SATILET AND FIELD OBSERVATIONS OF SUSPENDED SEDIMENT MOVEMENT NEAR CAPE MAY, NEW JERSEY

KELLEY, Joseph T., Earth Science Department, University of New Jersey, Newark, N.J.

The origin of Holocene, fine-grained, coastal sandmat near Cape May Peninsula (CMP), N.J. has never been determined with certainty. Temporal variations in mineralogy and heavy metal chemistry of material accumulating in CMP lagoons suggest the source of Recent and is composed and dominated by quartz and by calcite, respectively. In the late summer of 1975, the CMP was sampled for the first time. Samples were collected from the sandmat and deposited in a core at the University of New Jersey. The samples were analyzed for grain size, mineral content, and heavy metal content. The results of this study published with radiocarbon ages date suggest a possible relationship between the percentage of organic material and the location of the active Mississippi River deltaic lobe. The organic material, therefore, can be correlated with the Mississippi River sediments of the study area. Conversely, horizons with low organic percentages formed during activity of delta lobes closer to the study area. The results of this study published with radiocarbon ages date suggest a possible relationship between the percentage of organic material and the location of the active Mississippi River deltaic lobe. The organic material, therefore, can be correlated with the Mississippi River sediments of the study area. Conversely, horizons with low organic percentages formed during activity of delta lobes closer to the study area.

FIELD RELATIONS AND REGIONAL SIGNIFICANCE OF THE VOLCANICS OF WOODS ISLAND BAY OF ISLANDS, NEWFOUNDLAND

KIDD, W.S.F., and ILEMAK, B.D., Dept. of Geological Sciences, SUNY at Albany, Albany, N.Y. 12222

Volcanic rocks on Woods Island are of Carboniferous age. The volcanics include: 1) a mafic volcanic rock, 2) a felsic volcanic rock, 3) a felsic volcanic rock, and 4) a felsic volcanic rock. These rocks are interstratified with a mafic volcanic rock and a felsic volcanic rock. The mafic volcanic rock is composed of a plagioclase and a felsic volcanic rock. The felsic volcanic rock is composed of a plagioclase and a felsic volcanic rock. The felsic volcanic rock is composed of a plagioclase and a felsic volcanic rock. The felsic volcanic rock is composed of a plagioclase and a felsic volcanic rock. The felsic volcanic rock is composed of a plagioclase and a felsic volcanic rock.

PREDATOR-RESISTANT ADAPTATIONS OF SHALLOW WATER TERTIARY BIVALVES

KELLEY, Patricia M., Department of Geology and Geographical Engineering, The University of Mississippi, University, MS 38677

The bivalve population in an ancient shallow water environment is composed of numerous species that are adapted to a variety of environmental factors such as water movement, substrate, food availability, and predation. Shallow water bivalves are subjected to intense predation by drifting gastropods. The bivalve morphology includes: 1) increased shell size, 2) increased valve thickness, 3) strong shell ornamentation, and 4) tight valve closure.
3 William A. Oliver, Jr.: Arborescent Corals 2:30
4 Ann B. Foster: Branching within Some Typically Massive Species of Scleractinian Coral 2:50
5 Raymond C. Highsmith: Reproduction by Fragmentation in Hymenotypal Corals 3:10
Discussion and Break 3:30
6 James E. Conkin,* Barbara M. Conkin: Amphipora ramosa Zone—Stromatoporoid Interval in Lower Eifelian of East-Central United States and Southern Ontario 3:45
7 Roger J. Cuffey,* Alan H. Cheetham: Reconstruction of Bryozoan Colonies from Measurements of Branch Fragments 4:05
8 Frank K. McKinney: Convergent Evolution of Branch Linkage in Fenestrate Bryozoans 4:25
9 David L. Meyer,* Danita S. Brandt: Branching Morphologies of Recent Comatulid Crinoids from the Great Barrier Reef and Their Relation to Living Habits 4:45
10 Robert W. Frey: Patterns of Branching among Modern and Ancient Lebenschuren 5:05
Summary and Discussion 5:25

COASTAL PLAIN GEOLOGY: DEPOSITIONAL ENVIRONMENTS AND AMINOGLASTRATIGRAPHY
Executive Room, 1:45 p.m.
Gregory S. Gohn and Laurel M. Bybell, Presiding

1 John M. Malinsky: Depositional Framework of the Navesink Formation (Upper Cretaceous) in the Atlantic Coastal Plain of New Jersey 1:45
2 Thomas G. Gibson,* Laurel M. Bybell: Stratigraphy of Paleocene and Eocene Units of the Eastern U.S. and Its Relationship to Global Sea-Level Curves 2:05
3 Paul G. Nyström, Jr., Ralph H. Willoughby,* Early Tertiary (Jacksonian?) Stratigraphy in Graniteville and Hollow Creek Quadrangles, Aiken County, South Carolina 2:25
4 R. Steve Peacock,* Sherwood W. Wise, Jr.: Reconnaissance Study of the Post-Eocene Subsurface Stratigraphy of Southern Collier County, Florida 2:45
5 Steven K. Mittweide: The Eastover Formation—Yorktown Formation Contact at the Lieutenant Run Exposure, Petersburg, Virginia 3:05
7 Stephen W. Snyder,* Daniel F. Belknap, Albert C. Hine, Alec G. Steele: Seismic Stratigraphy, Lithostratigraphy, and Amino Acid Racemization of the Diamond City Fm: Interpretation of a Reported “Mid-Wisconsin High” Sea-Level Indicator from the North Carolina Coastal Plain 3:45
8 Daniel F. Belknap: Amino Acid Racemization from C-14 Dated “Mid-Wisconsin” Mollusks of the Atlantic Coastal Plain 4:05
9 John W. Wehmiller: Implications of U-series Coral Dates for Aminostratigraphy of Atlantic Coastal Plain Localities 4:25
10 Lucy McCartan,* James P. Owens, Barney J. Szabo: Absolute and Relative Dating of Atlantic Coastal Plain Pleistocene Formations: Evaluation of Amino Acid Epimerization Age Estimates 4:45

TECTONICS I: REGIONAL GEOLOGY
Palladian Room, 1:45 p.m.
Peter T. Lyttle and Dana L. Roy, Presiding

1 James Hibbard: Oduction Related Boninites: Newfoundland Appalachians 1:45
2 W. R. Smyth: The Southern White Bay Allochthon—A Newly Defined Taconic Allochthon in Western Newfoundland 2:05
3 W.S.F. Kidd,* B. D. Idieman: Field Relations and Regional Significance of the Volcanics of Woods Island, Bay of Islands, Newfoundland 2:25
4 Stephen G. Pollock: Stratigraphy of the Caucamong Lake Area, Northern Maine: Example of an Oubduced Ophiolite-Melange Complex 2:45
5 Peter T. Taurers: Basement-Cover Relationships in West-Central Vermont 3:05
7 R. S. Stanley,* D. L. Roy, M. H. Gale, P. R. Taurers: Thrust Zones in the Pre-Silurian Euoeoclastic Rocks of Vermont 3:45
8 Christine Farrens,* Sharon Mosher: Alleghenian Deformation in Southeastern Naragogsett Basin, R.I. 4:05
9 Charles Mergerian,* Charles A. Baskerville, Steven Okuliewicz: Cameron’s Line in the Vicinity of New York City 4:25
10 Denny N. Bearce: Talladega Belt Basal Clastic Sequence, Cleburne County, Alabama 4:45
11 Mark T. Swanson: A Possible Complex Decoupling History for Mesozoic Rifting 5:05

QUATERNARY GEOLOGY: GLACIAL STRATIGRAPHY, PROCESS AND CHRONOLOGY
Tudor Room, 1:45 p.m.
Geoffrey W. Smith and Carl Koteloff, Presiding

1 P. T. Davis: Late Holocene Glacial History, Pangnirtung Area, Baffin Island, Canada 1:45
2 Barbara Gaddis: Till Ridges of the Vaasa Region, Finland 2:05
3 Geoffrey W. Smith: DeGeer Moraines of the Maine Coastal Zone 2:25
4 D. W. Caldwell,* Lindley S. Hanson: The Alpine Glaciation of Mt. Katahdin, North Central Maine 2:45

*Speaker
ABSTRACTS
with
PROGRAMS
1982

NORTHEASTERN
and SOUTHEASTERN
Combined Section Meetings

The Geological Society of America
17th Annual Meeting of Northeastern Section
31st Annual Meeting of Southeastern Section

with
Northeastern and Southeastern Sections
of the Paleontological Society
and
Eastern Section of the
Society of Economic Paleontologists and Mineralogists

March 25-27, 1982
Shoreham Hotel
Washington, D.C.