problem might have been the storm’s proxim-
ity in AHW to the lateral boundary and an as-
sociated error on the forecast vertical wind shear. 
Lateral boundary conditions for state variables  

are supplied from a global forecast model that has 
its own errors, which AHW will inherit.

Position errors (Figure 1b) indicate that, over-
all, the HWRF forecasts produced smaller posi-
tion errors, but this was primarily true for weak 
storms. The largest relative improvements of 
HWRF over AHW were for Danny and Ida. 
The AHW forecast position for Ida was biased 
westward relative to the observed position. This 
occurred because of the erroneous formation of 
a large-scale cyclone over the western Gulf of  
Mexico that captured Ida and steered it on a west-
ward path for approximately one day, whereas the 
real track was almost due northward.

Figure 1. A comparison of two weather research 
and forecasting (WRF) models: our advanced 
hurricane-research WRF model (AHW) and the US 
National Centers for Environmental Prediction’s 
hurricane WRF (HWRF) model. (a) Root-mean-
squared errors for maximum wind for each of 
several storms during the 2009 Atlantic hurricane 
season. (b) The same comparison, but with root-
mean-squared position errors (units are nautical 
miles, 60 nmi = 111.1 kilometers = 1 degree of 
latitude). The number of six hourly forecast valid 
times for each storm is as follows: Bill, 255; Danny, 
35; Erika, 78; Fred, 200; Henri, 61; and Ida, 120.
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Overall, the benefits of AHW’s additional reso-
lution, which generally improved the intensity 
forecasts, were countered by worse track perfor-
mance in some cases. These track errors likely 
stemmed from errors on spatial scales larger than 
the hurricane. These results indicate the need for 
accurate forecasts on scales ranging from much 
larger than the storm (1,000 km or more) down 
to the eyewall’s scale (10 km or less) to address the 
hurricane forecasts’ position and intensity aspects.

toward Petascale Hurricane Forecasts
Thus far, the results we’ve presented have been 
obtained with limited computational capability. 
Next-generation high-performance computing 
(HPC) systems comprising tens of thousands of 
CPUs could allow real-time forecast domains that 
cover an entire storm at resolutions of 1 km or 
finer, and even allow integration of ensembles of 
such configurations.

To test forecasting as well as computational is-
sues in advance of this capability, we’ve run the 
Hurricane Bill case on 16,000 processors (4,000 
nodes) of the IBM Blue Gene/P the Argonne 
Leadership Computing Facility (ALCF). Previ-
ously, WRF sustained 50 teraflops on 150,000 
Cray XT5 MPI tasks for a two-billion-cell ideal-
ized “nature run” simulation.9

In our simulation, we used a somewhat larger 
coarse 12-km grid, but much larger nests. We ex-
panded the innermost nest (1.33-km grid spacing) 
to 750 × 750 points and moved with the storm. 
This nest covered a domain that was 1,000-km 
by 1,000-km square—enough to cover all but 
the outermost tips of the storm’s rain bands (see 
Figure 2). Compared to the nature run, this is 
much smaller (24 million cells), but it’s roughly 
10 times larger than the forecasts we’ve previ-
ously described. Each simulation-minute required 
approximately 3.1 trillion floating-point opera-
tions. To perform a forecast useful in real time, 
the simulation must run at least 20 times faster 
than wall-clock time; at this pace, a five-day fore-
cast requires 3 to 6 hours to run, which implies a 
sustained performance of at least 1 Tflop. Figure 3  
shows the AHW configuration’s performance 
with the large innermost domain.

Unlike the earlier Blue Gene/L, Blue Gene/P 
supports threads for shared-memory parallelism 
between the CPUs on each node. To take ad-
vantage of this, we used OpenMP within each 
node and MPI message passing between nodes 
to reduce the number of messages between nodes 
and to reduce per-node memory use. The Blue 
Gene/P also has single instruction, multiple data 
(SIMD) units for boosting on-processor perfor-
mance. Unfortunately, on the Blue Gene/P, these 
work only for double precision (64-bit) floating-
point data. WRF can be run in double precision, 
but needs only single (32-bit) floating-point pre-
cision. Additional message and memory traffic 
outweighed the faster CPU performance’s ben-
efits; therefore, we didn’t use the SIMD units for 
this Blue Gene hurricane simulation. Based on 
communication with ALCF and IBM, we expect 
that the next system in the series, Blue Gene/Q, 

Figure 2. A three-domain configuration using 
the large inner nests. The field is a pseudo-radar-
reflectivity derived from the falling precipitation 
particles in the Advanced Hurricane-Research 
Weather Research and Forecasting model (AHW), 
valid at an altitude approximately 40 meters above 
the surface. The domain’s nest boundary with a 
4-km grid spacing is shown in black; the innermost 
nest’s boundary is in blue.
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Figure 3. Weather research and forecasting (WRF) performance for 
Hurricane Bill with increasing numbers of Blue Gene/P CPU cores. 
The blue line indicates a single MPI task with four OpenMP tasks per 
node; red is using two two-way threaded tasks per node. The arrow 
indicates the minimum simulation rate needed for real-time hurricane 
forecasting. For comparison, we also show the performance on 256 
cores of bluefire.ucar.edu, an IBM Power6 system.

1,200

1,000

800

600

400

273

Cores

479

732

369
256 cores
Power6

854

1,033
992 20

15

Real time

10

Si
m

ul
at

io
n 

sp
ee

d

G
ig

a�
op

s/
s

5

0

200

0
0 2,048 4,096 6,144 8,192 10,240 12,288 14,336 16,384

Symmetric multiprocessor
Dual processor

CISE-13-1-Devis.indd   28 11/12/10   3:26 PM



January/February 2011  29

will address this problem by supporting single- 
precision SIMD processing. For model output, we 
used Parallel NetCDF.10

Figure 4 shows the results of three Hurricane 
Bill simulations. One forecast was actually done in 
real time using the same domain configuration as 
for the HRH test. The simulation with the large 
nests but same outer domain produced about the 
same result as the real-time forecasts. However, the 
simulation with a larger outer domain produced a 
better intensity and position forecast than either 
of the first two (the position forecast isn’t shown 
here). Furthermore, none of these forecasts pro-
duced the correct weakening of Bill on 21 August. 

Although just a single case, this suggests that 
if the storm’s core and intense precipitation are 
contained within a high-resolution nest, the size 
of that nest might not matter much. However, 
the outer domain’s size could be important. Our 
relatively large errors for Hurricane Fred further 
support the importance of the outer domain’s size.

H urricane prediction has many chal-
lenges. Forecasters rely heavily on 
guidance from dynamical predic-
tion models at time ranges beyond 

a day or more. We concentrated on storm inten-
sity forecasting because it’s been a challenging 
endeavor historically, and it’s one that computing 
power might help us address.

As our results show, there are advantages to 
reducing prediction model grid spacing to a few 
horizontal kilometers so that the moist convec-
tion representation can be explicit in models rath-
er than completely parameterized. In carefully 
controlled simulations where only the horizontal 
grid spacing (and physical parameterizations con-
sistent with this change in grid spacing) varied, 
the increased resolution reduced intensity error 
by approximately 8 percent. Because we localized 
resolution refinement to the storm’s inner core, we 
can accomplish these higher-resolution forecasts 
with relatively modest computational resources. 
Enlarging the area covered by high resolution 
might not be cost effective for improving fore-
casts compared to enlarging the outer domain.

We must remain continuously aware of the need 
to improve predictions of storm position accuracy 
as well as intensity. As our results show, simply in-
creasing resolution doesn’t appear to effect storm 
track accuracy. Furthermore, the comparison of 
HWRF and AHW indicates that resolving the 
inner core well isn’t essential for a model to pro-
duce a superior track forecast. The optimal fore-
cast system is one that combines the locally fine 

resolution to improve intensity prediction with 
skillful prediction on the large scales of motion to 
benefit track forecasts.

The ultimate goal is to push prediction skill 
toward what the intrinsic limits of atmospheric 
predictability allow. However, predictability lim-
its are highly case dependent. That’s why the best 
way forward is probably to integrate large ensem-
bles of high-resolution forecasts so we can directly 
estimate the uncertainty for any situation. This 
represents a push toward highly scalable large-
computing applications that are already possible 
and should be pursued further. 
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