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ABSTRACT

Synoptic and mesoscale meteorology underwent a revolution in the 1940s and 1950s with the widespread
deployment of novel weather observations, such as the radiosonde network and the advent of weather radar.
These observations provoked a rapid increase in our understanding of the structure and dynamics of the at-
mosphere by pioneering analysts such as Fred Sanders. The authors argue that we may be approaching an
analogous revolution in our ability to study the structure and dynamics of atmospheric phenomena with the
advent of probabilistic objective analyses. These probabilistic analyses provide not only best estimates of the
state of the atmosphere (e.g., the expected value) and the uncertainty about this state (e.g., the variance), but
also the relationships between all locations and all variables at that instant in time. Up until now, these rela-
tionships have been determined by sampling in time by, for example, case studies, composites, and time-series
analysis. Here the authors propose a new approach, ensemble synoptic analysis, which exploits the information
contained in probabilistic samples of analyses at one or more instants in time.

One source of probabilistic analyses is ensemble-based state-estimation methods, such as ensemble-based
Kalman filters. Analyses from such a filter may be used to study atmospheric phenomena and the relationships
between fields and locations at one or more instants in time. After a brief overview of a research-based ensemble
Kalman filter, illustrative examples of ensemble synoptic analysis are given for an extratropical cyclone, including
relationships between the cyclone minimum sea level pressure and other synoptic features, statistically determined
operators for potential-vorticity inversion, and ensemble-based sensitivity analysis.
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1. Introduction

Progress in synoptic and dynamic meteorology is of-
ten marked by the advent of new or improved observing
systems and novel methods for analyzing and under-
standing these data. For example, deployment of the
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routine radiosonde network and the emergence of qua-
sigeostrophic (QG) theory provided an opportunity for
analysts like Fred Sanders to both better document and
understand synoptic-scale weather systems during the
latter half of the twentieth century. We propose that
emerging techniques in state estimation (‘‘data assimi-
lation”’) may offer new opportunities to analyze and
understand atmospheric phenomena. We group these op-
portunities under the title “‘ensemble synoptic analysis’
(ESA), which derives from the fact that the methods
pertain to ensembles of analyses valid at an instant (or
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multiple instants) in time. Our goal is to outline the
analysis techniques available to ESA and to demonstrate
these techniques through illustrative examples.

In deriving basic understanding of atmospheric phe-
nomena, the analysis often revolves around discovering
and exploiting relationships between fields and between
locations; for example, for extratropical cyclones, geo-
strophic balance relates wind and pressure, and tropo-
pause disturbances make important contributions to sur-
face development. Up until now, these relationships
have been determined by sampling methods involving
long periods of time, such as multiple case studies, com-
posites, and time series analysis. A central attribute of
ESA that distinguishes it from these other methods is
that it uses a probabilistic estimate for the analysis, rath-
er than a single deterministic analysis. Specifically, an
ensemble approach is used to generate a sample of anal-
yses valid at an instant (or multiple instants) in time.
Although not yet available from operational centers,
these probabilistic analyses may reach operational de-
ployment in the future. (A pseudo-operational system
has been available online at www.atmos.washington.
edu/~enkf/ since December 2004.)

Current three-dimensional variational data assimila-
tion (e.g., 3DVAR) systems rely upon knowledge of
established dynamical relationships, such as hydrostatic
and geostrophic balance, to specify covariance relation-
ships and to determine the state (analysis). Here we
reverse the process so that data assimilation is used as
a tool for revealing dynamical relationships. The tech-
nique used to generate probabilistic analyses is an en-
semble Kalman filter (EnKF), which we will describe
in more detail in section 2. This technique applies an
ensemble of nonlinear forecasts to approximate the ex-
tended Kalman filter, which for Gaussian errors and lin-
ear operators provides the maximum likelihood state
that also has minimum error variance. The EnKF pro-
vides the best estimate of the state of the atmosphere
(ensemble mean), state error (ensemble variance), and
the relationships between all locations and all variables
(ensemble covariance).

Although it is tempting to perform ESA on opera-
tional ensemble forecasts, the forecast lead times must
be chosen such that the memory of the initial pertur-
bations are lost, since the analysis ensembles are cur-
rently specified by ad hoc methods that are not designed
to sample the probability distribution of the analysis
(e.g., total-energy singular vectors and bred-grown
modes). As such, the initial ensemble covariance may
be inappropriate for use in ESA; therefore, we apply an
EnKF to determine ensemble analyses and forecasts.

After a brief overview of the EnKF in section 2, ESA
is defined in section 3. Ensemble analyses and select
covariance relationships are discussed for an extratrop-
ical cyclone in section 4. Section 5 is devoted to using
ESA for potential vorticity (PV) inversion, and section
6 is devoted to using ESA for sensitivity analysis. A
summary is provided in section 7.
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2. Ensemble Kalman filters

Modern state estimation involves the synthesis of ob-
servations and a model’s estimate of these observations
by appropriately weighting these two pieces of infor-
mation. This weighting depends on the error associated
with the observations relative to the model estimate of
the observations. Current operational state estimation
systems are deterministic, and as such they do not pro-
vide the probabilistic, flow-dependent data needed for
ESA. Such probabilistic analyses are now being ex-
plored by the research community, including those gen-
erated by EnKFs (e.g., Evensen 1994; Houtekamer and
Mitchell 1998; Hamill and Snyder 2000). A brief over-
view of state estimation and the EnKF is provided here;
the interested reader may find more background infor-
mation in Daley (1993), Kalnay (2002), and Hamill
(2000).

In mathematical terms, the maximum likelihood anal-
ysis, assuming Gaussian statistics, is determined by

x¢ = x" + K[y’ — H(x")], ey

where x“ is the analysis state vector,! x” is the back-
ground state vector, y° is the observation vector, and
H(x") is a vector-valued function that returns a column
vector of observations, as estimated by the background
state. Normally the background is given by a short-term
model forecast, and therefore #(x”) is the model’s es-
timate of the observations. This operation can be as
simple as linear interpolation from model grid points to
observation locations, but it may also be a complicated
nonlinear function of the state, such as a radar equation.
The Kalman gain matrix is K, which is given by

K = P’H'(HP’H™ + R) "', )

where P? is the background-error covariance matrix, R
is the observation-error covariance matrix, and super-
script T denotes the matrix transpose. The diagonal el-
ements of P” and R contain the error variance in the
background and observations, respectively, and the off-
diagonal elements indicate the covariance relationships
between model state variables and observations, re-
spectively. Matrix H is the linearization of # about the
background state. The error covariance matrix for the
background estimate of the observations is HP?HT (i.e.,
the same as R except that it applies to the model’s es-
timate of the observations). Essentially, K determines
the weight given to the new observational information
[i.e., the innovation y° — #(x’)] relative to the back-
ground estimate. Considering just a single observation,
so that R and HP?HT are scalars, observations with large
errors relative to the background (R > HP”HT) have

! The vectors x¢ and x” are constructed from the multivariate three-
dimensional arrays of model gridpoint values by packing all gridpoint
values into a one-dimensional array (a column vector) following a
chosen procedure. The details of the procedure may be chosen ar-
bitrarily, provided that it is invertible; the three-dimensional arrays
must be recoverable from the vector values.
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small K; therefore, the analysis is weighted toward the
background estimate.

The crucial difference between the EnKF and 3DVAR
involves the assumptions for P”. For 3DVAR, P? is typ-
ically fixed to assumed relationships (e.g., background
errors are approximately time independent and spatially
homogeneous and isotropic), whereas for the EnKE P?
depends on time and space and is estimated with an
ensemble of nonlinear forecasts by

Pr =

Xb'Xp'T, (3)

M -1

Here X*' is a matrix containing an ensemble background
state estimate in M column vectors, with one ensemble
member in each column vector; the superscript prime
notation indicates that the ensemble-mean state has been
removed from each ensemble member. Because P” is
flow dependent, the influence of an observation is ex-
pected to reduce analysis error more than the 3DVAR
flow-independent P?. The EnKF comes at the added
expense of having to integrate the full nonlinear forecast
model M times, rather than once, as for 3DVAR. These
M forecasts are then all updated with new observations
using an ensemble square root filter as described in Whi-
taker and Hamill (2002). This analysis ensemble is then
immediately available for initializing a fresh ensemble
forecast and another assimilation step. Note that there
is no need to generate synthetic perturbations around a
single deterministic analysis as is the current procedure
for populating ensembles at operational centers.?

Our implementation of an EnKF at the University of
Washington utilizes the Weather Research and Fore-
casting model, version 2.0.2 (WRF; Michalakes et al.
2001), in a perfect model scenario. A ““truth’ integra-
tion is performed first, which is then sampled to generate
observations that are assimilated with the EnKF to pro-
duce analysis ensembles. Each of the 100 ensemble
members utilizes the same model configuration: ~100-
km horizontal grid spacing on a 90 X 90 grid, with 28
vertical levels. Model physical parameterizations in-
clude warm-rain microphysics, the Medium-Range
Forecast (MRF) planetary boundary layer scheme
(Hong and Pan 1996), and the convective parameteri-
zation scheme of Janjic (1994). Observations consist of
250 randomly spaced surface pressure observations
sampled from the truth run, which employs Global Fore-
cast System (GFS) analysis lateral boundary conditions.
The uniform observing system used here is, of course,
unrealistic but has the advantage of being straightfor-
ward to implement and allows for unambiguously de-
fined analysis errors. Surface pressure observations have
been shown to effectively constrain tropospheric anal-

2 As a technical matter, an initial ensemble is required to start an
EnKE although the specific choice becomes unimportant after the
filter has cycled through several assimilation steps. Here we populate
the initial ensemble with forecasts of different lead time verifying at
the same time (0000 UTC 24 March 2003).
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ysis errors on the synoptic scale (Whitaker et al. 2004)
and are useful for quickly generating the ensemble anal-
yses needed for ESA. Although the results depend on
this choice of observation network, our main purpose
here is to illustrate ESA techniques on a suitable dataset.
The filter is initialized at 0000 UTC 24 March 2003,
about 4 days prior to the time of interest; the analysis
error statistics come into equilibrium with observation
errors within about 36 h (i.e., by about 1200 UTC 25
March 2003).

3. Ensemble synoptic analysis

ESA is explored here using linear relationships and
Gaussian statistics. ESA is not necessarily limited by
these assumptions, but it seems logical to explore these
prior to more complicated nonlinear relationships and
non-Gaussian statistics. Given two multivariate ensem-
ble samples of data that have had the ensemble mean
removed (indicated by superscripted primes), the indi-
vidual ensemble members are stored in column vectors
of the matrices X’ and Y’, which are size n X M and
N X M, respectively. Each of the M columns represents
an ensemble member, which has n — 1 and N — 1
degrees of freedom for X" and Y’, respectively. A spe-
cific example to be considered more thoroughly in sec-
tion 5 applies to potential vorticity inversion, where X’
represents the potential vorticity at n grid points, and
Y’ represents the state variables that are recovered from
the PV inversion (e.g., u, v, and T at all the grids points
gives N = 3n).

A linear relationship between X’ and Y’ may be ex-
pressed as

Y =LX, 4)

where L is an N X n linear operator that maps X into
Y’; that is, the relationship between X’ and Y'. The goal
here is to recover L given the samples for X’ and Y’,
which is a standard problem in statistics. The solution

L=YX" (5)

assumes that X' is invertible. When X' is singular or
not square, a pseudoinverse may still exist (e.g., Golub
and Van Loan 1996, p. 257), which will be further ex-
plained below; hereafter, references to inverse matrices
are understood to include the pseudoinverse. Prior to
exploring the properties of this solution, we consider an
alternative expression for (5). Right multiplying (4) by
XT gives

Y'X'T = LX'X'T (6)

or, equivalently,
cov(Y’, X') = L cov(X’, X'). @)

This reveals that
L = cov(Y', X")cov(X’', X")1, 3

where cov is shorthand notation for a covariance matrix
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of the indicated arguments. This expression shows that
the operator L may be understood as a linear regression
of Y on X'. Although (8) provides a useful interpre-
tation for L, it is not computationally efficient.

Returning to (5), a formidable calculation might be
anticipated given the size of the state vector for the
problems we consider (N ~ 10°). A major simplification
to this potentially large calculation is available because
of the small size of the ensembles that we consider (M
~ 100). Using the singular value decomposition (SVD)
for X’ (e.g., Golub and Van Loan 1996),

X' = USVT, C))
which applies to any matrix; the inverse of X’ is given
by

X'~ = VS-'UT. (10)

Here we have used the fact that U and V are orthogonal
matrices (transpose is the inverse), and S is diagonal.
An even better expression for the inverse derives from
using (9) to eliminate U in favor of X',

X'~ = V§2VTX'T, (11)
so that from (5) we find
L = Y'VS2VTX'T, (12)

Thus in order to determine L from the known data
X’ and Y', only matrices V and S need to be calculated.
From (9) we find that

XX = vs2VT, (13)

so that V and S are the eigenvector and eigenvalue ma-
trices, respectively, of X'TX'. Of greatest importance is
that V, S, and X'*X" are all M X M, or in the present
application, 100 X 100, so they are trivial to manipulate
numerically. However, this simplification also reflects
the fact that there are only 100 independent degrees of
freedom available for the analysis, and this is one factor
that will impose a limit on the insight that may be gained
from ESA.

These ideas are illustrated for an extratropical cyclone
using two examples: potential vorticity inversion and
sensitivity analysis. Before discussing the results, it will
prove helpful to first consider a brief overview of the
case and of the ensemble-determined covariance rela-
tionships.

4. ESA applied to an extratropical cyclone

An extratropical cyclone is chosen for analysis be-
cause of its familiarity and the fact that Fred Sanders
made important contributions to our understanding of
these features (e.g., Sanders and Gyakum 1980; Sanders
1986, 1987). The (randomly) chosen case occurred on
28-29 March 2003. During this time, a cyclone moved
from the central United States to Michigan as it deep-
ened. An overview of the vertical structure of the system
on 0600 UTC 29 March is provided in Fig. 1. The
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developing low is marked by well-defined warm and
cold fronts that are characterized by abrupt horizontal
potential temperature gradients and troughs in the sur-
face pressure field (Fig. la). A broad and meridionally
extensive 500-hPa trough is located to the west of the
surface low, as may be expected for a developing surface
cyclone (Fig. 1b). What is less clear is the role played
by smaller-scale shortwave disturbances, which are
more obvious in the 500-hPa PV distribution (Fig. 1b,
red lines). As will be shown below, the southern dis-
turbance is apparently important to the surface devel-
opment of the low over Michigan despite its distant
location. On the dynamic tropopause,® an elongated re-
gion of potentially cold air is located in the region of
the 500-hPa trough, as well as a stronger gradient in
potential temperature near Texas (Fig. lc).

Figure 1 also introduces the first example regarding
the importance of considering analyses probabilistically
by showing all ensemble members (gray lines) in ad-
dition to the ensemble mean (solid black lines). All
ensemble members must be regarded as equally likely
realizations of the state, so that considering just one is
potentially misleading (e.g., Leith 1974).

Having considered the ensemble distribution and
mean value for selected parameters, we now explore
aspects of the ensemble analysis covariance matrix,
which is at the heart of ESA for Gaussian statistics. To
simplify the presentation and to remain focused on the
surface cyclone, covariance relationships are considered
for a single grid point: the point of lowest surface pres-
sure, which will be referred to as the cyclone central
pressure. The sample of cyclone central pressure values
is normalized by the ensemble standard deviation (2.7
hPa), so that the covariances carry the value of the cov-
arying field. Defining this ensemble sample of M nor-
malized surface cyclone central pressure values by the
row vector'y' and the full N X M ensemble state matrix
by X', the expression we evaluate is

¢ = —cov(X',y) = —X'y'". (14)

The prime notation indicates that the ensemble mean
has been removed, and the negative sign in (14) is ap-
plied to the covariances so that the fields reflect a deeper
cyclone. Note that ¢ is an N X 1 column vector, with
each value reflecting the linear relationship between the
metric of interest (cyclone central pressure) and all other
state variables. Figures 2—4 represent selected parts of
vector c.

Figure 2 shows the covariance of the cyclone central
pressure with the surface pressure and wind fields. When
the surface cyclone central pressure is lower than the
ensemble mean, as it is for some ensemble members,
the pressure at nearby points is also lower; that is, these
points covary strongly, as may be expected. The pres-
sure covariance field also shows interesting patterns

3 Defined here by the 1.5 X 107 m? K kg~! s~! (PVU) surface.
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500 hPa Height and Ertel PV

FiG. 1. Ensemble-mean fields at 0600 UTC 29 Mar 2003 of (a) surface pressure (black lines every 4 hPa) and
potential temperature (colors); (b) 500-hPa geopotential height (black lines, every 60 m) and Ertel potential vorticity
(red lines every 0.25 PVU, starting with 1 PVU); and (c) dynamic tropopause potential temperature (black lines every
10 K and colors). Gray lines show all 100 ensemble members at twice the contour interval of the ensemble-mean field.

away from the low center. Specifically, near the cold
front there is a dipole with positive values west of the
cold front and negative values to the east. This pattern
suggests a phase shift in the location of the pressure
trough associated with the cold front such that the sur-
face cold front is displaced eastward when the surface
low is deeper; this is intuitively appealing because a
deeper low should be associated with stronger cyclonic
circulation. The wind field covariance reflects this in-
ference, with a local maximum in wind speed along the
front. Note also that the wind vectors have a component
directed toward lower pressure, qualitatively consistent
with the effect of surface friction on geostrophic flow
(e.g., Holton 2004).

At 500 hPa, the geopotential height field covariance
with the cyclone central pressure shows that when the
surface low is deeper by 2.7 hPa, there is a dipole re-
sponse at 500 hPa, with lower heights upstream (—10
m) and higher heights downstream (10 m; Fig. 3). This
pattern is appealing based on quasigeostrophic reason-
ing in that the upper-level wave is amplified above the
surface low and the dominant wavelength shortened.

Interestingly, the 500-hPa trough located over Texas
also covaries strongly with the surface low, suggesting
that it also contributes to deepening the cyclone despite
being located much farther away than the trough over
Illinois. The wind field covariance shows clear quali-
tative evidence of balance, with the vectors following
the height field covariance and the magnitude generally
proportional to the geopotential height covariance gra-
dient. Balance issues will be examined more closely in
the next section on PV inversion.

Moving up to the tropopause (Fig. 4), the potential
temperature field shows that where the 500-hPa heights
are lower (higher) the tropopause is colder (warmer). A
particularly interesting result is the band of warmer air
along the subtropical jet stream that extends from Mex-
ico to North Carolina. It is unclear why this region is
dynamically related to the surface low over Michigan,
although one possibility is that, on the large scale, the
surface low is near the left exit region of a planetary-
scale jet. The strong horizontal potential temperature
gradients both south and north of the cyclone are en-

pg 151 #5



Allen Press < DTPro System ragyc 1o File # 08em
Name /amsm/7_108 09/04/2008 11:08AM  Plate # 0-Composite
152 METEOROLOGICAL MONOGRAPHS VoL. 33, No. 55
Covariance of Surface Low with Surface Pressure & Wind
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FIG. 2. Ensemble-based covariance fields between the normalized cyclone central pressure and the surface pressure
(colors, hPa) and wind (vectors) at 0600 UTC 29 Mar 2003. The ensemble-mean surface pressure is given in solid
lines every 4 hPa, and the sample of cyclone central pressure values are normalized by the ensemble standard deviation.
The location of lowest pressure in the surface cyclone position is denoted by the black dot.

hanced for a deeper cyclone, which suggests a greater
tendency to form upper-level fronts.

To summarize this section, the covariance relation-
ships are generally qualitatively consistent with expec-
tations for an extratropical cyclone, although they also
suggest some interesting relationships that may not be
obvious using other analysis techniques, for example,
the relative importance of the two upper-level distur-
bances to the surface low and the relationship between
the surface low and the subtropical jet. We proceed to
use these statistical relationships to perform a more
complicated diagnostic: piecewise PV inversion.

5. Statistical potential vorticity inversion

Typically, PV inversion involves the specification of
balance constraints between wind, mass, and tempera-
ture; boundary conditions; and numerical approxima-
tions (e.g., Hoskins et al. 1985; Davis and Emanuel
1991). Here we determine the inversion operator sta-
tistically using ESA methods outlined in section 3. In
the earlier notation the linear operator L is estimated by

L=XP, (15)

where X' is an ensemble state matrix, P’ is an ensemble
PV matrix, and the matrix inverse is calculated as de-
scribed in section 3. Note also that the symbol X’ rep-
resented independent variables in section 3, but here the
state vector is dependent on the potential vorticity. A
complete specification of X" and P’ will be given below
when individual experiments are discussed. Piecewise
PV inversion may then proceed given the operator L
and some subsample of the PV,

x' = Lp, (16)

where x' is a column vector for the state that is attrib-
utable to the column vector of PV, p’. For example, p’
may consist of one column of P’, with all entries but
one set to zero, in which case x’ is a (discrete) Green’s
function. Repeating this example for all rows of P’ but
one set to zero yields an ensemble sample for the
Green’s function, which may be used to estimate a mean
solution and variance (i.e., error).

Because the Ertel PV has nonlinear terms, (15) may
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Covariance of Surface Low with 500 hPa Height & Wind
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FI1G. 3. Ensemble-based covariance fields at 0600 UTC 29 Mar between the normalized cyclone central pressure and
the 500-hPa geopotential height (colors, m) and wind (vectors). The ensemble-mean 500-hPa geopotential height field
is given by solid lines every 60 m. The sample of cyclone central pressure values are normalized by the ensemble
standard deviation, and the surface cyclone position is denoted by the black dot.

seem like an inappropriate estimator for this field. Recall
that we have removed the ensemble mean from matrices
X" and P’, so that L represents a linearization about the
ensemble mean. As with all piecewise Ertel PV inver-
sions, some linearization is necessary, and the ensemble
linearization is particularly useful because it requires no
space or time averaging.

Recall that M, the number of ensemble members (here
100), places a restriction on exactly how much infor-
mation can be extracted by ESA, and this plays an im-
portant role here. One way to think about the problem
is that there are only 100 degrees of freedom in the
ensemble, so we cannot expect to constrain all O(10°)
degrees of freedom in the numerical model given a small
ensemble. Consider a simple example in three-dimen-
sional Cartesian coordinates (x, y, z) for a two-member
ensemble with vectors lying in the (x, y) plane. Because
there is no information normal to the plane, the z di-
rection is “‘invisible’’ to the ensemble statistics; in math-
ematical terms, it does not lie in the span of the ensem-
ble—no linear combination of ensemble vectors in the
(x, y) plane project off the plane. For PV inversion, our

results are limited to the space spanned by the 100 sin-
gular vectors of the potential vorticity field (V in the
notation of section 3), which means that there will be
many directions that are invisible. A second way to think
about this problem has to do with noise in the covariance
calculation at distances far from a particular point. Close
to this particular point, the covariance relationships
should be better than those far from this point where,
by random chance, a small ensemble may suggest a
strong relationship. These spurious relationships far
from the point introduce noise into the calculation that
may adversely affect the inversion. Mathematically this
means that covariances between fields physically sep-
arated by large distances are potentially spurious; one
possible solution often used in the EnKF literature is to
simply zero out these entries (e.g., Houtekamer and
Mitchell 1998; Hamill et al. 2001). This procedure in-
creases the rank of the covariance matrix (effectively,
the size of the ensemble), but tests of this idea are be-
yond the scope of the present analysis. Our goal here
is simply to illustrate proof of concept; a more thorough
analysis will be published elsewhere.

pg 153 #7
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FI1G. 4. Ensemble-based covariance fields at 0600 UTC 29 Mar between the normalized cyclone central pressure and
the dynamical tropopause potential temperature (colors, °C) and wind (vectors). The ensemble-mean tropopause potential
temperature is given by solid lines every 10°C. The sample of cyclone central pressure values are normalized by the
ensemble standard deviation, and the surface cyclone position is denoted by the black dot.

Mindful of the problems described above, piecewise
PV inversion may be applied to large-scale features over
the entire grid or to smaller features in a window around
a local region. We choose the latter application by lim-
iting the data to lie close to a point at 500 hPa for two
examples: a potential vorticity blob at 500 hPa and an
east—west cross section through the same location.

The first example is illustrated in Figs. 5 and 6 for
piecewise PV inversion of a blob of PV located mainly
over Oklahoma. Inversion (15) is calculated over 21 X
21 grid of points independently for the geopotential
height, u, and v fields; that is, three operators are cal-
culated. A piecewise inversion is then accomplished by
applying these operators on a subset of the 21 X 21 PV
field by choosing a vector that is zero everywhere but
for the grid points indicated by the red lines in Fig. 5.
The results show that the height field reaches a local
minimum near the center of the PV anomaly, and the
wind field has cyclonic circulation around the PV blob,
with maximum speeds near the edges of the blob, and
decays toward zero at larger distances. These patterns
are qualitatively in accord with QG theory, which has

essentially a Laplacian relationship between the geo-
potential height field and the potential vorticity field, so
that the geopotential height minimum is near the PV
maximum. Because no assumptions are made regarding
balance, ageostrophic wind vectors may be computed
by the difference between the geostrophic wind deter-
mined from the inverted height field and the inverted
full wind field. The results show anticyclonic circulation
about the low geopotential height region; as expected
(e.g., Holton 2004, p. 67), the flow is subgeostrophic
around the low (Fig. 6).

The present example is more exploratory for the tech-
nique rather than definitive of its quantitative properties;
nevertheless, a brief analysis of the sensitivity of the
results is provided. Increasing the grid size to 31 X 31
points yields a geopotential height minimum of —74 m
as compared with —75 m for the 21 X 21 grid and a
maximum wind speed of 17 m s~! as compared with 21
m s~ ! for the 21 X 21 grid. Further increasing the grid
to 41 X 41 gives a height minimum of —75 m and a
maximum wind speed of 16 m s~'; moreover the plotted
fields are very similar to those shown in Fig. 5. The
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FiG. 5. Piecewise Ertel PV inversion for a region of 500-hPa PV given by the red contours (every 0.5 PVU, starting
with 1 PVU) at 0600 UTC 29 Mar. Dashed black lines give the inverted 500-hPa geopotential height field every 20

m, and the vectors give the inverted wind field.

results start to degrade for grid sizes larger than 61 X
61, at which point spurious noise in the covariances
probably starts to pollute the local signal in the ensem-
ble. A test of the results with respect to the number of
ensemble members indicates that 75 members give re-
sults very similar to Fig. 5, and the results do not start
to degrade considerably until fewer than 50 members
are used (not shown). A convergence test in the space
of PV singular vectors shows that 25 singular vectors
achieve about the same results as approximately 75 en-
semble members, which reflects the optimal dimensional
reduction of SVD (not shown).

The above inversion procedure is repeated for the

second example, which applies to a zonal cross section
through the same PV blob as in Fig. 5. Piecewise PV
inversion on PV in the 450-550-hPa layer of the cross
section yields a familiar pattern (e.g., Hoskins et al.
1985, their Fig. 15). A local minimum in geopotential
height is found near the PV maximum, with warm air
above and cold air below the anomaly (Fig. 7). This
distribution is qualitatively as expected from hydrostatic
balance, although hydrostatic balance is not assumed in
the calculation. The wind field normal to the cross sec-
tion shows the strongest winds at the edges of the PV
anomaly, which decrease with increasing distance. Note
that because boundary conditions are not specified, there
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FIG. 6. Ageostrophic velocity field (vectors) for the piecewise PV inversion shown in Fig. 5. Geopotential height is
given by dashed lines every 20 m. Note the area of low geopotential is associated with anticyclonic ageostrophic

circulation; the total wind around the low is subgeostrophic.

is no ambiguity in the solution near the surface. This
is an attractive property given the strong boundary con-
dition influence on piecewise PV inversion (Hakim et
al. 1996).

These two examples suggest that ESA PV inversion
is a potentially useful tool. Advantages of this technique
include inverting the unapproximated Ertel PV and free-
dom from balance assumptions, boundary conditions,
map factors, etc. As such, irregular grids and boundaries
are no more difficult than regular domains. Furthermore,
the inversion is linear and thus superposition is rigorous
and straightforward, and the implementation is very
easy. The foremost disadvantage of the technique is the

nonuniqueness of the inversion operator due to ensem-
ble size, which may need to be large when considering
piecewise PV inversions for anomalies extending over
a large number of grid points. This problem may be
overcome by larger ensembles or, more realistically, by
techniques designed to increase the effective ensemble
size (e.g., covariance localization) (Houtekamer and
Mitchell 1998; Hamill et al. 2001).

We note that although the operator L has a null space
because of ensemble subsampling there is a more fun-
damental space that may prove useful for studying, or
even defining, balance dynamics and balance models.
This space, the orthogonal complement of L, consists

pg 156 # 10



Allen Press -

Name /amsm/7_108

DIPro system hayc 1J17 File # 08em
09/04/2008 11:08AM  Plate # 0-Composite
CHAPTER 7 HAKIM AND TORN 157
Statistical Piecewise PV Inversion
150 10
8
250
6
350
Lo — ]
E 4
450
: 12
Q
Y]
@
® 550 - 10
a
=N
v R P
650
-4
750
-6
850
-8
950 -10
-108 -103 -99 -94 -90 -85
Longitude

FiG. 7. East—west cross section of piecewise Ertel PV inversion for a blob of PV bounded in the vertical by the 450—
550-hPa layer and in the horizontal by values greater than about 1 PVU. Thick solid black lines give the geopotential
every 20 m, and thin solid black lines give the wind speed normal to the cross section every 4 m s~'. Colors give the

potential temperature field (°C).

of the subspace of the model state X, which cannot be
recovered by PV inversion, even for full-rank ensem-
bles. Consider a hydrostatic incompressible model hav-
ing n grid points for model velocities # and v and ther-
modynamic variable 7 for a total of N = 3n degrees of
freedom. A full-rank PV matrix has at most n degrees
of freedom, leaving 2n degrees of freedom orthogonal
to the space spanned by the PV inversion operator. What
is the dynamical basis for this large model subspace?
In the case of linearized dynamics around a state of rest,
these directions correspond to inertia—gravity waves and
the n modes resolved by the PV correspond to Rossby
waves. What is interesting is that the ensemble approach
permits a natural extension of this separation to finite
amplitude states, with the orthogonal complement cor-
responding to unbalanced modes linearized about the
ensemble-mean state. This interpretation suggests a sta-
tistical definition for balance: Balance dynamics are de-
fined by the state subspace that covaries with potential
vorticity.

We close this section by noting that there is nothing
in principle that limits ESA PV inversion to the wind
and mass field as is typically the case; one could also

determine, for example, the precipitation field “attrib-
utable’ to a particular PV anomaly.

6. Statistical dynamical sensitivity analysis

The final ESA example concerns sensitivity analysis,
which addresses problems such as determining how
changes to an initial condition affect a subsequent fore-
cast. This analysis is equivalent to determining the fac-
tors most important to the dynamics of a weather system.
For the cyclone examined here, an application of these
ideas concerns the factors that control the cyclone cen-
tral pressure at 0600 UTC 29 March, which is the metric
chosen for the analysis. A 24-h time interval is selected
for examination, and sensitivity is defined by the co-
variance between the chosen metric and the 0600 UTC
28 March analysis. We shall refer to the ensemble so-
lution as ‘‘the control.” Specifically, the control ensem-
ble-mean analysis at 0600 UTC 28 March is perturbed
by

X, = a cov(Xy, y) = oXiy'T, 17)

where x, is the perturbation state vector at 0600 UTC
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FiG. 8. Sensitivity fields at 0600 UTC 28 Mar pertaining to the cyclone central pressure at 0600 UTC 29 Mar as
determined by ESA for @ = —2.5; the predicted change in the cyclone central pressure at 0600 UTC 29 Mar is —6
hPa. Thick black lines show the perturbation surface pressure field every 0.25 hPa, and the colors show the surface
potential temperature perturbations. Thin solid lines show the control ensemble-mean surface pressure at 0600 UTC

28 Mar every 4 hPa.

28 March (N X 1), X, is the control ensemble state
matrix at 0600 UTC 28 March (N X M; ensemble mean
removed), and y’ is the normalized control ensemble
sample of cyclone central pressure at 0600 UTC 29
March (1 X M; mean removed). As in prior calculations
[see (14)], normalization of the central pressure is by
the ensemble standard deviation. Parameter a controls
the amplitude of the initial perturbations.

One possible factor that may be expected to affect
the 0600 UTC 29 March cyclone central pressure is the
cyclone central pressure at 0600 UTC 28 March; that
is, a deeper initial cyclone may be expected to produce
a deeper ending cyclone. In fact, the results show that
the positioning of the cyclone relative to other flow
features is more important than the initial amplitude
(Fig. 8), with the pressure covariance field indicating a
displacement of the low center farther south. An east—
west cross section through this feature exhibits a nearly
barotropic structure, with essentially no vertical tilt and
largest amplitude at the surface and the tropopause (Fig.
9). This structure stands in contrast to adjoint sensitivity
analyses, which often give structures that are highly
tilted in the vertical (e.g., Langland et al. 1995). A sec-

ond disturbance is found farther to the south, near a
weak frontal wave in Texas. The surface covariances
indicate that a displacement of this feature northeast-
ward along the front is an important factor for the in-
tensity of the parent cyclone. Moreover, the surface tem-
perature covariance field indicates that a stronger cross-
front temperature gradient near the frontal wave is also
linked to the intensity of the main surface low 24 h later.
Overall, this particular case leaves the impression that
changes in the phase relationships of existing features
are the most important control on the central pressure
of the surface cyclone.

With « = —2.2, a perturbed ensemble-mean initial
condition defined by (17) is evolved in the full WRF
model. The WRF solution for this initial condition gives
a cyclone central pressure that is 4.6 hPa lower than in
the control case at 0600 UTC 29 March, as compared
with 6 hPa lower as predicted by the ensemble covari-
ance (Fig. 10). A more stringent test of the method
derives from the following covariance considerations at
0600 UTC 29 March. The linearized ensemble dynamics
obey
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FIG. 9. Cross section near 40°N through the sensitivity geopotential height field (black lines every 2 m) and
potential temperature field (colors).

X = WX, (18)

where X/ is the ensemble control solution at 0600 UTC
29 March, X is the ensemble control initial condition,
and W represents the tangent-linear WRF model.* Right
multiplying (18) by yT gives

XIy'™ = WXpy'". (19)
Using (17), we find that
x, = Wx; = a cov(X], y'). (20)

Equation (20) says that the perturbed solution at 0600
UTC 29 March given perturbed initial condition (17) is
equal to the control ensemble covariance, scaled by a.
Thus, unlike adjoint sensitivity analysis, ESA sensitivity
analysis predicts the changes in both the chosen metric
and in the full solution fields. Comparing Figs. 10 and
2 we find very similar fields, as predicted by (20).
Finally, the above perturbation procedure is repeated
for other values of « to determine the range of linear
dynamics for this event in the chosen metric. There is

“Note that W is not known in matrix form but rather only as a
computer program. Nevertheless, the action of the model may be
represented symbolically as in (18). Furthermore, we do not have the
tangent linear model for WRF; however, for small-amplitude pertur-
bations, the difference between two nonlinear runs provides a good
approximation to the true tangent linear model.

a good linear relationship between predictions based on
the covariance calculation and WREF solutions over the
range —8 to 8 hPa in perturbation cyclone central pres-
sure (Fig. 11, light blue dashed line). Note, however,
that the linear relationship falls below the main diagonal,
which indicates that the WRF response in the chosen
metric is systematically smaller than the covariance pre-
diction. One possible explanation for this result is that
the ensemble has too much variance in the estimate of
the forecast cyclone central pressure. Renormalizing the
ensemble sample of cyclone central pressure values [i.e.,
y' in (17)] with this correction yields a very good linear
response (Fig. 11, red dashed line). This plot also clearly
indicates that linear perturbation dynamics are violated
when the initial perturbations are scaled to produce de-
viations larger than about 8 hPa in cyclone central pres-
sure at 0600 UTC 29 March. Note also the asymmetry
between positive and negative perturbations, which sug-
gests that the cyclone can be deepened by at most ~10
hPa, whereas it may be weakened by nearly 15 hPa.

7. Summary

ESA is proposed as a new tool for investigating at-
mospheric phenomena that is based upon probabilistic
analyses, which are estimated from an ensemble. Unlike
deterministic analyses, the probabilistic samples dis-
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F1G. 10. Difference surface pressure field at 0600 UTC 29 Mar relative to the control for the perturbed initial condition
for « = —2.5. Pressure perturbations (colors, hPa) are defined as the difference between the perturbed solution at 0600
UTC 29 Mar, as determined by integration of the perturbed initial condition in the WRF model, and the control solution
at 0600 UTC 29 Mar. The surface pressure field for the perturbed solution is given by thin solid lines every 4 hPa.

cussed here admit, and quantify, the inherent errors in
atmospheric analyses. These ensemble analyses also
seamlessly integrate with ensemble prediction, since it
is not necessary to create analysis perturbations. Our
goal here has been to propose analysis methods that
utilize the wealth of information in these probabilistic
analyses and, in doing so, to illustrate that state esti-
mation may be used as a tool for atmospheric dynamics.
The analysis ensemble is determined by a research-
based ensemble Kalman filter consisting of 100 mem-
bers and is applied to a case of cyclogenesis.

The ensemble covariance relationships qualitatively
confirm known linkages between surface cyclones and
upper-level disturbances. The results also suggest per-
haps less obvious relationships between the cyclone and
the surface cold front, a second upper-level shortwave,
and the subtropical jet stream. These novel insights un-
derscore the potential for this technique to provide use-
ful new perspectives into phenomena that are less well
understood than extratropical cyclones.

An application of ESA to potential vorticity inversion
suggests the viability of this approach, which is ap-

pealing given the short algorithm, and freedom from
traditional assumptions, such as balance relationships.
Furthermore, the analysis motivates a new definition for
balance dynamics in terms of the state subspace that
covaries with potential vorticity.

A second ESA example addressed dynamical sensi-
tivity analysis and factors that control the intensity of
the surface cyclone. Unlike adjoint sensitivity analysis,
this technique does not require an adjoint model and is
very easy to perform numerically; both this calculation
and the PV inversion calculation are easily performed
with short software programs. Moreover, the method
implicitly accounts for errors in the initial and end states,
and for a given initial perturbation, it predicts the so-
lution response in both the chosen metric and the full
solution field. Continuing this comparison, the ESA re-
sults for this case show that the initial condition sen-
sitivity is highly organized around existing flow fea-
tures, and the perturbation fields exhibit little vertical
tilt. Adjoint-based sensitivity analyses often indicate
widespread regions of sensitivity and complicated ver-
tical and horizontal structures (e.g., Langland et al.
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FiG. 11. Cyclone central pressure differences as determined by
perturbed integrations of the WRF model (ordinate) against those
predicted by the control ensemble covariance statistics (abscissa). The
dashed blue line applies to the ensemble covariance perturbations and
the dashed red line to the renormalized ensemble covariance pertur-
bations (see text for details). Values along the main diagonal indicate
agreement between the covariance predictions and solutions from
WREF integrations.

1995; Zou et al. 1998). We caution that this comparison
is based on one case, and further research will be needed
to compare these two techniques.

Results for ESA sensitivity analysis show that the
primary factors affecting the strength of the surface cy-
clone involve a phase shift of existing flow features,
including a frontal wave well removed from the primary
cyclone. These features were determined by the co-
variance between the chosen metric (surface cyclone
central pressure) and the full model state 24 h earlier.
To check these covariance predictions, the full WRF
model was used to integrate covariance-perturbed initial
conditions. The solutions show a remarkably good cor-
respondence with the covariance predictions of the cy-
clone central pressure.

Although the example illustrations given here all ap-
ply to a case of cyclogenesis, that choice was mainly
based on familiarity and recognition of Fred Sanders’
contributions to our understand of this phenomenon. In
fact, ESA may be applied to any problem where en-
semble samples of data are available.
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