F1244 2002 Fall Meeting

4GeForschungZentrum Potsdam, Telegrafenberg 1, Potsdam 04009, Germany

5Institute for Earth Sciences, University of Freiburg, Germany

6Chinese Academy of Sciences, Institute of Geochemistry, Guizhou 510040, China

7Chinese University of Geosciences, Faculty of Earth Sciences, Wuhan 430074, China

The tectonic development of the Himalayan-Tibetan orogen has been an active area of research. The following peculiarities are observed: (1) All southern Tibetan thrusts have a retrograde slip history and someMicrornet-parallel elements observed in the claims of several thrusts, this is a onetime delay in the travel time curve for crustal phases (Pγ) at the location of the Kangding-Nujiang Fault. (2) Both northern and southern elements are visible in the earthquakes. (3) Neither Pn nor Pn′ can be observed in the shot records but some post-critical Pn′ P can be identified. The first observation can be explained by a very-low-velocity zone near the BSS with a steep-northerly dip and reaching to at least 15 km depth. The other two observations indicate the presence of a seismic group velocity decreases from 7.5 to 7.0 km/s at depths greater than a first-order en echelon at the Moho was also observed with respect to the surrounding areas. The NNE-SSW striking 2500 m high in central Tibet, significant extension by normal faulting has started at 13 m, but probably not before 20 My. The asymmetric basin has an estimated vertical offset of 4.7 km along the structurally dominant western boundary. The basin, suggesting a mean vertical offset rate between 0.2 and 0.5 mm/yr. in the NW transect, is observed. It was sampled to 50 samples consisting of millimeter-sized detritus, primarily carbonate and pebbles. Mill centimeter inradius ages for the two terrains are 11 and 214 km for deposition of the two terrains. This implies vertical displacement along this fault at an average rate of 0.3 mm/yr. in the last ca. 240 m. The vertical offset along the western graben margin may have occurred, either by slip-perpendicular to the Moho, but we consider it unlikely that these could account for the observed relative locations of the Quaternary and younger stratigraphic units. It thus seems that during the last Quaternary the graben margin has been isolated from the Tibetan plateau due to the plateau, but has now reached its maximum elevation. 5T1B-1148 0830h POSTER

Cretaceous to Tertiary Vertical-Tectonic Axes: Tectonics of Northeastern Tibet From Preliminary Paleomagnetic Results

Guillaume Dupont-Nivet1 (gdn@ge.aca.ri); Brian K. Horton1 (borton@ucla.edu); Robert F. Sloan2 (sloan@arkansas.edu); Frank K. Huang3 (fkh@ucla.edu); Huijuan Zhang4 (zhanghui@arizona.edu); Yujin Zhao5 (yujin.zhao@duke.edu); Wenhui Huang6 (whuang@duke.edu); Guanhai Wang7 (gwh@duke.edu); Jiangyu Zhao8 (jy2522@duke.edu); Gerald L. Waardenberg1 (geraldwaardenberg@nmsu.edu)

1University of California Los Angeles, Dept. of Earth and Planetary Science, Los Angeles, CA 90095-1567, United States
2University of Arizona, Dept. of Geosciences, Tucson, AZ 85721, United States
3Chinese Academy of Sciences, Institute of Geochemistry, Guizhou 510040, China

Kneoromantic restoration of deformation across the Tibetan plateau rely on age interpretations of regionally distributed Mesozoic and Cenozoic nonmarine strata. However, due to the short duration of the Mesozoic, it is difficult to correlated with them. The lack of diagnostic mammalian fauna. As part of a regional multidisciplinary project in northeastern Tibet (34–37°N, 101–105°E), we report new magnetostratigraphy and palynology for a set of stratigraphic successions ranging in age from Late Jurassic to mid-Eocene. New age data are combined with sedimentologic and palynologic analysis to reconstruct the post-depositional histories of the Xining-Lanzhou, Dangzhang, and Zhanggai basins. In the regionally extensive Xining-Lanzhou basin (=300 km2), long-term (100 Myr) deposition of a 1‰ thin, fine-grained succession is recorded by an assemblage of Late Jurassic to mid-Eocene terrestrial magnetostratigraphic and palynolological data. These records are attributed to volcanic deposition during the Cretaceous normal-polarity su

Cite abstracts as: Eos. Trans. AGU, 84(47), Fall Meet. Suppl., Abstract #####, 2002.
Carpathians (Vrancea); V Mocanu, A van der Hoeven, W Spakman, G Schmitt, B C Ambrosius

0830 h T51A-1130 POSTER Key Role of the Anaximander Mountains in the Neotectonic Evolution of the Eastern Mediterranean: J H ten Veen, T A Zitter, J M Woodside

0830 h T51A-1131 POSTER Thermal Regime and Rheological Properties of the Ossa-Morena Zone and South Portuguese Zone, Iberian Massif, Southern Portugal: C L Ellisworth

0830 h T51A-1132 POSTER An Integrated Study of the Holy Cross Mountains region of the Eastern European TESZ in Poland: M G Averill, T Bond, P Sroda, C R Keller, K Miller

0830 h T51A-1133 POSTER Wilson Cycles and Strong Orogenic Belts: The Influence of the Paleozone Ouachita Orogen on Mesozoic Opening of the Gulf of Mexico: D L Harry, A D Huerta

0830 h T51A-1135 POSTER Numerical modeling of creep in high-contrast Maxwell solids: R C Bailey

0830 h T51A-1136 POSTER Active Late Cenozoic Flexures in the Precordillera in Northern Chile: Correlations with the Shallow Seismic Activity, and Implications for the Uplift of the Altiplano: M Farias, R Charrier, D Comte, J Martinod, I. Pinto, G Herail

0830 h T51A-1137 POSTER Pressure-Temperature-Time Relationships of Allochthons to Basement, Western Gneiss Regio, Norway: E O Walsh, B R Hacker

0830 h T51A-1138 POSTER The Ultrasound-Pressure Rocks of Western Norway are Allochthonous: D Young, B Hacker, T Andersen

0830 h T51A-1139 POSTER Sensitivity Analysis of a Gravity Inversion Model in Frenchman Flat Basin, Nevada: G Phelps

0830 h T51A-1140 POSTER Rates and Causes of Lateral Migration of Basin-floor Submarine Fans and Role of Mass Transport Complexes, Mid Eocene, Spanish Pyrenees: K T Pickering, J Corregidor

T51B MCC: Hall C Friday 0830 h Tectonics and Structure of Tibet and China Posters

Presiding: A J Martin, University of Arizona; B K Horton, University of California, Los Angeles

0830 h T51B-1141 POSTER Uplifting or fatally altering the boundary conditions for channel flow of the Southern Tibetan middle crust: M Edwards, W Kidd

0830 h T51B-1142 POSTER Differentiating Between Models of MCT Evolution in the Annupurana Range, Central Nepal Himalaya: A J Martin, P G DeCelles, P Patchett, C Isacksen, G E Gehrels

0830 h T51B-1144 POSTER Structural Constraints on the Evolution of the Nyainqentanglha Massif, Southeastern Tibet: J Kapp, M Harrison, M Grove, P Kapp, L Ding, O Llovera

0830 h T51B-1145 POSTER Ophiolitic Melanges in the Yalong-Tsangpo “Big Bend” Canyon, SE Tibetan: Q Geng, L Zheng, G Pan, C Ou, Z Sun, H Dong, X Wang, Y Liu, S Li

0830 h T51B-1146 POSTER The Crustal Structure of Central Tibet Based on Local Earthquake Records and a Reinterpretation of Seismic Data Along the INDEPTH III Profile: R Meissner, F Tilman, S Haines, J Mechey

0830 h T51B-1147 POSTER Timing and Rates of Quaternary normal Faulting in Central Tibet: P M Blumik, W D Sharp

0830 h T51B-1148 POSTER Cretaceous to Tertiary Vertical-Axis Tectonic Rotations of Northwestern Tibet From Preliminary Paleomagnetic Results: G Dupont-Nivet, B K Horton, R F Butler, J Wang, J Zhou, H Zhang

0830 h T51B-1151 POSTER Early Tertiary Sedimentation and Crustal Deformation Recorded in the Gonje Basin, Eastern Tibet: C Studnicki-Gizbert, B Burchiel, Z Li

0830 h T51B-1152 POSTER GPS Monitoring of Crustal Deformation in Eastern Tibetan Plateau: Y Liu, Z Chen, W Tang, J Zhao, Q Zhang, X Zhang, B C Burchiel, R W King, L H Royden

0830 h T51B-1153 POSTER Active Deformation in Central Tibet: Constraints from InSAR and Geologic Observations: M Taylor, G Peltzer, A Yin, F J Ryerson, R Finkel, D Lin

0830 h T51B-1154 POSTER How Does the Kunlun Fault End?: E Kirby

0830 h T51B-1155 POSTER Tectonics in East Asia: Continuous or block-wise?: M Iwakuni, T Kato, S Miyazaki, W Sun

0830 h T51B-1156 POSTER Kinematics and structures of the ultra-high-pressure Sulu terrane, eastern China: L E Webb, M L Leech, T Yang, Z Xu

0830 h T51B-1157 POSTER Extensional collapse of a Mesozoic intraplate fold-and-thrust belt, Daqin Shan, Inner Mongolia, China: B J Darby, G A Davis, Y Zheng

0830 h T51B-1158 POSTER Tertiary Shortening along the Eastern Portion of the North Qaidam Thrust System: A C Robinson, A Yin, C A Menold, X Chen, W X Feng

0830 h T51B-1159 POSTER Tectonic Evolution of the North Qaidam UHP Complex, Western China: C A Menold, C E Manning, Y An, R C Alex, X Chen

0830 h T51B-1160 POSTER The ICDP Information Network and the Chinese Continental Scientific Drilling CCSD: R Conze, D Su

0830 h T51B-1162 POSTER The 1971 Artyk Earthquake: Is the Locus of Motion Changing in Northeast Russia?: K Fujita, M G Mclean, K G Mackey, B M Kozmin

T51C MCC: Hall C Friday 0830 h Neotectonics Posters

Presiding: D D Bowman, California State University, Fullerton; C P Huelbacher, Institute of Geophysics University of Hamburg

0830 h T51C-1163 POSTER Evidence for Quaternary Faulting Along the Apricena Tectonic Lineament (Gargano Area, Italy): F Cinti, F Doumar, J J Young, M Moro, S Salvi, L Colini, S Pierdominici

0830 h T51C-1164 POSTER Raised Marine Terraces in the Sibari Plain (Calabria, Southern Italy): the Geological Record of Fast Regional Uplift and Local Fault Deformation: L Cucci
This CD-ROM contains the program and abstracts of the 2002 Fall Meeting. The information is stored in both HTML and PDF formats as browsable tables and a searchable database. The CD-ROM is designed to run on Windows and Macintosh platforms.

Software Requirements

A version 4.* or later WWW browser (Netscape Navigator or MS Internet Explorer) with Java support is required to browse and search the abstracts. It is recommended to use the latest available browser release. To view, print or search the PDF files, the Adobe Acrobat Reader is required. To download, go to: http://www.adobe.com/products/acrobat/readstep2.html

Installation Instructions

WINDOWS 9*/ME/NT/2000/XP

The default page index.htm will be loaded automatically in the browser when the CD is inserted into the CD-ROM drive. No special installation of files on to the hard disk is required.

MACINTOSH

If your File Sharing Control Panel is configured to run the correct helper applications, the default page index.htm will be loaded automatically in the browser when the CD is inserted into the CD-ROM drive. Otherwise, do the following:

1. Select "Run" to run MakeStart script when prompted after inserting CD.
2. Choose Stuffit Expander to open Go.lnx (this starts Java console which will say "Waiting for client's request!!!")
3. Click the CD icon on the desktop and open index.htm in the browser.

Note for Macintosh OS X users: Refer to the README.txt file on the CD-ROM.

PDF-Search

As an alternative, a searchable index of the collection of session PDF files is included. See README.txt on the CD-ROM for more details.

Abstracts should be cited as

Eos Trans. AGU, 83 (47), Fall Meet. Suppl., Abstract XXXXX-XX, 2002
©2002 American Geophysical Union