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[1] Many applications exist within the fields of agriculture, forestry, land management,
and hydrologic assessment for routine estimation of surface energy fluxes, particularly
evapotranspiration (ET), at spatial resolutions of the order of 101 m. A new two-step
approach (called the disaggregated atmosphere land exchange inverse model, or
DisALEXI) has been developed to combine low- and high-resolution remote sensing data
to estimate ET on the 101–102 m scale without requiring any local observations. The first
step uses surface brightness-temperature-change measurements made over a 4-hour
morning interval from the GOES satellite to estimate average surface fluxes on the scale of
about 5 km with an algorithm known as ALEXI. The second step disaggregates the GOES
5-km surface flux estimates by using high-spatial-resolution images of vegetation
index and surface temperature, such as from ASTER, Landsat, MODIS, or aircraft, to
produce high-spatial-resolution maps of surface fluxes. Using data from the Southern
Great Plains field experiment of 1997, the root-mean-square difference between remote
estimates of surface fluxes and ground-based measurements is about 40 W m�2,
comparable to uncertainties associated with micrometeorological surface flux
measurement techniques. The DisALEXI approach was useful for estimating field-scale,
surface energy fluxes in a heterogeneous area of central Oklahoma without using any
local observations, thus providing a means for scaling kilometer-scale flux estimates down
to a surface flux-tower footprint. Although the DisALEXI approach is promising for
general applicability, further tests with varying surface conditions are necessary to
establish greater confidence. INDEX TERMS: 3360 Meteorology and Atmospheric Dynamics:

Remote sensing; 3322 Meteorology and Atmospheric Dynamics: Land/atmosphere interactions; 1818
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1. Introduction

[2] The partitioning of net radiation at a land surface into
latent and sensible heat fluxes reflects the physical charac-
teristics of the surface: its roughness, moisture content,
vegetation cover, and so forth. Surface flux partitioning
also influences the coupling between the surface and the
lower atmosphere. Whether one is interested in studying the
influence of surface fluxes on the lower atmosphere or in
characterizing the nature of the surface itself, much can be

learned by quantifying the temporal and spatial character of
the surface energy balance using remotely sensed data.
There is particular demand for operational methodologies
for mapping surface fluxes, algorithms that can be executed
remotely and routinely and do not require any local, ground-
based data as input.
[3] Numerous applications exist for operational maps of

energy balance/evapotranspiration (ET) made at a broad
range in spatial scales. The routine estimation of surface
fluxes at regional scales (i.e., �10–100 km), for example,
would benefit numerical weather forecasting in terms of
defining accurate model boundary conditions. At high
spatial resolution (i.e., 101 m), remote estimates of ET
provide a means to calibrate models simulating site-specific
energy and water balances of agricultural crops, which use
transpiration-rate estimates to detect productivity-limiting
field conditions and project end-of-season yields [Moran et
al., 1995; Moulin et al., 1998]. In forested areas, the
transpiration rate is also the primary indicator of forest
health and vulnerability to fire [Vidal and Devaux-Ros,
1995]. Changes in the energy balance are indicative of
changes in cropland and natural ecosystem functioning;
hence remote sensing models have potential in mapping
and monitoring plant ecosystem health [Moran, 2003]. At
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these scales, maps of daily ET can also be used to constrain
recharge in detailed transient hydrologic models.
[4] Unfortunately, methodologies using high-resolution

remotely sensed data with 101–102 m pixel resolution
generally rely on the availability of contemporaneous in
situ measurements, primarily near-surface meteorological
conditions such as air temperature, wind speed, and
humidity, and are therefore difficult to implement opera-
tionally [Gardner et al., 1992; Choudhury et al., 1994;
Moran et al., 1994; Moran et al., 1996]. Routine applica-
tion of high-resolution satellite data is also hindered by the
long return period between successive satellite overpasses.
The frequency of repeated coverage from the Land Re-
mote-Sensing Satellite (Landsat) or the Advanced Space-
borne Thermal Emission Reflectance Radiometer
(ASTER), for example, is typically of the order of several
weeks. Considering that cloud cover will obscure some
fraction of these images, monthly coverage is a reasonable
expectation for the availability of high-resolution satellite
images. Using one snapshot of the surface per month for
estimating spatially distributed surface heat fluxes and
evapotranspiration (ET) severely limits the utility for
operational monitoring of vegetation conditions [Moran
et al., 1996].
[5] For coarser resolutions of 103–104 m, satellite cover-

age is much more frequent, and hence surface fluxes have
been estimated with data from satellites such as the Geosta-
tionary Operational Environmental Satellite (GOES),
Meteosat, or the Advanced Very High Resolution Radiom-
eter (AVHRR). On these spatial scales, the need for ancillary
meteorological data can be reduced by coupling land-surface
models with atmospheric models [e.g., Carlson, 1986;
Taconet et al., 1986; Price, 1990; Seguin et al., 1991;
Mecikalski et al., 1999]. However, validation of such
coarse-scale flux models has been problematic due to
limitations related to the network of available flux observa-
tions and the scale mismatch between the resolution of
model output and the in situ flux measurement footprint.
[6] To date, the validation of coarse-scale remote-sensing

methods for estimating surface fluxes has rested on three
strategies: (1) using ground- or tower-based measurements
of inputs to, and outputs from, algorithms that will ulti-
mately be used on the kilometer spatial scale, (2) direct
comparison of ground-based micrometeorological surface
flux measurements (representative of a 102-m scale foot-
print) with model estimates using satellite data having pixel
resolutions of 1–5 km, or (3) by direct comparison to low-
altitude aircraft flux measurements. The first strategy [e.g.,
Moran et al., 1994; Friedl, 1996; Zhan et al., 1996;
Anderson et al., 1997; Gillies et al., 1997; Norman et al.,
2000] may be most efficient for the initial validation of a
new approach, but it is not a true test of the algorithm’s
utility at the larger scale and ignores the practical issues
involved in gathering operational inputs remotely. The
second strategy assumes the surface flux measurement to
be representative of the entire satellite 1–5 km pixel scene
[Gao et al., 1998; Mecikalski et al., 1999; Song et al., 2000;
Jiang and Islam, 2001], requiring homogeneity at the scale
of several satellite pixels considering registration uncertain-
ties. A look at almost any Landsat scene will reveal that
homogeneous land-surface patches on the scale of several
kilometers are exceedingly rare in most places. Predicted

surface fluxes from the First ISLSCP Field Experiment
(FIFE), for example, showed a dominant spatial scale of
100–200 m [Divakarla, 1997]. The third approach [Song et
al., 2000; Kustas et al., 2001] has been used successfully
but with mixed results because of limitations associated
with flying at 50-m altitudes and challenges in interpreting
boundary-layer phenomena [Mahrt, 1998].
[7] This study reports on a flux disaggregation method-

ology designed to bridge the gap in spatial resolution
between ground-based micrometeorological measurements
of surface fluxes (100-m scale) and coarse-scale (103 m)
remote-sensing observations. The scheme uses a coupled
land-surface atmospheric-boundary-layer model referred to
as the ALEXI (Atmosphere Land Exchange Inverse) model,
which has been shown to be very robust in estimating large-
scale surface fluxes while requiring no in situ information
[Anderson et al., 1997; Mecikalski et al., 1999]. The scaling
assumptions embedded in this disaggregation technique are
similar to those in the ‘‘mosaic’’ or ‘‘tile’’ approach of Koster
and Suarez [1992], which are supported by observational
and theoretical studies for surfaces having length scales of
heterogeneity of the order of 102–103 m [Claussen, 1995;
Mahrt, 1996; Kustas et al., 1999].
[8] The disaggregation approach we describe here com-

bines the high-temporal, low-spatial resolution of GOES
with the low-temporal, high-spatial resolution of aircraft-
based remotely sensed data collected during the 1997
Southern Great Plains (SGP97) Experiment conducted in
Oklahoma [Jackson et al., 1999]. The resulting multiscale
data set is used to estimate surface fluxes over a 5 � 5 km
GOES pixel at 24-m pixel resolution without the need for
any additional ground-based input. The high-resolution
surface heat flux predictions are reaggregated using a
weighted flux footprint analysis and compared to micro-
meteorological flux measurements and to flux estimates
using in situ meteorological observations.

2. Approach

2.1. The Disaggregation Algorithm

[9] The disaggregation algorithm developed here draws
on the concept of the ‘‘blending height,’’ the height where
wind speed and scalars can be treated as uniform over the
landscape [Wierenga, 1986; Mason, 1988]. Blyth [1995]
showed how the blending height principle can be modeled
simply for a mixture of two surfaces, although its applica-
tion to an agricultural patchwork of surfaces is not readily
apparent. Fortunately, under a wide range of surface con-
ditions the blending height can be taken to be at the top of
the surface layer, which is of the order of 50 m [Raupach
and Finnigan, 1995].
[10] Here the air temperature at the blending height is

estimated with the regional-scale ALEXI model (Figure 1).
At the core of ALEXI is a two-source surface flux model
(TSM) [Norman et al., 1995b; Kustas and Norman, 1999]
(a brief description is also presented in Appendix A) which
deconvolves the composite radiometric surface temperature
TRAD(f) observed at view angle f into soil and canopy
contributions given an estimate of the vegetation cover
fraction within the scene ( fc). The lower boundary con-
ditions for the two-source model are provided by remote
thermal infrared observations taken at two times during the
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morning hours (about 1.5 and 5.5 hours past sunrise) with a
geostationary satellite such as GOES, nominally at 4–5 km
spatial resolution. The amplitude oFFf the diurnal temper-
ature curve is related to surface moisture content and
therefore is an indicator of surface flux partitioning [Price,
1980; Carlson et al., 1981]. Furthermore, use of a time
differential measurement reduces the effects of errors in
sensor calibration and surface emissivity specification.
[11] Closure for the system energy budget is obtained

using a simple one-dimensional slab model of atmospheric
boundary layer (ABL) development [McNaughton and
Spriggs, 1986], which relates the morning rise in air
temperature above the canopy and the growth in height in
the boundary layer to the time-integrated influx of sensible
heating from the surface (see Appendix A for further
details). The air temperature at the blending height (Ta in
equations (A10) and (A18) and qm in equation (A17)) is
diagnosed at the interface between the surface and boundary
layer models and is consistent with the cover fraction and
surface temperature change associated with the 5-km patch
of landscape contained within the GOES pixel and with the
overlying boundary-layer dynamics.
[12] ALEXI works most appropriately at the 5–10 km

scale, approximately the scale at which atmospheric forcing
from organized surface behavior becomes effective as far as
the structure of the ABL is concerned. Vegetation cover
fraction and surface temperature can, however, be sampled
at much higher resolution, for example, using data from
aircraft, Landsat, ASTER, or the Moderate-Resolution
Imaging Spectroradiometer (MODIS). In the second phase
of the disaggregation process (referred to as DisALEXI),
the TSM is applied again, this time to high-resolution
images of surface cover ( fc,i) and surface radiometric
temperature (TRAD,i(fi)). Here the subscript i, where i = 1
to N, refers to the set of N high-resolution pixels contained

within one GOES pixel. For this second, fine-scale appli-
cation of the TSM, the air temperature at 50 m is held
constant over the entire 5-km GOES pixel area at the value
determined by ALEXI (Ta; see Figure 1). In this hybrid
mode, the ABL component of ALEXI is used at the large
scales it is best suited for, while the surface component can
be applied at much finer scales.
[13] Sensitivity studies with ALEXI have shown that the

air temperature calculated at the blending height adjusts to
instrumental biases in the surface radiometric temperature
measurement, preserving the relationship between the ob-
served temporal change in surface temperature and modeled
heat flux ABL evolution [Anderson et al., 1997]. In general,
this computed temperature will be preferable to an actual
measurement of air temperature made aloft, unless the
surface and air temperature observations are well matched
in time and their relative uncertainty is much less than a
degree. Just a 1�C error in the assumed surface-to-air tem-
perature gradient can translate into errors in predicted sensi-
ble heating of up to 100 W m�2, depending on wind speed
and surface roughness [Norman et al., 1995a]. In general, air
temperature measurements at sufficient height and spatial/
temporal resolution to drive regional applications of ALEXI
are not routinely available. To ensure the ALEXI-derived
vertical temperature gradient is preserved in the disaggrega-
tion stage, the high-resolution radiometric temperature field
is bias corrected to yield an average consistent with the 5-km
GOES temperature (see below).

2.2. DisALEXI Input Requirements

[14] Mecikalski et al. [1999] review data inputs required
for regional-scale application of the ALEXI model. Details
regarding specification and processing of input data used in
the DisALEXI flux disaggregation process are outlined
here.

Figure 1. Schematic diagram representing the coupled ALEXI/DisALEXI modeling scheme.

NORMAN ET AL.: REMOTE SENSING OF SURFACE ENERGY FLUXES SWC 9 - 3



[15] Four forcing variables are held constant over the
5-km disaggregation domain: the 50-m air temperature and
wind speed, and downwelling short- and long-wave radia-
tion. Again, the blending height air temperature is computed
by ALEXI; the other three variables are assigned the values
input to ALEXI.
[16] All land-surface-related input fields are developed on

a grid coincident with the high-resolution radiometric tem-
perature and vegetation cover data and will be designated
with the subscript i, as described above, signifying the ith
pixel in this grid. Vegetation height is scaled between
seasonal minimum and maximum limits (assigned by land-
cover class), based on the current vegetation cover fraction
in each pixel. This vegetation height is used to estimate the
effective aerodynamic roughness of the canopy [Massman,
1997] for each pixel and (with appropriate local diabatic
corrections) the aerodynamic resistance to vertical transport
(Ra,i; see Figure 1). Net radiation (Rn,i) is computed with
equations from ALEXI (equations (A7)–(A9) in Appendix
A), using high-resolution surface temperature information
(TRAD,i(fi)) and known relationships for surface albedo (Ai)
[Campbell and Norman, 1998] and surface emissivity (ei)
[Anton and Ross, 1987] as a function of vegetative cover
( fc,i). Because bare soil and dense vegetation albedos are
similar in this study and at many locations, high-resolution
pixel to pixel albedo differences affect the available energy
by less than 5% if they are ignored. Here, however, cover-
dependent adjustments have been made. The fraction of
vegetative cover that is green ( fg,i) is unity for this study;
a method for estimating this quantity remotely is discussed
by Kustas and Norman [1999].
[17] A key step in applying DisALEXI is accommodating

likely differences in sensor calibration, atmospheric correc-
tion, and view angle between the 5-km GOES surface
temperature estimate, TRAD(f), and the high-resolution
surface temperature observations, TRAD,i(fi). As discussed
above, an uncorrected bias between the high-resolution
surface temperature data and the blending height air tem-
perature computed by ALEXI will introduce errors into the
disaggregated sensible heat flux estimates.
[18] The first step is to adjust all images for atmospheric

[Berk et al., 1998] and surface emissivity [Kustas and
Norman, 1999] effects. Next, using the soil and canopy
temperature estimates from ALEXI, the 5-km radiometric
temperature from GOES at view angle f is adjusted to the
average angle �fi at which the high-resolution sensor views
the scene, using equations (A1) and (A3). This angle-
adjusted 5-km temperature, TRAD(�fi), is used in step three
to compute bias-corrected, high-resolution radiometric tem-
peratures (TC

RAD,i(fi)) for all N pixels over the GOES pixel
as follows:

TC
RAD;i fið Þ ¼ TRAD;i fið Þ þ TRAD fi

� �
�
XN
i¼1

TRAD;i fið Þ=N

[19] A more rigorous correction would involve adjusting
each pixel in the high-resolution scene (each at a slightly
different viewing angle) to the GOES view angle and
comparing the scene average of this field to the unadjusted
GOES temperature TRAD(f). This adjustment must be done
iteratively, since it requires that disaggregated fields of soil
and canopy temperature (Ts,i and Tc,i, respectively) already

be available. For the study area considered here, the two
techniques yielded negligibly different corrections.

2.3. Disaggregation Procedure

[20] In summary, the DisALEXI algorithm is imple-
mented as follows:
[21] 1. The ALEXI model is run over a large domain

using two morning GOES observations at 5-km resolution
and ancillary data from a synoptic weather-observing net-
work objectively analyzed to the model grid. The ancillary
data include rawinsoundings of the lower atmosphere and
the standard World Meteorological Organization (WMO)
10-m wind speed observations scaled to the ALEXI blend-
ing height (50 m), providing an estimate of the aerodynamic
resistance (Ra) between the surface and 50 m (see Figure 1).
The GOES surface temperatures used in ALEXI are atmo-
spherically corrected using MODTRAN [Berk et al., 1998],
assuming a surface emissivity of 0.98. Vegetation cover is
estimated using the AVHRR normalized-difference vegeta-
tion index (NDVI) product, following the method of
Choudhury et al. [1994].
[22] 2. A high-resolution radiometric surface temperature

image, acquired around the time of the second GOES
observation (�1030 local standard time), is corrected for
atmospheric and surface emissivity effects. The pixels in
this high-resolution image of surface radiometric tempera-
ture are ‘‘matched’’ to the coincident GOES 5-km pixel by
making an offset adjustment to accommodate differences
due to different sensor view angles, uncertainties in sensor
calibration, and atmospheric correction (as described
above).
[23] 3. A high-resolution, multiband visible/near-infrared

image is used to create a map of NDVI for the target
domain, and this map is converted to vegetative cover using
the method of Choudhury et al. [1994]. A land cover
classification map, constructed from multiband data at
comparable resolution, is used in conjunction with the cover
map to define various surface properties such as roughness
length, displacement height, and albedo.
[24] 4. Net radiation is calculated for each high-resolution

pixel using a clear-sky solar radiation calculation, albedo,
surface thermal emission from surface radiometric tempera-
ture matched to GOES, and sky emission from the Brutsaert
[1975] equation (see equations (A7)–(A9)).
[25] The two-source model [Norman et al., 1995b; Kustas

and Norman, 1999] is run on each high-resolution pixel using
the 50-m above ground level (agl) air temperature predicted
by the ALEXImodel (step 1) as an upper boundary condition.
This produces high-resolution maps of soil heat conduction,
sensible heat, and latent heat flux.
[26] The DisALEXI flux estimates are validated by com-

parison with in situ eddy-covariance measurements using
the simple analytical flux-footprint analysis of Schuepp et
al. [1990] for estimating the relative source-area contribu-
tions of multiple high-resolution pixels upwind of the
measurement tower.

3. Materials and Methods

[27] The DisALEXI algorithm has been tested with data
collected during the Southern Great Plains Experiment of
1997 (SGP97), conducted during June and July in the state
of Oklahoma. Details concerning SGP97 are given by

SWC 9 - 4 NORMAN ET AL.: REMOTE SENSING OF SURFACE ENERGY FLUXES



Jackson et al. [1999], with further description available on
the World Wide Web (http://hydrolab.arsusda.gov/sgp97/).
Land use in this part of the Great Plains is primarily winter
wheat fields and grasslands used for grazing cattle. The
aircraft and surface flux data used in this study come from
one of three experimental sites that were intensively mon-
itored during SGP97: the USDA-ARS Grazing Lands
research facility near El Reno, Oklahoma.

3.1. Ground-Based Observations

[28] The ground-based data used here for validation were
acquired at four eddy-covariance towers operating within
the El Reno study area (see Figure 2). These tower sites
consist of two native grassland or rangeland areas, a pasture
site under agricultural management, and a harvested winter
wheat field recently tilled and converted to bare soil. The
average vegetation height in the rangeland sites was�0.5 m,
and in the pasture site the average height was �0.25 m. Leaf
area index (LAI, dimensionless) estimates were made with a
LiCor LAI2000 instrument and are listed in Table 1. At site
ER09 the eddy-covariance instrument tower was located in
a particularly wet portion of the field, which was somewhat
unrepresentative of the area as a whole.
[29] On each tower, a Campbell Scientific (company and

trade names are given for the benefit of the reader and imply
no endorsement by the USDA or University of Wisconsin)
three-dimensional sonic anemometer and krypton hygrom-
eter were positioned at a nominal height of 2 m agl for
estimating the sensible (H) and latent (LE) heat fluxes.
Wind speed, air temperature, and humidity measurements
were made at approximately 2.5 m agl, and net radiation
(Rn) was measured at approximately 2 m agl. The soil heat

(G) flux at the surface was estimated by a combination of
soil calorimetry and measurement of the heat-flux density at
a nominal depth of 8 cm using an array of several heat flow
transducers with the change in heat storage of the soil layer
above the plate estimated using soil temperature measure-
ments at nominal depths of 2 and 6 cm. Everest Interscience
infrared radiometers (Model 4000 with a 60� field of view)
were positioned approximately 2 m agl to measure radio-
metric surface temperature, TRAD(f), at a nadir viewing
angle (f = 0�). Fluxes and meteorological variables were
averaged to one-half hour.
[30] Further details on the reliability of surface flux

observations made by eddy-covariance techniques are de-
scribed by Twine et al. [2000]. A key finding of this study
was that the sum of eddy covariance measurements of the
turbulent heat fluxes, H and LE, were consistently less than
the available energy, namely, Rn � G. This lack of closure
in the surface energy balance ranged from 10 to 30% as
quantified by taking the ratio of (H + LE)/(Rn � G),
suggesting that when measurement errors in available
energy are known and modest, the eddy-covariance meas-
urements of sensible and latent heat fluxes should be
adjusted to obtain closure. All fluxes reported here have
been corrected for such closure errors by modifying H and
LE such that they summed to the available energy (Rn � G)
yet retained the observed Bowen ratio [Twine et al., 2000].
[31] For comparison purposes, the DisALEXI model was

also run with local inputs taken from a nearby station in the
Oklahoma Mesonet [Brock et al., 1995], a relatively dense
network of meteorological stations (as opposed to the
synoptic data inputs used in the first DisALEXI experi-
ment). The wind speed observations from all Mesonet
stations are available at the World Meteorological Organi-
zation (WMO) recommended 10 m agl, as is air temperature
at 1.5 m, with some stations also having an air temperature
measurement at 9 m agl. Details concerning Mesonet
measurements and data quality control are described by
Shafer et al. [2000].

3.2. Remote-Sensing Observations

3.2.1. Coarse Spatial Resolution Data
[32] In this experiment, the coarse-resolution surface

temperature observations used in ALEXI were obtained
with the GOES 8 imager instrument within the 10.2–
11.2 mm (band 4) longwave infrared window. Thermal
imager data are available every 15 min at a nadir-viewing
angle of 39 degrees and a nominal spatial resolution of 5 km
at the location of the SGP97 study area. Atmospheric
correction of the GOES data was performed using MOD-
TRAN [Berk et al., 1998].
3.2.2. High Spatial Resolution Data
[33] High-resolution surface radiometric temperature,

vegetation cover, and land-use maps were derived from

Figure 2. Location of eddy-covariance flux towers within
the El Reno, Oklahoma, study area, overlaid on a map of
NDVI generated from TMS visible/NIR images acquired on
DOY 183.

Table 1. Description of El Reno Flux Station Sites

Station Leaf Area Index Description

ER01 4.2 rangeland
ER05 2.6 rangeland
ER09 2.7 pasture
ER13 0 harvested winter wheat/tilled bare soil
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measurements made with the thermal infrared multispectral
scanner (TIMS) and the thematic mapper simulator (TMS),
flown by aircraft over the El Reno site. The TIMS instru-
ment [Palluconi and Meeks, 1985] is a six-channel scanner
operating in the thermal infrared (8–12 mm) region of the
electromagnetic spectrum, while TMS mimics the Landsat
TM visible and near-infrared bands and was used to create
maps of NDVI. Both sensors were flown on a DOE Cessna
Citation aircraft at �5 km agl, yielding a ground resolution
of 12 m; the 12-m TIMS and TMS data were then
aggregated to 24 m (by averaging four adjacent 12-m pixels
together) to reduce registration errors between the two
sensors. Viewing angles for the aircraft ranged from nadir
(i.e., f = 0�) to f = 25�; hence the average sensor viewing
angle was of the order of 10�. The El Reno flight lines
provided coverage of an area approximately 8 km north-
south by 28 km east-west. French et al. [2000b, 2000a]
provide further details concerning the processing of these
data, including corrections for emissivity and atmospheric
effects. Additionally, a map of land use/land cover in the
modeling domain was created by a supervised maximum-

likelihood classification scheme using TMS imagery from
2 July 1997.
[34] Maps of surface radiometric temperature and NDVI

at 24-m resolution for 2 July are shown in Figure 3. These
images demonstrate the heterogeneity contained in this
landscape, with typical length scales of 100–200m. The
highlighted box delineates the 5-km GOES pixel containing
the El Reno study area, used in the ALEXI component of
the mapping procedure.

3.3. Study Period

[35] Both low- (GOES) and high- (aircraft) spatial resolu-
tion remote-sensing data were collected on three clear morn-
ings during SGP97, on day of year (DOY) 180 (29 June), 182
(1 July), and 183 (2 July). These consisted of two GOES
images at about 1.5 and 5.5 hours past sunrise and one TIMS
overflight at about the time of the second GOES observation
(�1030–1100 central standard time; see Figure 4). The TMS
data used here were acquired on DOY 183.
[36] This 3-day sequence of remote-sensing surveys fol-

lowed a heavy rainfall event (�60 mm) that occurred over

Figure 3. Maps at 24-m resolution of surface radiometric temperature derived from TIMS data (top)
and NDVI from TMS observations (bottom) taken on 2 July 1997 at approximately 1030 CST. The boxes
signify the size and location of the GOES thermal pixel used in the disaggregation experiments described
in the text.

SWC 9 - 6 NORMAN ET AL.: REMOTE SENSING OF SURFACE ENERGY FLUXES



the El Reno area on DOY 179. A general drying trend
followed for the next several days, although there was a
brief shower on DOY 181 adding another 1 mm of
precipitation. Measurements from a nearby Mesonet station
showed minor differences in solar radiation and air temper-
ature between the 3 days around the time of the aircraft
coverage (see Figure 4 and Table 2). The atmospheric
saturation deficit, however, increased steadily over this
interval (Figure 4), while soil moisture decreased. This
dry-down period provided a valuable test of the sensitivity
of the DisALEXI flux-mapping algorithm to changing
surface and atmospheric conditions.

4. Results and Discussion

4.1. Instantaneous Fluxes

[37] Figure 5 shows a time series of surface temperature
maps derived from the 24-m TIMS data for DOY 180, 182,

and 183, acquired at approximately 1030 local standard
time (LST). The warming that occurred during the dry-
down is apparent, particularly in the bare fields of harvested
winter wheat, where surface temperatures increase from
�30� to 50�C. Corresponding maps of latent heating at
1030 LST generated with DisALEXI are also shown in
Figure 5. Estimated evapotranspiration rates in the bare
fields are reduced dramatically as the soil surface dries. On
the other hand, in the dense vegetation in the riparian zones
around the network of streams to the north (probably
transpiring at the potential rate on all three days), evapora-
tion increases on DOY 182 and 183 when the atmospheric
demand for water vapor is high.
[38] This general time behavior is supported by measure-

ments made at four flux towers operating within El Reno
study area (Figure 2). Figure 6 shows the latent heat flux
observed at these flux stations at the time of the TIMS
overpasses on the 3 study days, together with the 5-km

Figure 4. Time series of insolation, saturation deficit, and rainfall measurements acquired at the El
Reno Mesonet station during the period of investigation. Also indicated are acquisition times for GOES,
TIMS, and TMS images used for disaggregation.

Table 2. Ambient Atmospheric and Surface Temperature Conditions, and ALEXI Flux Estimates for Targeted Modeling Daysa

DOY t1, CST t2, CST RH2, % Ta,2,C W2, m/s �TRAD, C Rn,2, W m�2 LE2, W m�2 H2, W m�2 G2, W m�2

180 6.25 10.75 72.9 29.0 6.0 9.0 671 475 95 101
182 6.25 10.75 60.0 30.5 6.3 13.7 676 410 175 92
183 6.25 10.25 60.6 30.3 2.7 16.6 602 343 187 72

aHere t1 and t2 are the acquisition times of the two thermal GOES images used in ALEXI; RH2, Ta,2, and W2 are the relative humidity, 9 m agl air
temperature, and 10-m agl wind speed measured at the El Reno mesonet station at time t2; �TRAD is the surface temperature change at El Reno between
times t1 and t2 as estimated from atmospherically corrected 5-km imagery from the GOES imager (band 4); and Rn,2, LE2, H2, and G2 are flux estimates for
El Reno from the ALEXI model at time t2.
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ALEXI estimate. The latent heat flux at the site with the
densest vegetation cover (ER01) increases slightly on DOY
182 and 183, while the evaporation from the bare field site
(ER13) drops steadily after the rainfall event on DOY 179.
The two sites with intermediate vegetative cover, which are
not significantly different in cover, fall between ER01 and
ER13 in their behavior. The 5-km ALEXI latent heat fluxes
decrease monotonically, reflecting the likely influence of the

bare soil/harvested winter wheat fields present within the
scene (Figure 3).
[39] Figure 7 contains a comparison of tower measure-

ments with DisALEXI model predictions of the four major
flux components extracted at the locations of the flux
towers. To account for variations in fetch influencing
fluxes observed at the height of the eddy correlation instru-
ment (2 m agl), the 24-m flux predictions were re aggregated

Figure 5. Maps at 24-m resolution of surface radiometric temperature (left) and disaggregated latent
heat flux estimates (right) over the El Reno study area for DOY 180, 182, and 183. See color version of
this figure at back of this issue.
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to a scale of �100 m using the analytical footprint analysis
technique of Scheupp et al. [1990]. This constituted a
weighted average of approximately 12 pixels upwind of the
tower location. Figure 7 shows that the decrease in latent
heating observed at the bare-soil site is captured by the
DisALEXI model, while the vegetated sites show more
constant evaporation rates throughout the dry-down period.
For all flux components, the root-mean-square deviation
(RMSD) between model estimates and measurements is
38 W m�2. This compares well with the observational
accuracy of 20–40 W m�2 typically associated with eddy-
covariance flux measurements (see Norman et al. [1995b,
p. 281] for discussion; see also Twine et al. [2000]).
[40] To ascertain the utility of ALEXI in providing

reasonable estimates of air temperature at 50 m, used as
the upper boundary condition in phase 2 of the disaggrega-
tion (Figure 1), a second disaggregation was performed
using a local measurement of air temperature at a height of
9 m agl, taken at a Mesonet station in the El Reno study
area. Footprint-weighted flux estimates from DisALEXI are
compared with observations in Figure 8, with an overall
RMSD of 39 W m�2. This accuracy is similar to that from
the experiment using ALEXI-derived air temperatures
shown in Figure 7, which had the operational advantage
that no on-site measurements were used.
[41] The importance of disaggregating regional scale flux

estimates down to scales consistent with the flux observa-

tions used for validation is further evidenced in Figure 6,
where the 5-km ALEXI flux predictions for the 3 study days
are compared with observed fluxes. On DOY 183, for
example, observed ET fluxes varied from 200 to 500 W
m�2, while the ALEXI 5-km flux was 343 W m�2. A
simple average of the four local sites agrees reasonably well
with ALEXI. This is purely fortuitous, however; these four
sites happen to be representative of the heterogeneity of the
larger 5-km pixel in this particular case. In general, subpixel
heterogeneity in surface properties, such as vegetation cover
and soil moisture, leading to significant surface temperature
contrasts within a scene can serve to corrupt flux estimates
based on pixel-average model input parameters [Kustas and
Norman, 2000]. Combining this issue with the fact that
typically only a single flux tower site would be available for
validation, it is obvious that comparisons between kilome-
ter-scale modeled fluxes and 100-m scale tower observa-
tions contain large uncertainties, providing little in the way
of assurance in the utility of the remote-sensing model for
mapping fluxes across a landscape. In fact, the location of
the flux tower and how it reflects average conditions over
the remotely sensed scene would largely determine the level
of agreement between the remote-sensing model output and
the measurements, even if the model were very reliable. The
variability in modeled heat fluxes at the 24-m resolution
over the 5-km pixel is much larger than the root-mean-
square difference between DisALEXI fluxes and the in situ

Figure 6. Latent heat flux observed at four eddy-covariance flux towers in El Reno at the time of the
TIMS overpasses on DOY 180, 182, and 183. Stars indicate ALEXI 5-km latent heat flux estimates for
these times.
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surface flux measurements, suggesting that a high-resolu-
tion approach is important for validation at this Oklahoma
site.

4.2. Daytime Extrapolation of Instantaneous
Flux Estimates

[42] Figures 5–8 compare instantaneous fluxes that were
modeled/measured at the time of the aircraft overpass and
the second GOES image, about 1030 LST. Assuming the
relative partitioning of the energy budget remains constant
throughout the day, these instantaneous flux estimates can
be used to predict hourly and daily-integrated fluxes, which
will be of greater utility in many applications. Field studies
have shown that the ‘‘evaporative fraction’’ (EF), given by
the ratio between latent heat and the available energy flux
(LE/(Rn�G)), is generally relatively stable during the
daytime hours and can be used to extrapolate the single
snapshots of surface conditions typically afforded by remote
sensing to longer timescales [e.g., Sugita and Brutsaert,
1991; Brutsaert and Sugita, 1992; Hall et al., 1992;
Anderson et al., 1997].

[43] Half-hourly flux estimates for DOY 183 at the four
El Reno sites are shown in Figure 9, generated assuming
the evaporative fraction predicted by DisALEXI at
1030 LST remained constant throughout the day. Here
the shortwave component of hourly net radiation was
estimated using a clear-sky radiative transfer model and
a cover-dependent surface albedo [Campbell and Norman,
1998], while the net longwave component was held
constant at the modeled 1030 LST value. The sensible
and latent heat fluxes were then estimated from the available
energy, Rn � G, assuming a constant evaporative fraction
for each day.
[44] The soil heat conduction flux is often estimated as a

fraction of the net radiation at the soil surface [Choudhury
et al., 1987; Norman et al., 1995b; Anderson et al.,
1997]; however, this can produce large errors in after-
noon instantaneous fluxes when the net radiation and soil
conduction flux curves are out of phase. In Figure 9 the
half-hourly soil heat fluxes were approximated with an
analytical solution to the soil heat conduction equation
for a homogeneous media with a sinusoidal boundary

Figure 7. Comparison of energy budget component measurements from four flux towers with
instantaneous flux estimates (�1030 CST) from the DisALEXI disaggregation algorithm. In this
experiment, the upper boundary condition in air temperature (at 50 m agl) was provided by the ALEXI
model (as in Figure 1).
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condition [see, e.g., Campbell and Norman, 1998];
namely,

G tð Þ ¼ G t2ð Þ sin½w t � toð Þ þ p=4	
sin½w t2 � toð Þ þ p=4	

where G(t) is the soil conduction flux at some time t during
the day, G(t2) is the soil conduction flux from DisALEXI at
time t2 (�1030 LST), to is the time when the first harmonic
of the soil conduction flux curve passes through zero in the
morning hours, and w is 2p radians/24 hours. If to = 8 hours,
then the maximum of the soil heat conduction flux occurs at
1100 LST and the soil flux is again zero at 1700 LST. This
means that t2 is very near the time of maximum soil heat
conduction flux. This simple solution just normalizes soil
conduction fluxes throughout the day to the flux predicted
by DisALEXI at t2, preserving the normal phase that soil
heat flux has relative to solar radiation. For different day
lengths, to may change slightly and can be adjusted by
relating to sunrise and sunset.
[45] The results of this simple method for estimating

hourly surface fluxes are encouraging for both the vegetated

(ER01, ER05, and ER09) and nonvegetated (ER13) sites,
although some significant errors are present (Figure 9).
Estimates of Rn and G generally agree with measurements
to within 50 W m�2, yielding a relative error of less than
10% for Rn, but a much larger relative error for G (�50%).
However, this translates to only a �10% relative error in
available energy, Rn � G. Estimates of H and LE agree with
measurements to within 50 W m�2 before local noon,
yielding an average relative error of less than 20%, with
larger errors in the afternoon.
[46] The measurements suggest that ambient conditions

changed at about 1300 LST, resulting in a small but steady
increase in the evaporative fraction toward sunset for the
vegetated sites, while the bare soil site ER13 shows a
decline, likely due to drying of the soil surface
(Figure 10). While the morning EF is generally adequately
modeled, subsequent changes, due to surface drying or
increasing evaporative demand, cannot be captured by a
single morning snapshot of surface conditions. This can
lead to a deterioration in the model predictions as the day
progresses, as evident in Figure 9. Discrepancies are par-

Figure 8. Comparison of energy budget component measurements at four flux towers with
instantaneous flux estimates (�1030 CST) from the DisALEXI disaggregation algorithm. In this
experiment, a local measurement of air temperature at 9 m agl from the El Reno Mesonet station was used
as the upper boundary condition in DisALEXI.
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ticularly marked at sites ER09 and ER13, where the error in
the DisALEXI prediction of morning EF is in the direction
opposite to the observed afternoon trend. The flux station at
ER09 was located in an unrepresentatively wet part of the
field, and thus uncertainties in image registration and

footprint analysis, and subpixel heterogeneity are likely
contributing to the larger errors evident there. If high-
resolution thermal images were available at multiple times
during a given day, diurnal trends in EF could potentially be
modeled. The nominal times corresponding to Terra and

Figure 9. Hourly flux estimates, extrapolated from instantaneous values predicted by the DisALEXI
model at 1030 CST by assuming a constant evaporative fraction, compared with measurements made at
four flux towers on DOY 183.
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Aqua satellite overpasses are indicated in Figure 10. A
second MODIS image at �1330 LST could provide useful
EF time trend information, particularly for sites exhibiting
moisture stress, such as ER13.
[47] Modeled and measured daily integrated surface

fluxes for DOY 183 agree to within 1–1.5 MJ m�2 d�1

(5–8% of the net radiation flux), except at ER09 where
latent heating is underestimated by 3 MJ m�2 d�1 and H is
overestimated by 2.5 MJ m�2 d�1 (Figure 11). Results for
the other 2 days were similar (not shown).

5. Conclusions

[48] The DisALEXI flux disaggregation approach de-
scribed in this paper has been developed to combine low-
and high-resolution remote sensing data to estimate surface
fluxes on the 101–102 m scale without requiring any local
observations. The algorithm was tested with ground-based
eddy-covariance flux measurements collected in a rangeland
landscape near El Reno, Oklahoma. For all flux compo-
nents, the root-mean-square deviation (RMSD) between
model estimates and measurements was 40 W m�2, com-
parable with the observational accuracy typically associated
with micrometeorological flux measurement techniques.
Further validation over different landcover types is required

before the general utility of DisALEXI can be assessed.
This work is in progress. In principle, this technique has
many practical advantages that warrant further investiga-
tion:
[49] 1. DisALEXI uses only inputs that are readily

available and therefore may be useful for routine flux
monitoring applications where continuous, on-site data
collection is not possible.
[50] 2. The models used have been designed to be fairly

robust to expected errors in the calibration and correction of
the remote sensing data [Anderson et al., 1997].
[51] 3. Disaggregation may provide a means of validating

regional-scale flux models, like ALEXI, over heterogeneous
landscapes where direct comparison to ground-based mea-
surements may be invalid. The level of agreement between
the disaggregated fluxes and point surface observations
noted in this study, for example, gives us some confidence
that the 5-km aggregated flux estimates from ALEXI were
reasonable in this case.
[52] Studies are currently under way which may expand

the utility and robustness of DisALEXI disaggregation
products. For many high-resolution satellites, such as
ASTER, Landsat, and MODIS, the visible and near-infra-
red wavebands are sampled at 2–6 times higher spatial
resolution than the thermal band. A new technique has

Figure 10. Hourly observations of the evaporative fraction (EF) made at four flux towers in El Reno on
DOY 183. Also plotted are EFs predicted by the DisALEXI model at these sites at �1030 CST. The
strategy described in the text for extrapolating instantaneous flux estimates to daytime totals assumes EF
is constant through the day. The times of MODIS overpasses on the Terra and Aqua satellites are also
indicated. A second thermal image, acquired at 1330 CST, may assist in identifying diurnal trends in EF.
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been developed recently for sharpening thermal images to
visible/NIR resolutions, exploiting the relationship between
vegetation indices and surface radiometric temperature
[Kustas et al., 2003]. We are also exploring ways in which
a second, afternoon thermal image could be used in the
disaggregation procedure as a means for identifying diurnal
trends in the evaporative fraction. Work has commenced on
implementing an analytical canopy resistance submodel
[Anderson et al., 2000] within the two-source remote-
sensing framework. This will potentially improve model
estimates of canopy transpiration and enable mapping of
carbon assimilation fluxes at high spatial resolution. Final-
ly, simulations from a large-eddy simulation model with a
two-source land-surface representation are providing infor-
mation regarding the scale dependence of coupling be-
tween spatial variability in surface conditions and
temperature in the lower atmosphere [Albertson et al.,
2001]. Recent work conducted with the LES involved
artificially varying the contrast in a remotely sensed surface
temperature field and evaluating differences in the spatially
distributed fluxes from the two-source model flux estimates
using as uniform surface layer air temperature and wind
speed versus the fully coupled LES over the modeling
domain [Kustas and Albertson, 2003]. Such experiments
will be valuable in assessing the implications of assuming a

uniform air temperature at the blending height over a
heterogeneous surface.

Appendix A: The ALEXI Model

A1. The Two-Source Surface Model Component

[53] The two-source model (TSM) [Norman et al., 1995b]
is a variant of the two-layer surface representation first
suggested by Shuttleworth and Wallace [1985] as a means
to bridge the gap between surface temperature, a quantity that
can be remotely sensed, and aerodynamic temperature, a
hypothetical quantity that solves the bulk surface sensible
heat flux equation (see discussion by Norman et al. [1995b]).
[54] The TSM partitions the composite surface radiomet-

ric temperature (TRAD) of a scene into soil and canopy
contributions (Ts and Tc, respectively), based on the fraction
of vegetation cover apparent when the surface is viewed at
angle f from nadir ( f (f)). The set of equations in the TSM
defining energy fluxes of net radiation (Rn), sensible (H),
latent (LE) and soil heating (G) is as follows (see Figure 1):

Surface radiometric temperature
at view angle f

TRAD fð Þ 
 f fð ÞTc þ ½1� f fð Þ	Ts ðA1Þ

Figure 11. Comparison of DisALEXI predictions of daytime total surface fluxes with time-integrated
measurements made at four flux towers on DOY 183.
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Vegetation cover fraction viewed
at nadir and at angle f assuming
a spherical leaf angle distribution

fc ¼ 1� exp �0:5Fð Þ ðA2Þ

f fð Þ ¼ 1� exp
�0:5F

cosf

� �
ðA3Þ

Soil, canopy, and system
energy budgets

Rn ¼ H þ LE þ G ðA4Þ

Rn;s ¼ Hs þ LEs þ G ðA5Þ

Rn;c ¼ Hc þ LEc ðA6Þ

Net radiation

Rn ¼ Rn;s þ Rn;c ðA7Þ

Rn ¼ Ld � Luð Þ þ Sd � Suð Þ

¼ Ld � 1� tcð ÞLc � tcLs þ 1� Að ÞSd ðA8Þ

Rn;s ¼ Ld;s � Lu;s
� �

þ Sd;s � Su;s
� �

¼ tcLd þ 1� tcð ÞLc � Ls þ 1� rsð ÞSd;s ðA9Þ

Sensible heat

H ¼ Hs þ Hc ¼ rcp
Tac � Ta

Ra

ðA10Þ

Hs ¼ rcp
Ts � Tac

Rs

ðA11Þ

Hc ¼ rcp
Tc � Tac

Rx

ðA12Þ

Latent heat

LE ¼ LEs þ LEc ðA13Þ

LEc ¼ aPT fg
S

S þ g
Rnc ðA14Þ

Soil conduction heat

G ¼ 0:3Rn;s ðA15Þ

where T is temperature, R is a transport resistance, F is the
leaf area index, r is air density, cp is the heat capacity of air
at constant pressure, g is the psychometric constant, aPT is

an adjustable Priestley-Taylor [Priestley and Taylor, 1972]
coefficient (see below), fg is the fraction of green vegetation
in the scene, and S is the slope of the saturation vapor
pressure vs. temperature curve. The subscripts a, ac, and x
signify properties of the air above and within the canopy,
and within the leaf boundary layer, respectively, while s and
c refer to fluxes and states associated with the soil and
canopy components of the system. The soil heat conduction
flux is computed as a simple function of the net radiation at
the soil surface [Choudhury et al., 1987].
[55] The resistance formalism described here allows both

the soil and the vegetation to influence the microclimate
within the canopy air space, as shown in Figure 1. The
resistances considered include Ra, the aerodynamic resis-
tance between the canopy and the upper boundary of the
model (including diabatic corrections); Rx, the bulk
boundary layer resistance over all leaves in the canopy;
and Rs, the resistance through the boundary layer immedi-
ately above the soil surface. Mathematical expressions for
these resistance terms are given by Norman et al. [1995b].
In computing Ra, the surface aerodynamic roughness is
estimated from the height of the dominant vegetation in the
scene [Massman, 1997].
[56] In equations (A1)–(A15), Rn is the net radiation

above the canopy, Rn,c is the component absorbed by the
canopy, and Rn,s is the component penetrating to the soil
surface. Here the longwave components of Rn and Rn,s are a
function of the thermal radiation from the sky (Ld), the
canopy (Lc) and the soil (Ls), and the coefficient of diffuse
radiation transmission through the canopy (tc). The short-
wave components depend on insolation values above the
canopy (Sd) and above the soil surface (Sd,s), and the
reflectivity of the soil-canopy system (A) and the soil
surface itself (rs). Campbell and Norman [1998] provide
approximations for tc depending on leaf absorptivity and
leaf area index.
[57] The coefficient aPT governing the canopy transpira-

tion rate is adjusted if the potential transpiration rate in
equation (A14) overestimates the actual transpiration, e.g.,
during conditions of vegetative stress. When stress occurs,
Trad and thus H will be large. Initial passes through the
equation set will yield a negative soil evaporation rate
(which is computed as a residual) to compensate for the
unreasonably high transpiration rate estimate. Condensation
onto the soil near noontime is unlikely, so such cases are
trapped and further iterations progressively throttle aPT

back until the soil evaporation approaches zero (as expected
under dry conditions). See Kustas et al. [2003] for further
details.

A2. The Atmospheric Boundary Layer (ABL)
Model Component

[58] Reliable upper boundary conditions in air tempera-
ture for the two-source model are difficult to obtain with
adequate accuracy over regional scales. The ALEXI model
uses a simple atmospheric boundary layer (ABL) closure
technique to evaluate the morning evolution of air temper-
ature in the surface layer, given estimates of time-integrated
sensible heat influx provided by the TSM. This effectively
moves the model upper boundary conditions from just
above the canopy up to the height of the ABL, of the order
of a kilometer above the Earth’s surface (see Figure 1). At
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this height, atmospheric temperatures are less tightly cou-
pled to local surface conditions and thus can be specified
with greater accuracy over large regions with radiosonde
and satellite soundings.
[59] The primary forcing input to the ALEXI model is the

time change in radiometric surface temperature, derived
from two thermal satellite images acquired during the
morning hours. Time changes in surface temperature are
found to be well correlated with the partitioning between
sensible and latent heating fluxes; wetter surfaces warm
more slowly and expend more energy in evaporation.
Furthermore, the use of time-differential temperature meas-
urements rather than single measurements reduces errors due
to sensor calibration and assumptions concerning surface
emissivity.
[60] Using brightness temperature measurements ac-

quired at two times during the morning (t1 and t2), and
initial estimates of near-surface air temperature, the TSM
(equations (A1)–(A15)) yields instantaneous sensible heat
flux estimates H1 and H2. Assuming a linear functional form
for H(t), a time-integrated heat flux can be obtained:

Zt2
t1

H tð Þdt ¼ 1

2
½H2t2 � H1t1	: ðA16Þ

[61] The air temperature estimates are constrained by a
simple slab model describing planetary boundary layer dy-
namics.McNaughtonandSpriggs [1986] give a conservation
equation relating the rise in height (z) and potential
temperature (qm) of the mixed layer to the time-integrated
sensible heating from the surface:

Zt2
t1

H tð Þdt ¼ rcp z2qm2 � z1qm1ð Þ � rcp

Zz2
z1

qs zð Þdz ðA17Þ

where qs(z) is the early morning potential temperature profile.
[62] Near the land surface, the mixed layer potential

temperature and the air temperature are related by

qm ¼ Ta
100

p

� �R=cp

ðA18Þ

where p is the atmospheric pressure (in kPa) and R/cp =
0.286. The surface and boundary layer components of the
model iterate until the time-integrated sensible heat flux
estimates from both components converge. Anderson et al.
[1997] provide further details concerning the solution
sequence used in the ALEXI model.
[63] Primary remote sensing inputs to ALEXI include the

morning time-rate-of-change in surface radiometric temper-
ature (from GOES imager (5 km) or sounder (10 km)
observations, atmospherically corrected using the methods
of French et al. [2003]) downwelling solar and longwave
radiation (to compute net radiation), and fractional vegeta-
tion cover (to deconvolve the composite surface temperature
measurements into soil and canopy contributions). A
landcover classification map derived from multispectral
satellite data is used in conjunction with the cover-fraction
map to assign class-dependent surface properties, such as
surface roughness, albedo, and emissivity. Ancillary surface

and atmospheric data required include an estimate of the
wind speed field at 50 m and an early-morning analysis of
synoptic radiosounding profiles of temperature and vapor
pressure across the modeling domain. Mecikalski et al.
[1999] review in detail the input requirements for regional-
scale application of the ALEXI model.
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Figure 5. Maps at 24-m resolution of surface radiometric temperature (left) and disaggregated latent
heat flux estimates (right) over the El Reno study area for DOY 180, 182, and 183.
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