SESSION 120, Tectonics IV: Himalayan Tectonics

occurred in response to uplift of the Attock-Cherat Range and locallized structures cored by high-angle, oblique-slip reverse faults from ~ 3.0 to 0.5 Ma . In the Salt Range and Trans-Indus Ranges, synorogenic deposits dated at ~ 4.5 Ma record normal faulting that later controlled the position of thrust ramps. In the eastern Potwar Plateau, folding and faulting associated with motion on the Salt Range detachment began at ~ 2.5 and controlled fluvial deposition. Uplift of the Trans-Indus Ranges related to thrust faulting at $\sim 1.0 \mathrm{M}$ deflected the south-flowing paleo-Indus River around the ranges and created local sources for sediment. In southwestern Pakistan, the Sulaiman Range began serving as a local sediment source at $\sim 2.0 \mathrm{Ma}$ and its uplift created angular unconformities within synorogenic deposits. The Sibi Re-entrant contains Plio-Pleistocene fluvial deposits that reflect uplift of locallized structures within the basin. Early Pliocene sedimentary rocks in he Katawaz Basin were deposited by the paleo-Indus delta which was located in the ranspressional suture between Afghanistan, Iran and Pakistan. In the Makran, late Pliocene and Pleistocene deltaic sedimentary rocks record the uplift of locallized structures above a north-dipping subduction zone.

1:45 PM Blisniuk, Peter M.

GEOLOGY OF THE TRANS-INDUS RANGES, NORTHERN PAKISTAN: IMPLICATIONS FOR THE TECTONIC EVOLUTION OF THE NW-HIMALAYAN FRONTAL THRUST SYSTEM.

BLISNIUK, Peter M., Dept. of Earth Sciences, 6105 Fairchild, Dartmouth College, Hanover, NH 03755-3571; YOUSUF, Muhammad, Oil and Gas Development Corporation, W-101 Blue Area, Islamabad, Pakistan.
The Trans-Indus Ranges form the western part of the NW-Himalayan frontal thrust system, which comprises several structural re-entrants and promontories with wavelengths between 50 and 150 km . This thrust front geometry seems to be largely controlled by north-dipping flexures and normal faults that offset the basement and form a system of frontal and lateral structural ramps.

Synorogenic deposits exposed in the Trans-Indus Ranges contain evidence for two main phases of tectonic activity, which have been dated magnetostratigraphically. Source-proximal alluvial fan conglomerates in about 4 Ma old deposits are interpreted as evidence for Early Pliocene extension along the ramp-forming flexures and normal faults. This extension may have been related to the formation of a peripheral bulge south of the NW-Himalayan foreland basin. A second interval of deposition of source-proximal alluvial fan conglomerates, starting at about 1 Ma , is interpreted to document the onset of convergence along the Trans-Indus Ranges.

The Pleistocene to Recent deformation along the Trans-Indus Ranges is characterized by abrupt variations in tectonic style; it is mainly compressive along the central parts of re-entrants and promontories, and transpressive along their lateral flanks. Balanced cross-sections, based on integration of stratigraphic and structural mapping with seismic reflection data and data from oil exploration wells, show that the amount of convergence along the Trans-Indus Ranges is on the order of 10 km .

In conjunction with earlier work in areas further east, the results of our study show that the age and amount of convergence along the NW-Himalayan frontal thrust system generally decrease from east to west.

2:00 PM Ratschbacher, Lothar

BALANCING THE HIMALAYA-BENGAL FAN DENUDATION-ACCUMULATION SYSTEM DURING THE PAST 20 MA

RATSCHBACHER, Lothar, Geophysics Department, Stanford University, Stanford, CA 94305 EINSELE, Gerhard, Geologisches Institut, Universitat, D-72076 Tubingen, Germany; WETZEL, Andreas, Geologisch-Palaotologisches Institut, Universitat, Basel, Schweiz
The mass balances for both denudation in the Himalayas and sediment accumulation in the Subhimalaya basins, including the Bengal deep-sea fan but excluding the Indus fan, were determined independently from each other for the past 20 Ma . The result is $7.1 \times 10^{6} \mathrm{~km}^{3}$ (denudation) $\mathrm{vs} .7 .4 \times 10^{6} \mathrm{~km}^{3}$ (accumulation); the error range is $\pm 20 \%$. The sediment volume includes $21 \times 10^{6} \mathrm{~km}^{3}$ of Neogene Bengal fan sediment which was lost via the Nicobar fan to the Sunda accretionary wedge. In addition, the Indian peninsular ivers contributed about c. $0.6 \times 10^{6} \mathrm{~km}^{3}$ of solid load to the basins.
Average denudation during the past 20 Ma , as derived from geothermobarometric data and restored cross sections, occurred most rapidly along the High Himalayan crystalline chain: there vertical unroofing reach $1000 \mathrm{~m} / \mathrm{Ma}$. The northward lateral retreat of southern Himalayan slope, which is exposed to monsoonal rain, is $\geq 3.5 \mathrm{~km} /$ Ma. Denudation is much slower in the Tethyan sedimentary zone to the north (average $150 \mathrm{~m} / \mathrm{Ma}$). Pre-20 Ma sediments in the Subhimalayan basins were derived mainly from the southern margin of the Tibet plateau or from sources outside of our study area.

Figure 1: Overburden estimates based on geobarometric data for the High Himalayan crystalline basement between the Nanga Parbat and Darjeeling (along E-W line) and subdivision in overburden denudated since $\sim 55 \mathrm{Ma}$ and $\sim 20 \mathrm{Ma}$ using published PTt-data.

2:15 PM Norlund, Philip A.

${ }^{40} \mathrm{Ar}^{39}$ Ar AND MAGNETOSTRATIGRAPHIC ANALYSIS OF HIMALAYAN FORELAND STRATA THE SIWALIK GROUP, DHANSAR KHOLA, SOUTHERN NEPAL: CONSTRAINING UPLIFT WITHIN THE HIMALAYA.

NORLUND, Philip A., COPELAND, Peter, HALL, Stuart A., EVANS, Ian, CLAYPOOL, Peter; Dept. of Geosciences, University of Houston, Houston, Texas 77204-5503. OJHA, T. P.; Dept. of Geosciences, University of Arizona, Tucson, AZ 85721
The Siwalik Group of the Hımalayan foreland basin is a classic molasse deposit whose deposition is directly related to the uplift of the Himalaya. Subdivisions of the Siwalik Group (the Lower Siwaliks (LS) and Lower Middle Siwaliks (MS1)) show a distinct change in depositional environment from distal floodplain conditions to those dominated by a major braided river system. This facies change is quite abrupt and is linked to the initiation of the Main Boundary Thrust (MBT) to the north. This change is seen clearly in a 2300 -meter section measured at Dhansar Khola in southern Nepal.

Magnetostratigraphic analysis of the Dhansar section shows that it was deposited from ~ 10.5 Ma to \sim 6 Ma , and that the LS/MS1 facies change occurred at $\sim 8.5 \mathrm{Ma}$. Analyses also show an increase in deposition/subsidence rate across this boundary, consistent with uplift to the north. Comparing the Dhansar section to one at Bakiya (less than 10 kilometers to the west) shows that the twe magnetostratigraphic columns correlate very closely, and that the LS/MS 1 boundary at Bakiya is also 8.5 Ma . Two other previously published works also show a similar age for this boundary at locations over 100 kilometers to the west. This suggests that the LS/MS 1 boundary may be utilized as a chronostratigraphic horizon for the Nepalese Siwaliks, and that 8.5 Ma may mark the beginning of significant motion along the MBT.
${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ analyses were also performed on K -feldspar grains separated from coarse-grained sandstones collected at Dhansar. Over two hundred grains were analyzed from a horizon just above the LS/MSI boundary, and for each grain a minimum cooling age was obtained. These cooling ages represent the last time the grain was at a temperature of $\sim 200^{\circ} \mathrm{C}$, which represents a depth of at least 4 kilometers. The bulk of grains (70%) have ages $<50 \mathrm{Ma}$ showing tectonic activity to be dominant during this time. A number of grains (5%) have cooling ages the same as their depositional ages. These grains must have travelled from >4 kilometers depth to the surface, have been eroded, and then transported to the foreland basin, all within a relatively short period of time ($\ll 1 \mathrm{~m} . \mathrm{y}$.). This requires very rapid rates of uplift.

Probability diagrams produced from all the cooling ages combined display peaks which are also likely to represent times of significant uplift within the source area. A peak at ~ 23 Ma may represent a record of movement along the Main Central Thrust (MCT), another major intracratonic thrust fault north of the MBT.

2:30 PM Alsdorf, D.

CRUSTAL DEFORMATION OF THE LHASA BLOCK, TIBET PLATEAU, FROM INDEPTH SEISMIC REFLECTION PROFILING

ALSDORF, D., BROWN, L., CLARK, M., ROSS, A., Institute for the Study of the Continents, Cornell University, Ithaca, NY 14853 ; NELSON, D., COGAN, M., Dept. of Earth Sciences, Syracuse University, Syracuse, NY 13244; MAKOVSKY, Y., KLEMPERER, S., Dept. of Geophysics, Stanford University, Palo Alto, CA 94305 ; ZHAO W., CHE J., Ministry of Geology and Mineral Resources, Beijing 100037 P.R. China.
INDEPTH seismic profiles north of the Indus-Tsangpo suture delineate superimposed compressional, extensional, and strike-slip structures on the leading edge of the Asian component of the Himalaya-Tibet collision zone. North-dipping reflectors at mid-crustal depths beneath the north flank of the Gangdese Batholith - the "Andean" pre-collisional margin - are interpreted to be a ramp in a crustal-scale thrust system that includes the proposed Gangdese thrust of Yin et al. (1994). Structural relief represented by this ramp ($7-14 \mathrm{~km}$) is consistent with batholith exhumation depths inferred from geochemical studies by Copeland et al. (1995) and Harrison et al. (1992). Intermittent reflectors at $34-39 \mathrm{~km}$ depth beneath the Yangbajain graben may mark a basal decollement for this thrust extending well into the Lhasa continental block. Disrupted reflectors at about 15 km depth suggest internal shortening by both thrust and strike-slip motion in the hanging wall of the proposed thrust system up to 90 km N . of the Indus-Tsangpo suture. Some of these faults have also accommodated Quaternary extension associated with the Yangbajain graben. However, thin graben fill and basement reflectors at shallow crustal depths that tie to the Nyainchentangula Shear Zone exposed along the west flank of the rift suggest that low angle detachments are key components of extension. Although difficult terrain resulted in a gap in CMP reflection coverage within the Gangdese belt proper, wide-angle reflections from within the gap indicate a subhorizontal reflector at ca 15 km depth that appears to merge with the thrust ramp to the north. Arguably this reflection ties with one at simila depth on an INDEPTH profile south of the Tsangpo river; one interpretation is that it represents a thrust fault which decapitates the Indus-Tsangpo suture. Alternatively, the southern-most reflections may be related to post-collisional magma emplacment such as that inferred from 'bright spots' at similar depth beneath the Yangbajian-Domxung graben.

2:45 PM Wu, Changde

YADONG CROSS STRUCTURE AND SOUTH TIBETAN DETACHMENT, SOUTHERN YADONGGULU RIFT, TIBET

WU Changde ; NELSON, K. D.
Dept. of Earth Sciences, Syracuse University, Syracuse, NY 13244 YUE Yongjun , LI Jixiang
Chinese Academy of Geological Sciences, Beijing 100037, P.R China Kidd, W.S.F. ; Edwards, M.
Department of Geological Sciences, SUNY Albany, Albany, NY 12222
The Yadong-Gulu rift is the largest of a series of N -S trending graben systems that extend across the High Himalaya and Southern Tibetan plateau. During the summer of 1994 project INDEPTH personnel undertook reconnaissance geologic mapping of the southern Yadong-Gulu rift between $\sim 27^{\circ} 0^{\prime}$ and $28^{\circ} 30^{\prime} \mathrm{N}$ latitude. The area is of interest along the -2500 km . with the largest plan-view offset of topography along the $\sim 2500 \mathrm{~km}$-long Himalayan arc, and, according to existing
geologic maps, a coincident, apparent, left-slip offset of the outhern Tethyan belt and South Tibetan Detachment System (STDS). The new observations, which include the field identification of the intersection of the STDS with the western side of the rift, suggest hat the Yadong Cross Structure is the surface manifestation of a lateral ramp in the Main Central Thrust, which has produced a ifferential, E-W, vertical displacement of the High Himalayan crystalline thrust sheet of about $10 \mathrm{~km}--$ shallower to the E. The exposed, high-angle, Chomolhari normal fault system, which bounds the side of the southern Yadong-Gulu rift, appears to be a late normal fault superimposed on the N-trending monoclinal flexure of the High Himalayan crystalline thrust sheet produced by the lateral ramp. Recent seismicity suggests that the High Himalayan crystalline thrust sheet is still moving southward along the ramp, and regional geologic relations suggest that the formation of the ramp may be related to a major lateral change in the structure of the underthrust Indian plate.

3:00 PM Murphy, Mike A.

STRATIGRAPHIC AND STRUCTURAL DEVELOPMENT OF THE MESOZOIC (?) GUGU LA THRUST SYSTEM, SOUTH-CENTRAL TIBET
MURPHY Mike A YIN, A HARRISON, T.M, Dept. of Earth and Space Sci., UCLA, Los Angeles, CA 90024; DURR, S.B., Mineralogisches Institut, Am Hubland, 97074 Wurzburg, Angermany; CHEN, Z.L, Institute of Geomechanics, Beijing, P.R. China
Geological mapping, conducted at a scale of $1: 100,000$ in the northern Choqin area, reveals a previously unrecognized Mesozoic (?) thrust system, the Gugu La system. The hangingwall of the thrust consists of ive major stratigraphic units of Cretaceous ages, which are based on fossis boch collected in the field and documented in Chinese literature. From older to younger, they are (1) andesitic and rhyolitic flows interbedded with sandstone and conglomerate ($\sim 250 \mathrm{~m}$ thick); (2) limestone interbedded locally with volcanic breccias and sandstone, the latter locally contain clastic dikes ($\sim 50 \mathrm{~m}$ thick); (3) green and red tuff and dark green and gray pyroclastic breccia ($>500 \mathrm{~m}$ thick); (4) red fluvial sandstone with a south-derived source ($>500 \mathrm{~m}$ thick); and (5) gray sandstone and conglomerate which is rich in volcanic clasts ($>200 \mathrm{~m}$) and is interpreted to be derived from the north. In the footwall, a 2.5 km thick red conglomerate interbedded with sandstone is present, which is generally N-dipping. However, it is folded near the Gugu La thrust. The clasts of the conglomerate and sandstone can be correlated with the rocks from the hanging wall of the Gugu La thrust. The Gugu La thrust is S-directed, dipping $10-20^{\circ} \mathrm{N}$. Striations measured directly from the Gugu La fault zone indicate its mean transport direction as $\$ 10^{\circ} \mathrm{E}$. The thrust juxtaposes different ungingwail units along strike for a distance of 100 km as we mapped. In the eastern mapped area, it puts hangingwail units along strike for a distance of 100 km as we mapped. In the castern mapped area unit (4) over the footwall conglomerate. In the western area, the thrust juxtaposes puit (3) in the hangingwall. In its central part, the thrust has the largest stratigraphic throw and puts unit (1) over the
footwall conglomerate. The hangingwall structures are typically fault-bend/-propagation folds, and pop-up footwall conglomerate. The hangingwall structures are typically fault-bend-propagation folds, and pop-up structures at lower stratigraphic levels, and broad folds at higher stratigraphic levelle. Change in dean as syn-
styles at different stratigraphic levels is due to formation of bedding-parallel decollements as well as styles at different stratigraphic levels is due to formation of bedding-parallel decollements as well as synfolding sedimentation such as unit (5) in the hangingwall. Balanced cross sections across the area minimum displacement of 8.5 km along the Guga La thrust. The folded Cretaceous strata in the
hangingwall are intruded by both N-S trending dikes and granodiorite. The contractile structures and the hangingwall are intruded by both N -S trending dikes and granodiorite. The contractile structures and the intrusives are, in turn, unconformably overlain by a sequence of flat-lying tuff. Because the tuff has a
similar lithology to the early Tertiary Linzizhong volcanics in the Lhasa region, as well their similar similar lithology to the early Tertiary Linzizhong volcanics in the Lhasa region, as well their similar stratigraphic and structural relations, we interpret that the N-S contractional deformation in the Gugu La thrust system occurred prior to the Indo-Asian collision. All of the structures and lithologic units in the Gugu La thrust system are cut by N-S trending normal fauth with offsets between tens and hundreds of mapped area.

3:15 PM Ryerson, F. J.

THE GANGDESE AND RENBU-ZEDONG THRUST SYSTEMS: WESTWARD EXTENSION TO MT. KAILAS

RYERSON FJ IGPP Lawrence Livermore National Laboratory, Livermore, CA 94550, YIN A., HARRISON, T.M. and MURPHY, M.A., Dept. of Earth and Space Sci. and IGPP, UCLA, Los Angeles, CA 90024
The feature referred to as Indus-Tsangpo suture is marked by the N -dipping Gangdese (GT) and S-dipping Renbu-Zedong thrust (RZT) systems. Existence of the GT was first hypothesized based on rapid early Miocene cooling in the southeastern Lhasa block and the absence of Xigaze foreare sediments east of Renbu. The trace of the GT is commonly obscured by the younger RZT system, which thrusts Tethyan metasediments over Tertiary conglomerates, a collisional melange, and the Gangdese batholith. From Renbu to $-83^{\circ} \mathrm{E}$, the GT thrusts Xigaze forearc sediments over Tethyan metasediments. West of $-83^{\circ} \mathrm{E}$ near Mt . Kailas, the characteristics that initially identified the GT are once again in evidence. The Xigaze forearc sediments are absent, and thermochronologic analysis of a Gangdese granite cobble from the Kailas Conglomerate, which ties unconformably atop the Gangdese batholith, suggests rapid early Miocene cooling. Our mapping in the Mt. Kailas region confirms the existence of the RZT, which comprises a number of south-dipping thrust imbricates in a $7-10-\mathrm{km}$ wide zone. Thrusts in its southern part juxtapose a ophiolitic complex over Cretaceous limestone, shale, and sandstone, and are tightly folded with a northward vergence. The thrusts in its northern part are planar and put the Cretaceous sedimentary rocks over the Kailas Conglomerate, suggesting a foreword development in the Mt. Kailas region. The Kailas Conglomerate is a $>1.5-\mathrm{km}$ thick sequence of clastic sediments. Its lower part ($200-400 \mathrm{~m}$) consists mainly of granite and volcanic clasts derived from the Gangdese batholith. Its middle part ($1-\mathrm{km}$ thick) consists of coarse-grained sandstone with clasts derived from both the Gangdese batholith and the Tethyan sequence. Specifically, cobbles of the Gangdese plutonics dominate the basal section, replaced by cobbles of metasediments, cherts, and ophiolite higher in the section. The structurally uppermost part of the Kailas metasediments, chers, and is in a thrust contact over the middle part. It consists of large boulders and cobbles sequence ($>200 \mathrm{~m}$ thick) is in a thrust contact over the midele part. It
derived from the adjacent Tethyan and Cretaceous sequences from south. The above observations suggest derived from the adjacent Tethyan and Cretaceous sequences from south. The above observations sugges
that the Kailas basin was initially fed by sediments derived from the Gangdese batholith. Subsequent that the Kailas basin was initially fed by sediments derived from the Gangdese batholith. Subsequen
deposition of Tethyan cobbles was derived by loading of the basin and denudation of Tethyan rocks during deposition of Tethyan cobbles was derived by loading of the basin and denudation of Tethyan rocks during
development of the RZT. Although the GT is not exposed, the rapid denudation of the Gangdese batholith development of the RZT. Although the GT is not exposed, the rapid denudation of the Gangdese batholith
at Mt. Kailas in the early Miocene and the absence of Tertiary normal or thrust fault north of Mt. Kailas at Mt. Kailas in the early Miocene and the absence of Tertiary normal or thrust faults north of Mt. Kailas suggest that the Gangdese batholith was denudated by thrusting-related erosion. We attribute this event to the development of the GT, now buried below the RZT. This study suggests that the GT and
were continuous between Bayi in the cast and Kailas in the west over a distance of $1,200 \mathrm{~km}$.

3:30 PM Yin, An

SIGNIFICANT CRUSTAL SHORTENING IN THE LHASA BLOCK (SOUTHERN TIBET) PREDATES THE INDO-ASIAN COLLISION

YIN, An, MURPHY, M.A., HARRISON, T.M., Dept. Earth \& Space Sci., UCLA, Los Angeles CA 90024; DURR, S.B., Mineral. Inst., 97074 Wurzburg, Germany; CHEN, Z., WANG, X., ZHOU, X., Inst. of Geomechanics, Beijing, P.R.C., RYERSON, F.J., IGPP, LLNL, Livermore, CA 94550; KIDD, W.S.F., Dept. of Geol. Sci., SUNY, Albany, NY 12222 Geological mapping at a scale of $1: 100,000$ was conducted in the Choqin region, south-central Tibet. A $150-\mathrm{km}$ long N-S transect reveals three E-W trending thrust systems (Gaize, Gugu La, and Shibalou). The northernmost Gaize thrust is S-directed and puts the Jurassic sedimentary and volcanic rocks over the lo Cretaceous limestone and early Tertiary(?) conglomerate. Deformation along this thrust disrupted the original suture between the Lhasa and Qiangtang blocks. The Gugu La thrust, south of the Gaize thrust, is
S-directed. It juxtaposes a $>2.50 \mathrm{~km}$ sequence of Cretaceous(?) volcanics, limestone, and fluvial sediments in S-directed. It juxtaposes a $>2.5-\mathrm{km}$ sequence of Cretaceous(?) volcanics, limestone, and fluvial sediments its hangingwall over a $>2.5-\mathrm{km}$ thick sequence of conglomerates in its footwall. The folded hangingwall sequence is intruded by a granodiorite with a minimum age of 95 Ma . In the footwall of the Gugu La thrust is the Shibalou thrust system, the most intensely deformed system. Its northem part consists of both \mathbf{N} and S-directed thrusts which were crosscut by a granodiorite intruded at $115 \pm 5 \mathrm{Ma}$. The southern part consists exclusively of S-directed thrust imbricates, duplexes, and S-verging isoclinal folds which are crosscut by a granitoid with a minimum age of 135 Ma . This thrust system involves Cretaceous (?) volcanics and Paleozoic shallow-marine sediments. The deformed strata were unconformably overlain by a $>200-\mathrm{m}$ thick volcanic tuff locally interbedded with conglomerate and sandstone. The tuff is cut by minor N-S trending normal faults. The folded Paleozoic strata are crosscut by several granitoids. Because the folded fluvial sequence in the Gugu La hangingwall was derived from south, we interpret its deposition as the result of the development of the Shibalou thrust system south of the Gugu La thrust. This implies that the Gugu La thrust postdates the Shibalou thrust Because of the similar lithology and slructural positions, we lugu La the flat-lying Chogin tuff in the mapped area with the Paleocene Linzizhong Fm. Reconnaissance investigations north of Mt Kailas indicates a similar relationship, i.e., Cretaceous strata are highly folded nvereas the early Tertiary. vacanics are flat-lying In eastern Tibet the same relationship has been long whereas the early Teriary volcanics are flar-lying. In eastatively litte deformation observed on the Tibetan known in the Machu area. It has long been noted that relatively be confidently be ascribed as Tertiary. We can now rule out significant Tertiary deformation in a Plateau can be confidently be ascribed as Tertiary. We can now rule out significant Tertary defoic N-S N-S transect across the Lhasa block from the Gangdese thrust to the Banggong suture. Mesozoic N-S
shortening in southern Tibet and the absence of upper-crustal shortening during the Indo-Asian collision shortening in southern Tibet and the absence of upper-crustal shortening during the Indo-Asian collision
suggest that the uplift history of the Tibetan plateau had begun by the Mesozoic. Tertiary thickening and suggest that the uplift history of the Tibetan plateau had begun by the Mesozoic. Tertiary thickening and uplift could have been accomplished by underthrusting, delamination, or injection of Ind
appears unlikely to have occurred by uniform shortening of the entire Asian lithosphere.

3:45 PM Nelson, K. D.

INDEPTH II (1994) DEEP CRUSTAL PROFILING IN SOUTHERN TBET
NELSON, K.D., WU, C., COGAN, M., Dept. of Earth Sci., Syracuse Univ., Syracuse, NY, 13244; BROWN, L., HAUCK, M., ALSDORF, C., CLARK, M., Dept. of Geol. Sci., Comell Univ., Ithaca, NY 14853; KLEMPERER, S., MAKOVSKY, Y., Dept. of Geophys., Stanford Univ., Stanford, CA; NI, J., SANDVOL, E., Dept. of Phys., New Mexico State Univ., Las Cruses, NM 88003, NABALEK, J., Col. of Ocean., Oregon State Univ., Corvalis, OR 88003; KIDD, W., EDWARDS, M., Dept. of Geol. Sci., SUNY at Albany, Albany, NY 12222; ZHAO, W., LI, J., YUE, Y.. Chinese Aca. Geol. Sci., Beijing, China
In 1994 Project INDEPTH (International Deep Profiling of Tibet and the Himalaya) collected 200 km of new CMP reflection, wide-angle reflection/refraction, teleseismic and surface geological data in southern Tibet. These data, together with the -100 kms acquired during INDEPTH I, constitute a discontinuous deep seismic traverse extending along the Yadong-Gulu rift from the crest of the Himalaya to the north end of the Damxung graben. Some key results are as follows: 1) The decollement along which India is underthrusting southern Tibet is traceable as a distinct, gently N -dipping, reflection band to a point approximately 220 km north of the Himalayan thrust front and to a depth of approximately 45 km (approximately the center of the Tethyan belt), 2) The Kangmar Dome appears to be a duplex ramp anticline formed above a crustal ramp in the basal decollement. 3) The South Tibetan and Kangmar detachments appear to be the same structure. 4) A throughgoing gently N -dipping structure in the upper crust extends beneath the Tsangpo suture, apparently cutting off, or forming a floor to, the subvertical crust enre of the suture zone observed at the surface. 4) Discontinuous, anomalously high-amplitude, surctions are observed beneath the Yangbaiaindamxung grabens. These high-amplitude reflections are reflections are observed beneath the Yangbajain/Danxung grabens. These mig-crustal reflections that have qualitatively similar in depth and character to anomatously high-amplitude mid-crustal reflecuons that have been associated with magma bodies beneath other active rifts (e.g. Rio Grande Rift). S) Moho is clearly observed on INDEPTH CMP profiles only beneath the southern Tethyan belt (Dogen valley, where it
occurs at $\sim 75 \mathrm{~km}$ depth (23-24 s). 6) Receiver function Moho depth determinations along the Yadongoccurs at $\sim 75 \mathrm{~km}$ depth ($23-24 \mathrm{~s}$). 6) Receiver function Moho depth determinations along the Yadong-
Gulu rift, however, are consistently in the $75-80 \mathrm{~km}$ range, implying a regionally flat Moho between the Gulu rift, however, are consistently in the $75-80 \mathrm{~km}$ range, implying a regionally flat Moho between the
crest of the Himalaya and the north end of the Damxung graben. 7) Preliminary of analysis of P-to-S (teleseismic) converted phases suggests a "shingled" structure in the lower crust beneath the region, and a major, moderately-steeply north-dipping, structure (fault?) within the upper mantle. The latter appears to intersect (project to) the base of the crust beneath southern Tethyan Himalaya, well south of the Tsangpo suture.

Tectonics IV: Himalayan Tectonics, SESSION 120

4:30 PM Lehmann, Christoph

DEPOSITIONAL FACIES, SEQUENCE STRATIGRAPHY AND DROWNING OF THE COAHUILA CARBONATE RAMP (ALBIAN), NORTHEASTERNMEXICO

LEHMANN Christoph OSIEGER David A.: MONTANEZ, isabel P.
Dept. of Earth Sciences, University of California, Riverside. CA 92521
The Lower Cretaceous (Albian) Coahuila carbonate platform of northeastern Mexico is coeval with the economically-significant Valles and Golden Lane (Tuxpan) platforms to the south and the Glen Rose-Edwards-Stuart City plattorm to the north in Texas. Approximately $16,000 \mathrm{~m}$ of the Acatita/AuroraNupper Tamaulipas Formations have been logged on a decimeter-scale over an area of $100,000 \mathrm{~km}^{2}$ to determine platform geometry and facies relationships, and to an area of $100,000 \mathrm{~km}^{2}$ to determine platform geometry and facies relation.
develop a sequence stratigraphic framework for the Coahuila carbonate platform.

The Coahuila carbonate platform is a distally steepened ramp attached to the Coahuila basement block. Three distinct facies assemblages characterize the three major paleogeographic elements of the Coahuila ramp. 1) The ramp interior (Acatita Formation) is composed of more than 60 evaporitic parasequences deposited in a hypersaline lagoonal environment. The evaporitic parasequences are composed of a basal evaporitic lithofacies shallowing upward to a high-energy, skeletal, peloidal packstone/grainstone. 2) The ramp margin (Aurora Formation) is composed of a massive ooid-peloid grainstone that exhibits progradational geometries, representing a high-energy barrier shoal. Up to 140 peritidal parasequences overlie the massive grainstone, reflecting protected tidal-zone environments in the lee of the barrier shoal. Meter-scale parasequences are composed of a basal, skeletal, peloidal grainstone containing rudists, fining and shallowing-upward into a dolomitized fenestral mudstone or tidal-flat laminite. 3) The deep ramp (Upper Tamaulipas Formation) is composed of muddy hemipelagic lithofacies and can be subdivided into a proximal hemipelagic subfacies and a distal hemipelagic subfacies separated by a locally-developed steepened slope.
Both the evaporitic and peritidal parasequences are interpreted to represent highfrequency accommodation events ($10^{4}-10^{5}$ year range). These parasequences are arranged in several parasequence sets and form a pattern of long-term decrease in accommodation in several parasequence sets and form a pattern of long-term decrease in accommodation
space, culminating in a major sequence boundary (mid-Albian), tollowed by an increase in space, culminating in a major sequence boundary (mid-Albian), tollowed by an increase in accommodation space. The Coahuila carbonate platiorm was abruptly drowned, marked by the
deposition of a 20 m thick, planktonic foram-dominated, silty, laminated mudstone. This deposition of a 20 m thick, planktonic foram-dominated, silty, laminated mudstone. This
drowning event terminated Cretaceous platform development in the region and might coincide drowning event terminated Cretaceous platform development in the region
with the late Albian globally recognizable Oceanic Anoxic Event (OAE 1C).

4:45 PM Prothero, D. R.

MAGNETIC STRATIGRAPHY OF THE LATE MIDDLE EOCENE COLDWATER FORMATION, CENTRAL VENTURA COUNTY, CALIFORNIA: IMPLICATIONS FOR SEQUENCE STRATIGRAPHY

PROTHERO, D.R., and VANCE, E.H., Jr., Department of Geology, Occidental College, Los Angeles, CA 90041
Until recently, the middle Eocene Coldwater Sandstone could not be precisely dated beyond its "Tejon Stage" molluscs (which range from 33-44 Ma). Yet the upper Coldwater redbeds (which grade into the the overlying middle Eocene Sespe Formation in upper Sespe Creek, Ventura County, California) produces several mammalian faunas which greatly improve the biostratigraphic control. After removal of magnetic overprinting by stepwise thermal demagnetization, most samples yielded a stable primary remanence that passed a reversal and fold test, and shows a clockwise rotation of about $100^{\circ} \pm 17^{\circ}$ (consistent with other pre-Miocene units in the western Transverse Ranges). Magnetic stratigraphy and refined chronostratigraphy of the late Uintan and Duchesnean mammals found within the redbeds in the Coldwater show that the upper Cozy Dell-Coldwater-Sespe sequence in central Ventura County spans Chrons C 19 r - C 18 n (approximately $39.5-42.5 \mathrm{Ma}$). The late Uintan Hartman Ranch 1.f. occurs near the top of Chron C19n (about 41.2 Ma), in good agreement with the magnetostratigraphic position of the similar Tapo Canyon and Brea Canyon local faunas in Simi Valley. Several Duchesnean localities (with Duchesneodus and Amynodontopsis) are known in this area; these all occur in early Chron C 18 n (about 40 Ma).

These new biostratigraphic and magnetostratigraphic data allow a test of two recent sequence-stratigraphic models proposed for the Cozy Dell-Coldwater-Sespe Formations. Campion et al. (1994) interpreted three sequence boundaries in this interval, which they correlated with the Ta3.6-Ta4.4 parts of the Haq et al. (1987) curve. With better chronostratigraphy, it is clear that none of these three sequence boundaries are eustatically controlled, and they are miscorrelated by 4-5 million years (they actually occur within Ta3.4 or Ta3.5). Clark (1994) recognized three different sequence boundaries in the same sections, but did not suggest eustatic control; indeed, none of his sequence boundaries match the Haq et al. (1987) curve, either. Such mismatches further reinforce the caveat that sequence-stratigraphic correlations are only as good as the biostratigraphic data on which they are based.

5:00 PM Pinous, O. V.

Upper Eocene - Lower Miocene Facies, Sequences, and Sea-Level Change Interpretation from the Strata of the Northern Aral Sea Region (Kazakhstan).
PINOUS ${ }^{1}$, O.V., SAHAGIAN ${ }^{1}$, D.L., ZAKHAROV ${ }^{2}$, V.A., AKHMETIEV ${ }^{3}$, A.M
1 Dept. of Earth Sci. \& Complex Systems Research Center, Univ. of New Hampshire
2 Institute of Geology, Russian Academy of Sciences, Novosibirsk
${ }^{3}$ Institute of Geology, Russian Academy of Sciences, Moscow
The Northern Aral region was in the northeastern part of Upper Eocene - Early Miocene Tethys, and was a transitional zone between continental and marine depositional environments on a passive margin. Clastic and carbonate deposition occurred in a range of facies from fluvial and lacustrine in coastal plains (Turgai Trough) to deep marine with condensed sections and turbidites (Usturt Plateau). The section is characterized by explicit cyclicity which is interpreted to be caused by tectonic subsidence, sediment supply rate, and eustasy. Parallic facies (deltaic, lagoonal, estuarine), that comprise the transition zone from continental to marine sedimentation are especially sensitive to the relative sea-level change. The excellent exposure of these strata in numerous outcrops and the presence of a number of wells drilled throughout the area makes it
possible to examine in detail different facies successions and trace their lateral and vertical transitions within the stratigraphic units. Preliminary stratigraphic and sedimentologic analyses of outcrops and wells made it possible to subdivide the section into depositional sequences and reconstruct the development of the depositional systems and their response to sea level change. Despite significant spatial in tectonic subsidence and sediment supply rates, sequences and Despite significant spatial in tectonic subsidence and sediment supply rates, sequest that the
systems tracts can casily be traced throughout the margin. Preliminary results suggest margin developed in a tectonic and sedimentary regime generally similar to the U.S. Atlantic and margin developed in a tectonic and sedimentary regime generally similar to the U.S. Atrantic and
Gulf margins, and that custasy played a major role in controlling sedimentation. However, in Gulf margins, and that custasy played a major role in controlling sedimentation. However, in
some biostratigraphically poorly correlated intervals, sea-level events reflected in the Aral some biostratigraphically poorly correlated intervals, sea-level events reflected in the Aral
sections do not correspond to those reported from Atlantic and Gulf Coast margins. For example, the most significant sea level fall in the Aral region appears at the Eocene/Oligocene boundary or in Lowermost Oligocene (according to present biostratigraphic data), but in the U.S., a similar sea level fall is inferred in the Middle oligocene. While it is possible that the interplay between subsidence and sedimentation conspired to cause the basal Oligocene event in the Aral region and the Middle Oligocene event in the Atlantic and Gulf margins independently, we consider it more likely that they were caused by the same custatic event, and that the biostratigraphic correlation of the Aral strata bear re-examination. Subsequent detailed stratigraphic analysis of the Aral sections may provide important data for identification of true Eocene-Miocene eustatic events.

5:15 PM Guertin, Laura A.

HIGHSTAND(?) MOBILIZATION AND EMPLACEMENT OF NEOGENE

 SILICICLASTIC SEDIMENTS, SOUTHEAST FLORIDAGUERTIN, Laura A., MCNEILL. Donald F.. Univ. of Miami. RSMAS-MGG. 4600 Rickenbacker Cswy., Miami. FL. 33149; LIDZ. Barbara H., USGS Center for Coastal Geology, 600 4th St. South, St. Petersburg, FL 33701.
Two new continuous core borings show a surprisingly thick $(-100 \mathrm{~m})$ package of siliciclastic sediments in the shallow subsurface of the Florida Keys. The siliciclastic sediments are underlain by middle Miocene(?) limestone and overlain by latest Pliocene(?) and Pleistocene limestone, serving as the foundation for the modern Florida reef tract. Initial results from biostratigraphic (planktic foraminiferal) data indicate that marine deposition of these siliciclastic sediments on the southeast Florida peninsula occurred during the middle Pliocene ($-3.6-2.9 \mathrm{Ma}$).

Age/depth plots have been generated from constraining biohorizons of first and last appearances of key species found in the siliciclastic section of both cores (see figures). The plots suggest that emplacement of the siliciclastics in southeast Florida was at a relatively high sedimentation rate (10.9$11.4 \mathrm{~cm} / \mathrm{kyr}$), within a $-0.5 \mathrm{~m} . \mathrm{y}$. interval. The middle Pliocene age for the siliciclastics is also coincident with a proposed highstand in sea level (mid-Pliocene warm period) and the initial lowering of sea level associated with the onset of Northern Hemisphere glaciation ($\mathbf{- 3 . 2} \mathbf{M a}$). If confimed, these results suggest that the mobilization and redistribution of both the fine- and coarse-grained siliciclastic sediments of southeast Florida occurred during a highstand and/or during the subsequent, initial fall in sea sedime
level.

SESSION 120, 1:30 PM
Wednesday, November 08, 1995

Tectonics IV: Himalayan Tectonics ENM 39

1:30 PM Pivnik, David A.

TECTONICS AND SEDIMENTATION IN THE PAKISTAN FORELAND DURING THE PLIO-PLEISTOCENE

PIVNIK, David A., Amoco Production Company, P.O. Box 800, Denver, CO 80201-0800.
Pliocene and Pleistocene syntectonic sedimentation in Pakistan occurred in response to tectonically and geographically varied deformational events related to the most recent stages of Himalayan convergence. The availability of accurate magnetostratigraphic, fission-track, and biostratigraphic ages of the upper Siwalik Group allows for the correlation of synchronous yet structurally disparate deformation that occurred throughout the Himalayan orogen. Superimposed on the backdrop of deposition of the main foreland fluvial system, the Indus River, were numerous basins which received sediment in response to coeval, local tectonism which partitioned the foreland. In the hinterland region, intermontane basins such as the Skardu Basin rapidly aggraded from ~ 3.0 to 0.75 Ma in response to sediment ponding behind the uplifting Nanga Parbat Massif. The Karewa sequence in the Kashmir intermontane basin records uplift of the Pir Panjal Range from ~ 4.0 to 1.5 Ma . In the Campbellpore and Peshawar intermontane basins, deposition

ABSTRACTS ,

 PROGRAMS
NEW ORLEANS
 BRIDGING THE GULF

1995 Annual Meeting

New Orleans, Louisiana
November 6-9, 1995
Ernest N. Morial Convention Center

ASSOCIATED SOCIETIES

Association for Women Geoscientists • Association of American State Geologists - Association of Geoscientists for International Development • Cushman Foundation • Geochemical Society • Geoscience Information Society • Mineralogical Society of America • National Association for Black Geologists and Geophysicists • National Association of Geology Teachers • National Earth Science Teachers Association - Paleontological Research Institution • Paleontological Society • Sigma Gamma Epsilon • Society of Economic Geologists • Society of Vertebrate Paleontology

