Phase Transformations and Mineral Properties at Very High Pressures (V1C)

Room 104 Mon AM
Presidents, R. Jeanloz
Univ of California B
R. M. Hazen
Carnegie Inst of Washington

Crystal structures of anodized to 190 kbar. An optimal
variation diffusion experiment

R. M. HASEN and L. W. FINGER (Oak Geophysical Laboratory, 2001

The crystal structure of the parent anodizing, Cu2O-PbO-Sb2O3 has been
determined at several pressures to 190 kbar. In this paper, pressure
dependence of the crystal structure is presented. The crystal structure
of the anodizing is reported to be a monoclinic, space group C2/c,
with four formula units per cell.

Crystallographers and chemists have long been interested in the
behavior of materials at high pressures. The study of high-pressure
phenomena provides insights into the fundamental nature of matter
and the forces that govern its behavior. The crystal structure of the
parent anodizing, Cu2O-PbO-Sb2O3, has been determined at several
pressures to 190 kbar. In this paper, the pressure dependence of the
Crystal structure and chemical composition of the anodizing
are reported for pressures up to 190 kbar.

Crystallographers and chemists have long been interested in the
behavior of materials at high pressures. The study of high-pressure
phenomena provides insights into the fundamental nature of matter
and the forces that govern its behavior. The crystal structure of the
parent anodizing, Cu2O-PbO-Sb2O3, has been determined at several
pressures to 190 kbar. In this paper, the pressure dependence of the
Crystal structure and chemical composition of the anodizing
are reported for pressures up to 190 kbar.

Crystallographers and chemists have long been interested in the
behavior of materials at high pressures. The study of high-pressure
phenomena provides insights into the fundamental nature of matter
and the forces that govern its behavior. The crystal structure of the
parent anodizing, Cu2O-PbO-Sb2O3, has been determined at several
pressures to 190 kbar. In this paper, the pressure dependence of the
Crystal structure and chemical composition of the anodizing
are reported for pressures up to 190 kbar.

Crystallographers and chemists have long been interested in the
behavior of materials at high pressures. The study of high-pressure
phenomena provides insights into the fundamental nature of matter
and the forces that govern its behavior. The crystal structure of the
parent anodizing, Cu2O-PbO-Sb2O3, has been determined at several
pressures to 190 kbar. In this paper, the pressure dependence of the
Crystal structure and chemical composition of the anodizing
are reported for pressures up to 190 kbar.

Crystallographers and chemists have long been interested in the
behavior of materials at high pressures. The study of high-pressure
phenomena provides insights into the fundamental nature of matter
and the forces that govern its behavior. The crystal structure of the
parent anodizing, Cu2O-PbO-Sb2O3, has been determined at several
pressures to 190 kbar. In this paper, the pressure dependence of the
Crystal structure and chemical composition of the anodizing
are reported for pressures up to 190 kbar.

Crystallographers and chemists have long been interested in the
behavior of materials at high pressures. The study of high-pressure
phenomena provides insights into the fundamental nature of matter
and the forces that govern its behavior. The crystal structure of the
parent anodizing, Cu2O-PbO-Sb2O3, has been determined at several
pressures to 190 kbar. In this paper, the pressure dependence of the
Crystal structure and chemical composition of the anodizing
are reported for pressures up to 190 kbar.

Crystallographers and chemists have long been interested in the
behavior of materials at high pressures. The study of high-pressure
phenomena provides insights into the fundamental nature of matter
and the forces that govern its behavior. The crystal structure of the
parent anodizing, Cu2O-PbO-Sb2O3, has been determined at several
pressures to 190 kbar. In this paper, the pressure dependence of the
Crystal structure and chemical composition of the anodizing
are reported for pressures up to 190 kbar.

Crystallographers and chemists have long been interested in the
behavior of materials at high pressures. The study of high-pressure
phenomena provides insights into the fundamental nature of matter
and the forces that govern its behavior. The crystal structure of the
parent anodizing, Cu2O-PbO-Sb2O3, has been determined at several
pressures to 190 kbar. In this paper, the pressure dependence of the
Crystal structure and chemical composition of the anodizing
are reported for pressures up to 190 kbar.

Crystallographers and chemists have long been interested in the
behavior of materials at high pressures. The study of high-pressure
phenomena provides insights into the fundamental nature of matter
and the forces that govern its behavior. The crystal structure of the
parent anodizing, Cu2O-PbO-Sb2O3, has been determined at several
pressures to 190 kbar. In this paper, the pressure dependence of the
Crystal structure and chemical composition of the anodizing
are reported for pressures up to 190 kbar.

Crystallographers and chemists have long been interested in the
behavior of materials at high pressures. The study of high-pressure
phenomena provides insights into the fundamental nature of matter
and the forces that govern its behavior. The crystal structure of the
parent anodizing, Cu2O-PbO-Sb2O3, has been determined at several
pressures to 190 kbar. In this paper, the pressure dependence of the
Crystal structure and chemical composition of the anodizing
are reported for pressures up to 190 kbar.

Crystallographers and chemists have long been interested in the
behavior of materials at high pressures. The study of high-pressure
phenomena provides insights into the fundamental nature of matter
and the forces that govern its behavior. The crystal structure of the
parent anodizing, Cu2O-PbO-Sb2O3, has been determined at several
pressures to 190 kbar. In this paper, the pressure dependence of the
Crystal structure and chemical composition of the anodizing
are reported for pressures up to 190 kbar.

Crystallographers and chemists have long been interested in the
behavior of materials at high pressures. The study of high-pressure
phenomena provides insights into the fundamental nature of matter
and the forces that govern its behavior. The crystal structure of the
parent anodizing, Cu2O-PbO-Sb2O3, has been determined at several
pressures to 190 kbar. In this paper, the pressure dependence of the
Crystal structure and chemical composition of the anodizing
are reported for pressures up to 190 kbar.