Tectonic setting of outer trench slope volcanism: pillow basalt and limestone in the Taconian orogen of eastern New York

Ed Landing, Georgia Pe-Piper, William S.F. Kidd, and Karem Azmy

Abstract: The only pillow basalt in synorogenic sedimentary rocks at the exterior margin of the Taconic orogen in eastern North America is at Stark’s Knob in eastern New York. Earlier reported as extrusive into allochthonous Ordovician slope and rise facies, this small lens (ca. 125+ m long, 39 m thick) is a fault-bounded block in Upper Ordovician melange under the Taconian frontal thrust. Its N-MORB (normal mid-ocean ridge basalt) basalt geochemistry and spinel composition are characteristic of oceanic ridge settings at a water depth of 2 km or more. Abundant limestone lenses on pillows and lava shelves within pillows yielded a middle Late Ordovician gastropod. The limestones are reconciled with this extrusion depth and with limited early Paleozoic pelagic carbonate production by lime mud transport from the Laurentian platform or abiogenic carbonate precipitation with sea-water heating during basalt extrusion. A genetic relationship between the parautochthonous Stark’s Knob basalts and the allochthonous Jonestown volcanics in slope and rise facies of the Hamburg klippe, eastern Pennsylvania, is likely. Both are Ordovician MORB basalts that reflect volcanism on the subducting outer trench slope prior to the Taconic arc – Laurentia collision. Taconic orogenesis may have led to basalt production on the subducting plate by (1) the setting up of orogen-parallel, predominantly strike-slip motion on the subducting slab with MORB basalt generated at offsets in a setting analogous to the Gulf of California or (2) development of faults in a flexure-induced extensional regime. By either process, mafic volcanism appears to be a rare but tectonically significant process on outer trench slopes as continental margins or oceanic plates enter subduction zones.

Résumé : L’unique basalte à coussinet dans les roches sédimentaires syntectoniques à la bordure extérieure de l’orogène taconique dans l’est de l’Amérique du Nord se trouve à Stark’s Knob dans l’est de l’état de New York. Antérieurement rapportée comme une roche extrusive dans le faciès de pente et de pied de pente de l’Ordovicien allochtone, cette petite lentille (~ 125+ m long, 39 m épais) est en fait un bloc limité par des failles dans le mélange (Ordovicien supérieur) sous le chevauchement frontal taconien. Sa géochimie de basaltes médio-océaniques actuels normaux (N-MORB) et sa composition de spinelle sont caractéristiques des environnements de crête océanique à une profondeur de 2 km ou plus. D’abondantes lentilles de calcaire sur coussinets et les plates-formes de lave à l’intérieur des coussinets ont donné un gastropode datant de l’Ordovicien tardif. Les calcaires concordent avec cette profondeur d’extrusion et avec la production limitée de carbonate pélagique au Paléozoïque précoce par le transport de boue de chaux de la plate-forme laurentienne ou par la précipitation abiotique des carbonates lors du réchauffement de l’eau de mer durant l’extrusion du basalte. Une relation génétique est probable entre les basaltes paraautochtones de Stark’s Knob et les volcaniques allochtones de Jonestown dans le faciès de pente et de pied de pente du klippe de Hamburg, dans l’est de la Pennsylvanie. Les deux sont des basaltes MORB de l’Ordovicien qui reflètent le volcanisme sur la pente de la fosse externe en subduction avant la collision entre l’arc taconique et la Laurentia. L’orogénèse taconique peut avoir conduit à la production de basalte sur la plaque en subduction en : (1) initiant du mouvement surtout coulissant, parallèle à l’orogène, sur la plaque en subduction, avec des basaltes MORB générées au retrait dans un environnement analogaque à celui du golfe de la Californie ou (2) en développant des failles dans un régime extensionnel induit par de la flexure. Par l’un ou l’autre des procédés, le volcanisme mafique semble être un processus rare mais tectoniquement significatif sur les pentes externes des fosses alors que les marges continentales ou les plaques océaniques entrent dans les zones de subduction.

[Traduit par la Rédaction]
Introduction

Stark’s Knob is a small (30 m-high) volcanic body 5 km west of the frontal thrust of the Taconic allochthon in eastern Saratoga County, New York (Fig. 1). It lies 200 m west of the intersection of US Route 4 – NY Route 32 with Stark’s Knob Road. Early quarrying removed the east side of the knob (Cushing 1914) and exposed a section through most of the pillow basalt.

Stark’s Knob is the only pillow basalt in synorogenic sedimentary rocks on the exterior (western or northern) margin of the Middle–Late Ordovician Taconian orogen in the Appalachians (Fisher 1977; Williams 1979). Stark’s Knob has been discussed in many publications (Woodward 1903; Cushing 1914; Urry 1936, p. 1225, table 1; Zen 1967, 1974; Bird 1968; Bird and Dewey 1970; Vollmer and Bosworth 1984) and field trip guides (Balk 1933; Hewitt et al. 1965; Landing 1988; Zen 1989; Kidd et al. 1995). However, its age and relationship to surrounding Ordovician siliciclastics has remained problematical. If Stark’s Knob basalt extrusion was coeval with Taconian orogeny and on the Laurentian plate margin that was entering the east-dipping Taconic subduction zone (e.g., Bird and Dewey 1970; Zen 1989), this volumetrically minor basalt is tectonically significant. Modern outer trench-slope magmatism is unknown, although limited evidence (Hoffman 1987) suggests mafic magmatism occurs in this setting in early stages of some arc–continent or continent–continent collisions. We compare the Stark’s Knob basalt with the Jenestown volcanics in eastern Pennsylvania and emphasize the importance of these extrusives as the only known volcanics in syncollisional Ordovician flysch and melange of the Appalachians. We suggest that mafic magmatism, although rare, is tectonically significant as continent margins or oceanic plates enter subduction zones.

Earlier work

Woodworth (1903) and Cushing (1914) correlated the Stark’s Knob basalt with Late Triassic–Early Jurassic flows and intrusions elsewhere in the northeastern U.S. and regarded the limestones between the pillows as fragments of the underlying Cambrian–Ordovician carbonate platform. In contrast to this autochthonous interpretation, Fisher et al. (1970) and Fisher (1977) regarded Stark’s Knob as extrusive in lower Upper Ordovician (Llandeil – lower Caradoc) slope-rise facies of the Mount Merino Formation and located Stark’s Knob in the westernmost klippe of the Taconic allochthon. However, Landing (1988) noted that the Stark’s Knob basalt is not in the Mount Merino (green siliciclastic mudstone and chert), but rather in black mudstone and turbiditic sandstone. This facies is comparable either to the overlying Austin Glen Formation (lower Caradoc = “Pawlet Formation,” see Landing 1988), the highest formation in the allochthon, or the middle Caradoc melange under the allochthon (Berry 1962, 1968).

If Stark’s Knob is a melange block, then its age and tectonic significance are ambiguous. Blocks with a wide range in age (from Middle Proterozoic basement to fragments of the Taconic accretionary prism) and size (up to 10 km long) occur in Taconic melange (Zen 1967, pp. 35–40; Ratcliffe and Bahrami 1976). The only other pillow basalts in eastern New York are in the Lower Cambrian Rensselaer Formation in the Taconic allochthon (Balk 1953; Potter 1972). Derivation of Stark’s Knob from the Rensselaer would mean it is an extrusive related to earliest Cambrian extension of the Laurentian margin and formation of the Iapetus Ocean (e.g., Bédard and Stevenson 1999). Thus, uncertainties in age (Cambrian or Ordovician), stratigraphy, and structural context (in situ, parautochthonous, or allochthonous) meant that work on biostratigraphy, limestone deposition, and basalt geochemistry could relate Stark’s Knob to the early Paleozoic evolution of east Laurentia.

Geologic setting

Mapping of the Hudson River lowland north into Saratoga County shows that Stark’s Knob is best interpreted as a block in the north-northeast-trending Cohoes melange west of the Taconic allochthon (Bosworth and Vollmer 1981; Vollmer and Bosworth 1984; Plesch 1994; Kidd et al. 1995: Fig. 1). The Cohoes melange is derived from synorogenic flysch dominated by lithic arenite (“graywacke”) and mudrocks. Stark’s Knob occurs within the thrust fault-bounded Mohawk River Central Zone of the Cohoes melange. Structurally disrupted dark mudstones and turbiditic sandstones of the melange are exposed to the south-southwest in roadcuts on Stark’s Knob Road (Fig. 2).

The main body of Stark’s Knob pillow basalt is a N20°W-striking, ca. 125 m-long lens (Fig. 2). Isolated basalt outcrops, 1–2 m in diameter, occur at the north end of the quarry (see Cushing 1914, fig. 13) and about 50 m southeast of the main volcanic body (Fig. 2). It is unclear if these blocks were emplaced by mass wasting of an olistolith or are structurally detached from the main basalt. No other basalt fragments are known in the Cohoes melange.

Faulted contacts of basalt pillows with melange shales, including dark silty mudstone and thin turbiditic lithic sandstone, are exposed at the north end of the quarry and on the southwest slope of Stark’s Knob. The mudrocks near these contacts show phacoidal fracturing and cleavage and structural disruption typical of the melange elsewhere in the area. Calcite slickensides occur at the base of the pillows on the east side of the quarry (Fig. 2, cross section). These features are consistent with faulted contacts with the pillow basalt. Thin sections of slickensides indicate steps in calcite fibers, and the obliquity of the fibers show that the basal fault on the east side of Stark’s Knob has a west-northwest (ca. 290°–300°) shear direction and sense of local Taconian thrusts. The east-dipping fault on the west side of the knob is much steeper than the east-dipping fault on the east side of the knob (Fig. 2). As there is no indication of a major fold in the pillow basalt, this relationship suggests faults of two different ages. The shallower dipping fault with calcite slickensides is inferred to truncate an older, steeper fault on the west side (Fig. 2). Interpretation of faulted contacts and structural isolation of the Stark’s Knob basalt is consistent with Cushing’s (1914) and our observations of an absence of (1) baked contacts with the surrounding melange, (2) shale or arenite lenses or inclusions in the basalt, and (3) basalt intrusions in the flysch. Dip is difficult to determine precisely across the basalt, but is nearly vertical on the east at a contact with steeply west-dipping flysch and decreases west to ca. 50°W on the knob’s crest. The tops-sense of the pillow basalt is to the west. This evidence is recorded by reddened (baked) tops of
Fig. 1. Regional geological map showing location of Stark’s Knob in the external melange and deformed flysch of the Taconic foreland basin (after Kidd et al. 1995; Hayman and Kidd 2002). Cities: A, Albany; G, Glens Falls; P, Saratoga Springs; S, Schenectady; T, Troy.

Devonian

Taconic allochthon
(Cambrian–Ordovician rise–slope sediments)

Hudson Valley flysch (Upper Ordovician)

melange
TFZ - Troy Frontal Zone
MRZ - Mohawk River Central Zone (W & E parts)

basalt of Starks Knob

bedded flysch transported slices

greywacke-dominated
RGZ - Ravena Greywacke Zone
RTZ - Rocky Tucks Greywacke Zone
HGZ - Halfmoon Greywacke Zone

shale-dominated
SSZ - Stillwater Shale Zone
VFZ - Vischer Ferry Shale/Greywacke Zone
WSZ - Waterford Shale Zone (broken formation)

transported shelf sediments

undeformed flysch and shale

Cambrian–Ordovician shelf sediments

Grenville crystalline basement

Stratigraphic contact
mid–late Ordovician normal fault

Thrust fault or tectonic contact in melange terrain
TFF - Taconic Frontal Fault

© 2003 NRC Canada
Fig. 2. Large scale geologic map and cross section of Stark’s Knob. Mapping by W. Kidd using electronic total section. Contour intervals in feet (10 feet \approx 3.048 m). ASL, above sea level.
limestone lenses on the crest of the knob (Fig. 3d). Near the base of the quarry high wall and approximately half-way through the pillow basalt sequence, thin (1–3 cm), steeply east-dipping limestone lenses occur within several pillows (Fig. 3c). These limestones record deposition of fine-grained carbonate on lava shelves that formed when active lava tubes drained (Francheteau et al. 1980; Moore et al. 1985). Lava shelves are rare features considered to form in the upper part of lava tubes (Moore et al. 1985). However, their presence on the east side of the Stark’s Knob pillows suggests that lava shelves can form in the lower part of a lava tube, and they provide ambiguous evidence for topsense. Presumption of a westerly top-sense throughout: absence of tight folding (noted earlier in the text), and steep, west-decreasing dip allow determination of a maximum, ca. 39 m thickness of pillow basalt, with the lower 12 m poorly exposed in the quarry floor.

The pillows are black, have scattered, small (ca. 0.5 mm diameter), calcite-filled amygdules throughout and are generally small (20–45 cm diameter, with a maximum across section of 2.5 m × 1.0 m for a pillow 20 m northwest of the knob’s crest). The exterior several centimetres of the pillows are greenish black, in places slicksided by rotation and shear of the pillows, and spall away with weathering. Fractures lined with white, sparry calcite and an internal fill of light grey, silt-size calcite cut the pillows in variable abundance. As these radial fractures rarely extend to the pillow margins (Fig. D1), they are apparently related to quenching, and not tectonic shear.

With exception of in-faulted slivers of sheared, black silty mudstone at the exterior margins of the pillow basalt (Cushing 1914), the only non-basalt lithology at Stark’s Knob is a mudstone at the exterior margins of the pillow basalt (Cushing 1914, p. 120). This mudstone is the lenticular carbonate on lava shelves in pillows in the lower part of the quarry (Fig. 3c). These limestones represent a carbonate that accumulated on lava shelves above lava shelves that developed in active lava tubes (Fig. 3c).

Limestone age and deposition

The limestones offered a potential for refining biostratigraphic correlation and reconstructing the extrusion environment. Fifty-nine limestone samples were taken through the basalt sequence, slabbed for sedimentary structures, cracked for macrofossils, and processed for acid-resistant microfossils. Thinner sections show neomorphic, closely fitted, small (0.2–0.6 mm), equidimensional, anhedral–subhedral calcite crystals. These “pure limestones” (Cushing 1914, p. 120) produce < 0.05% siliciclastic residue after acid disaggregation for microfossils and minor opaque (organic?) material with carbonate geochemical processing. Planar lamination is the only primary structure (Fig. 3d); this feature is consistent with deposition of calcareous mud or silt under low wave or current energies prior to aggradational recrystallization. Sub-to well-rounded basalt fragments at the base of the lenses (Fig. 3d) suggest episodic or protracted, high-energy conditions before carbonate accumulation. Rapid deposition coeval with pillow extrusion is shown by reddened, baked tops of some lenses (Fig. 3d), corroded limestone inclusions in pillows (Cushing 1914, fig. 11), and limestone fills of multiple, 5–8 cm high voids above lava shelves that developed in active lava tubes (Fig. 3c).

Biostratigraphy

Recovery of fossils from the limestone lenses was disappointing, in part because of the small samples available for processing (average 0.4 kg, but three 3.5 kg samples). A crinoid columnal and a trilobite sclerite were noted on limestone slabs. 36 kg of limestone from 46 sample horizons did not yield acid-resistant fossils.

A mold of a gastropod conch was recovered from a lime-stone (Figs. 3a, 3b). Although little detail is preserved, the three relatively rapidly expanding, convex whorls support reference to a few pre-Silurian gastropods with turbiniform shells (e.g., Knight et al. 1960). Among these is Leiospira Ulrich and Scofield, 1897, a common genus in the middle Upper Ordovician Trenton Group and higher strata. Identification of Leiospira? sp. is important; it precludes derivation of the Stark’s Knob pillow basalt from lowest Cambrian rift facies of the Rensselaer Formation in the Taconic allochthon.

Depositional setting

Abundant limestones suggest that relationships, other than structural proximity, of the Stark’s Knob pillow basalt to the Mount Merino or Austin Glen – “Pawlet” Formations in the Taconic allochthon or to the parautochthonous Cohoes melange are unlikely. The slope-rise to fore-arc facies of these siliciclastic units lack limestone and are not intercalated with the pillows (Rowley et al. 1979). Westrop et al. (1995) detailed that early Paleozoic gastropods characterize near-shore – relatively shallow habitats. Thus, presence of Leiospira? sp., and pure limestones throughout Stark’s Knob at a time in earth history without significant pelagic carbonate production has three potential explanations: (1) Volcanism and limestone deposition were shallow-marine, perhaps on a sea mount or shelf, (2) the snail and carbonate were transported into deep-water, or (3) carbonate production was in a deep-water (?) seep setting. Explanation (1) required analysis to determine approximate basalt extrusion depth (discussed later in the text). Explanation (2) is unlikely if the basalt is allochthonous, as the Mount Merino, Austin Glen, and Cohoes melange had an eastern sediment provenance in the Taconic orogen and consist of increasingly immature siliciclastic debris (e.g., Rowley.

2 Depository data can be purchased from the Depository of Unpublished Data, Document Delivery, CISTI, National Research Council of Canada, Ottawa, ON K1A 0S2, Canada. Depository data include Figs. D1 (Photograph of pillow basalt slab) and D2 (Backscatter electron images petrographic textures and mineral assemblages) and Tables D1 to D4.
and Kidd 1981; Landing 1988). Thus, geologic setting mitigates against transport of lime mud or silt from the orogen and limestone deposition in a deep-marine setting. Explanation (2) is appropriate to carbonate transported from the Laurentian platform or to carbonate production and basalt extrusion at a site sheltered from sediments from the orogen. Explanation (3) required geochemical analysis.

Limestone geochemistry

Extrusion of Stark’s Knob basalt during the Taconic orogeny suggested a relationship of its petrographically undistinctive limestone to the isotopically distinctive limestones at seeps (natural gas, brine, petroleum) on convergent margins and accretionary prisms (Kulm and Suess 1990). Seep limestones have highly negative δ\(^{13}\)C values, as opposed to the slightly positive values of limestones precipitated in equilibrium with seawater (e.g., Hoefs 1997). Trace elements and stable isotope geochemistry can also help reconstruct carbonate paleoenvironments (Azmy et al. 1998) and diagenesis (e.g., Al-Aasm and Azmy 1996). Chemical and isotopic signals of marine carbonates are dramatically changed by water–rock interaction (dissolution–precipitation) and help determine the diagenetic history of neomorphic limestones, as those at Stark’s Knob. Some trace elements, such as Sr, are depleted in the secondary phase and in burial calcite cements, while others (e.g., Fe and Mn) are enriched (Veizer 1983a, 1983b; Tucker 1990). δ\(^{18}\)O values of secondary calcite are depleted relative to precursor marine carbonates, as the diagenetic fluid is usually meteoric water (Veizer 1983a, 1983b; Al-Aasm and Azmy 1994). δ\(^{18}\)O depletion is significant in deep-burial cements as high burial temperatures suppress 18O–16O fractionation during precipitation. However, δ\(^{13}\)C signals of burial cements may not be greatly altered if the diagenetic fluid contains little dissolved CO\(_2\), as most of the (CO\(_3\))^\(-\) comes from dissolution of the limestone, and there may be little 13C–12C fractionation with increasing burial temperature. Thus, δ\(^{13}\)C signals may reflect nearly original signatures of a precursor carbonate and distinguish marine or nonmarine origins.

Methodology

Four limestone samples were analyzed (Table 1), with two...
analyses of sample SK 44 — SK 44 from the lower part of the lens and SK 44B from the baked top of the lens (Fig. 3a). Powdered 0.2 mg samples were heated at 380 °C under vacuum for 1 h to remove volatiles and then stored in a desiccator. They were reacted with anhydrous H$_3$PO$_4$ at 74 °C in a Finnigan Keil III Carbonate Device. Water and CO$_2$ produced by the reaction were cryogenically separated; pure CO$_2$ was analyzed with a Finnigan-MAT 252 isotope ratio mass spectrometer at the University of Iowa. The measurements were calibrated against a laboratory reference gas (LASIS). Analytical precision was better than ±0.1‰ for carbon and oxygen isotope ratios. Trace element analysis was performed by dissolving ca. 15 mg powder samples in dilute HNO$_3$. The aliquots were analyzed by Axiom ICP–MS (inductively coupled plasma – mass spectrometry) at the Harry Reid Center of the University of Nevada-Las Vegas, with analytical precision and accuracy in relative percent for the following elements: Ca (2.1, 1.9), Mg (3.5, 0.4), Sr (2.7, 0.2), Fe (2.1, 0.3) and Mn (1.4, 0.9).

Results

δ13C isotopic values are slightly positive and consistent with carbonates deposited in equilibrium with sea water (Table 1). The analysis does not distinguish between the possibilities that the calcisilite was derived from calcareous skeletons or was partly or primarily abiotic and resulted from precipitation with heating of sea water during basalt skeletons or was partly or primarily abiotic and resulted (Table 1). The analysis does not distinguish between the possibilities that the calcisilite was derived from calcareous skeletons or was partly or primarily abiotic and resulted from precipitation with heating of sea water during basalt skeletons or was partly or primarily abiotic and resulted.

Basalt petrology

Ten samples from well-formed pillows with thick, originally glassy, chilled margins and coarser grained cores (Fig. D1) were studied from polished thin sections, and chemical analyses were made of rims and cores (Table 2). All samples show almost complete loss of primary minerals, and have numerous veinlets of alteration minerals, but generally show good preservation of original textures including delicate quench textures, such as glass and skeletal crystals. Veinlets were removed from the samples prior to chemical analysis.

At the chilled margins, the glass/crystal ratio is about 3:1, and glass has suffered polygonal fracturing—fragmentation and devitriﬁcation to spherulites of albite and Fe-rich chlorite (Fig. D2a). The pillow interiors show pilotaxitic to hyalopilitic texture, with abundant plagioclase (now albite) laths, and pseudomorphs after olivine and clinoxyene phenocrysts. The glass/crystal ratio is about 1:1. Opaque minerals make up 1%–3% of the cores, and consist mainly of oxides (rutile, altered magnetite); chalcopyrite (Fig. D2c); graphite (replacing phenocrysts); and rare, small crystals of chromium spinel. Olivine phenocrysts were replaced originally by calcite (Fig. D2d) that was later partly replaced by chloride, and chloride veinlets also cut the entire original crystals. Phenocrysts with clinoxyene outlines have been replaced entirely by chloride.

Basalt geochemistry

Of the seven chemical analyses of both cores and rims of pillows, four show significant differences between core and rim, which suggest an alteration history that influenced the rims more than the cores with loss of Fe$_2$O$_3$, MgO, CaO, K$_2$O, Ba, and addition of SiO$_2$ and Na$_2$O. Abundances of elements such as Ca and Na (reflected in the ubiquitous occurrence of albite) indicate that even the cores have experienced severe alteration and the LOI (loss on ignition) of the cores is higher than that of the rims (Figs. 4e–4c, Table D1). MgO shows a general correlation with LOI (Fig. 4c) and SiO$_2$ increases with decreasing MgO (Fig. 4d). The elements Ti, Y, and to a lesser extent Nb and Zr (Figs. 4e, 4f) are fairly constant from core to altered rim, although one core sample has an anomalously high Nb content of 8 ppm (of uncertain origin). Rock nomenclature based on these immobile elements shows the samples are all of basalt to andesite composition (Fig. 5a).

The immobile elements can be used to reconstruct the eruptive setting by comparison with published discrimination diagrams (Fig. 5). The Stark’s Knob analyses occupy a restricted compositional range, suggesting that they preserve magmatic signatures. All fall in the MORB (mid-oceanic ridge basalt) field, although in some cases this field overlaps with island-arc tholeiite (IAT) (Fig. 5b) or volcanic-arc basalt (VAB) (Fig. 5e). The abundance of Nb, which is generally stable under sea-floor alteration conditions (Ridley et al. 1994), shows that these rocks are neither IAT nor VAB.

The REE spectra of Stark’s Knob pillow cores (Fig. 6a) have unfractonated heavy REE (HREE) abundances, and are strongly depleted in the light REE (LREE). In this respect, they are very similar to N-type MORB (normal mid-ocean ridge basalt; e.g., Wilson 1989; Sun and McDonough 1989), with the sample with the lowest silica content being the closest to original N-type MORB basalt (heavy line in Fig. 6a). REE patterns for the rims (Fig. 6c) show similar, LREE depletion, as do the cores, but they show some HREE enrichment relative to the cores, similar to that noted by

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>δ13C (PDB)</th>
<th>δ18O (PDB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK 44</td>
<td>1.44</td>
<td>−12.76</td>
</tr>
<tr>
<td>SK 44B</td>
<td>0.72</td>
<td>−9.88</td>
</tr>
<tr>
<td>SK 50</td>
<td>0.65</td>
<td>−12.67</td>
</tr>
<tr>
<td>SK 51</td>
<td>0.08</td>
<td>−12.68</td>
</tr>
<tr>
<td>SK 52</td>
<td>2.42</td>
<td>−12.80</td>
</tr>
</tbody>
</table>

Note: Fifty-two limestones that cap pillows or lava shelves were processed for microfossils; geochemical analysis was done on five. SK 44 and SK 44B are the lower (gray) and upper (baked and red) parts of a lens (Fig. 3d) on pillows near top of the Stark’s Knob succession. PDB, Peebee Belemnitite.
Ludden and Thompson (1979) in modern sea-floor basalts. Plots of trace elements from pillow cores normalized to primitive mantle (Fig. 6c) show strong enrichment in large-ion lithophile elements (LILE) and relatively flat distributions of high-field strength elements (HFSE).

The basalt alteration has been further interpreted with isocon plots (Fig. 7; see Grant 1986), which are graphical solutions of Gresen’s (1967) equations for comparing metasomatic changes with least-altered equivalent rocks. Comparison of pillow cores with average N-MORB (Fig. 7a) show that a best-fit line can be drawn for Ti, which shows little variation, and Y, which along with the trivalent REE is particularly immobile during hydrothermal alteration (Ridley et al. 1994). This fit suggests that the processes that affected pillow cores resulted in significant Mg and Ca loss and significant gain in Si, Al, Na, and LILE, but with little change in Fe, Mn, Cr,

Table 2. Whole-rock chemical analyses of representative pillow basalt samples.

<table>
<thead>
<tr>
<th>Sample No.:</th>
<th>SK0.0c</th>
<th>SK0.0m</th>
<th>SK1c</th>
<th>SK1.5c</th>
<th>SK1.5m</th>
<th>SK3m</th>
<th>SK14c</th>
<th>SK14m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major elements (wt.% by XRF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>48.51</td>
<td>56.87</td>
<td>56.37</td>
<td>49.32</td>
<td>57.16</td>
<td>60.54</td>
<td>50.87</td>
<td>51.20</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.88</td>
<td>0.87</td>
<td>0.90</td>
<td>0.92</td>
<td>0.92</td>
<td>0.91</td>
<td>0.90</td>
<td>0.92</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.94</td>
<td>17.94</td>
<td>19.05</td>
<td>18.61</td>
<td>18.23</td>
<td>18.77</td>
<td>18.76</td>
<td>19.11</td>
</tr>
<tr>
<td>Fe₂O₃t</td>
<td>7.17</td>
<td>5.19</td>
<td>4.17</td>
<td>6.69</td>
<td>4.91</td>
<td>2.15</td>
<td>9.23</td>
<td>9.48</td>
</tr>
<tr>
<td>MnO</td>
<td>0.14</td>
<td>0.06</td>
<td>0.05</td>
<td>0.11</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>MgO</td>
<td>4.22</td>
<td>2.78</td>
<td>2.20</td>
<td>4.05</td>
<td>2.84</td>
<td>1.06</td>
<td>4.46</td>
<td>4.61</td>
</tr>
<tr>
<td>CaO</td>
<td>4.90</td>
<td>2.60</td>
<td>2.64</td>
<td>4.96</td>
<td>2.48</td>
<td>2.46</td>
<td>2.82</td>
<td>2.46</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.03</td>
<td>8.34</td>
<td>7.70</td>
<td>5.77</td>
<td>8.20</td>
<td>9.13</td>
<td>6.62</td>
<td>6.68</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.84</td>
<td>0.26</td>
<td>1.31</td>
<td>1.69</td>
<td>0.44</td>
<td>0.76</td>
<td>0.51</td>
<td>0.59</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.09</td>
<td>0.02</td>
<td>0.08</td>
<td>0.10</td>
<td>0.04</td>
<td>0.07</td>
<td>0.16</td>
<td>0.11</td>
</tr>
<tr>
<td>L.O.I</td>
<td>8.31</td>
<td>4.40</td>
<td>4.39</td>
<td>8.30</td>
<td>4.59</td>
<td>3.15</td>
<td>5.34</td>
<td>5.29</td>
</tr>
<tr>
<td>Total</td>
<td>99.03</td>
<td>99.33</td>
<td>98.86</td>
<td>100.52</td>
<td>99.88</td>
<td>99.06</td>
<td>99.74</td>
<td>100.52</td>
</tr>
<tr>
<td>Trace elements (ppm by XRF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>1597</td>
<td>265</td>
<td>545</td>
<td>1084</td>
<td>304</td>
<td>407</td>
<td>65</td>
<td>73</td>
</tr>
<tr>
<td>Rb</td>
<td>40</td>
<td>15</td>
<td>35</td>
<td>35</td>
<td>17</td>
<td>26</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>Sr</td>
<td>336</td>
<td>331</td>
<td>384</td>
<td>376</td>
<td>312</td>
<td>441</td>
<td>198</td>
<td>169</td>
</tr>
<tr>
<td>Y</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Zr</td>
<td>61</td>
<td>52</td>
<td>57</td>
<td>66</td>
<td>55</td>
<td>63</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>Nb</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Pb</td>
<td>b.d.</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Ga</td>
<td>15</td>
<td>8</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>45</td>
<td>31</td>
<td>26</td>
<td>48</td>
<td>30</td>
<td>17</td>
<td>72</td>
<td>78</td>
</tr>
<tr>
<td>Cu</td>
<td>65</td>
<td>140</td>
<td>24</td>
<td>16</td>
<td>10</td>
<td>41</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>Ni</td>
<td>111</td>
<td>99</td>
<td>67</td>
<td>124</td>
<td>95</td>
<td>38</td>
<td>151</td>
<td>155</td>
</tr>
<tr>
<td>V</td>
<td>190</td>
<td>147</td>
<td>154</td>
<td>168</td>
<td>156</td>
<td>135</td>
<td>138</td>
<td>148</td>
</tr>
<tr>
<td>Cr</td>
<td>492</td>
<td>454</td>
<td>476</td>
<td>406</td>
<td>426</td>
<td>382</td>
<td>448</td>
<td>390</td>
</tr>
<tr>
<td>REE and selected trace elements (ppm) by INAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>0.92</td>
<td>1.18</td>
<td>1.10</td>
<td>0.89</td>
<td>1.77</td>
<td>1.31</td>
<td>0.96</td>
<td>0.79</td>
</tr>
<tr>
<td>Ce</td>
<td>3.00</td>
<td>3.00</td>
<td>4.00</td>
<td>3.00</td>
<td>6.00</td>
<td>4.00</td>
<td>4.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Nd</td>
<td>3.00</td>
<td>3.00</td>
<td>4.00</td>
<td>3.00</td>
<td>4.00</td>
<td>4.00</td>
<td>5.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Sm</td>
<td>1.29</td>
<td>0.81</td>
<td>1.26</td>
<td>1.34</td>
<td>1.40</td>
<td>1.33</td>
<td>2.07</td>
<td>1.54</td>
</tr>
<tr>
<td>Eu</td>
<td>0.48</td>
<td>0.34</td>
<td>0.45</td>
<td>0.55</td>
<td>0.55</td>
<td>0.54</td>
<td>0.70</td>
<td>0.50</td>
</tr>
<tr>
<td>Tb</td>
<td>0.40</td>
<td>0.30</td>
<td>0.30</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>Yb</td>
<td>1.67</td>
<td>1.54</td>
<td>1.52</td>
<td>2.06</td>
<td>2.41</td>
<td>1.73</td>
<td>1.56</td>
<td>1.75</td>
</tr>
<tr>
<td>Lu</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.32</td>
<td>0.38</td>
<td>0.29</td>
<td>0.24</td>
<td>0.27</td>
</tr>
<tr>
<td>Co</td>
<td>31</td>
<td>21</td>
<td>15</td>
<td>32</td>
<td>21</td>
<td>9</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>Cs</td>
<td>1.10</td>
<td>0.60</td>
<td>1.60</td>
<td>1.50</td>
<td>0.70</td>
<td>1.40</td>
<td>1.60</td>
<td>1.80</td>
</tr>
<tr>
<td>Hf</td>
<td>1.10</td>
<td>0.90</td>
<td>0.90</td>
<td>1.20</td>
<td>1.20</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Th</td>
<td>0.10</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
</tr>
</tbody>
</table>

Note: Sample designation (e.g., SK0.0 or SK14) is distance (in m) above base of Stark’s Knob (SK) pillow succession. SKLB indicates loose blocks (LB) of pillows collected at base of quarry high wall. C, pillow core; m, pillow margin; b.d., below detection.

Analytical methods and precision summarized by Pe-Piper and Piper (1989). INAA, instrumental neutron activation analysis; XRF, X-ray fluorescence.
and P. In Fig. 7b, the least altered pillow core (SK0.0, Table 2) is compared with devitrified pillow rims. If Zr, Y, and, perhaps, Ti are immobile, then the rims show significant addition of Na compared with cores, no significant difference in Sr, and loss of Cr, P, Mg, Ca, Mn, Fe, and LILE. Si may show slight addition and Al slight depletion.

Chemical mineralogy

The only primary mineral preserved is rare spinel, which is picotite, a chromian spinel, with a low Cr/(Cr + Al) ratio (24:26) and Fe³⁺ content (0.04). Such low Cr/(Cr + Al) ratios are found only in some MORB lavas, being near the lower limit of these ratios in the MORB spinel compilation of Roeder (1994), and are not known in back-arc basin basalts (Dick and Bullen 1984; Pearce et al. 2000) (Fig. 8). The Fe³⁺ is also near the lower limit of Fe³⁺ reported by Roeder (1994) for MORB.

Albite (98%–100% Ab) and chlorite are ubiquitous alteration minerals. Chlorite after ferromagnesian phenocrysts is generally brunsvigite and contains small amounts of Cr (Table D4), whereas chlorite after groundmass glass or in veins is Cr-free pycnochlorite. Ripidolite and pseudothuringite with > 2% Cr have been analyzed from a pseudomorph after olivine and appear to replace an original chromite inclusion.

Rutile is the only oxide present. It occurs as small crystals in the groundmass or in small clots with limonite and chalcopyrite (Tables D2, D3). We used electron microprobe and X-ray diffraction to search for epidote, prehnite, smectites, and zeolites but these minerals were not found. “White mica” reported by Zen (1974, p. 236, 237) is consistent with our observations of small amounts of mica after feldspar, but was not further investigated.

Discussion

Basalt alteration history

Three basalt alteration phases are distinguished at Stark’s Knob: (1) The vesicles and fractures were filled with calcite, which also replaced olivine, (2) the crystalline cores of the pillows, at least, were chloritized, and (3) the rims of the pillows were devitrified and further altered. Cooling fractures in pillows and early conversion of some ferromagnesian minerals to carbonate created substantial porosity, which was then filled during chloritization. Thereafter, significant porosity was present only at pillow margins, and some porosity may have developed by devitrification of glassy pillow rims.

The phase (1) of hydrothermal alteration compares with that of oceanic basalt remote from siliciclastic sediment (e.g., Staudigel et al. 1981), where Si is depleted during alteration and ferromagnesian minerals alter to calcite. The phase (2) chloritization of Stark’s Knob pillows shows strong enrichment in Si, Al, and Na that is consistent with albite formation (67% SiO₂; 20% Al₂O₃; Table D4). Although some of the necessary Si and Al may have come from breakdown of ferromagnesian minerals, the isocon plot (Fig. 7a) suggests net enrichment of the pillows in both elements. Mg depletion is unexpected for chloritization reactions (chlorite 10%−18% MgO) and can be interpreted by an initial breakdown of ferromagnesian minerals to carbonates. Loss of Ca occurred with the petrographically observed replacement of calcite by chlorite. Petrographically, Fe−Ti oxides appear to have altered to rutile and limonite at Stark’s Knob; the isocon plot suggests this change was essentially isochemical. The most likely source for Si and Al would be surrounding siliciclastic sediment; chert is ruled out as a source of Si, as it is not abundant in the Cambrian–Upper Ordovician of the Taconic allochthon.
Fig. 5. Paleotectonic discriminant diagrams for Stark's Knob pillow basalt. Symbols as in Fig. 4. (a) Rock classification based on Zr, Y, Nb, and TiO₂ content (Winchester and Floyd 1977). (b) Zr/Y vs. Zr plot (fields after Pearce and Norry 1979). (c) Cr vs. Y plot (fields after Pearce 1982). (d) Plot of Nb × 2 – Zr/4 – Y (fields after Meschede 1986). (e) Ti/100 – Zr – Y × 3 plot (fields after Pearce and Cann 1973). Symbols as in Fig. 4.

Fig. 6. (a) Chondrite-normalized rare-earth element (REE) pattern for pillow cores; (b) REE for pillow rims; (c) Spidergrams of primitive mantle-normalized trace element distributions in pillow cores. Normalizing factors from Sun and McDonough (1989). Symbols as in Fig. 4.
Fig. 7. Isocon diagrams (method of Grant 1986). (a) Concentration of major and trace elements from Stark’s Knob pillow cores plotted against N-MORB element concentrations (see Sun and McDonough 1989 for trace elements, Schilling et al. 1983 for major elements). (b) concentration of elements in the least-altered pillow core SK0.0 plotted against element concentration in devitrified pillow rims.

(e.g., Landing 1988) and is absent in the Cohoes melange. Similar hydrothermal alteration has been reported at ODP (Ocean Drilling Program) sites 857 and 858 (Stakes and Schiffman 1999), where MORB is buried by siliciclastic sediment near the Juan de Fuca ridge.

Pillow rim alteration involved loss of many elements. Where elements such as Mg or Ca are depleted in cores and rims on the isocon plots, it is difficult to assess which of the three alteration phases caused the depletion. However, compared with cores (Fig. 7b), the rims show significant loss of LILE, which are commonly flushed by circulating water. Fe and Mn, largely present in limonite in the cores, are substantially depleted, whereas Ti, largely in rutile in the cores, shows little

Table 3. Electron microprobe analyses of spinel (picotite) from loose block (LB) of Stark’s Knob (SK) pillow basalt.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>SKLB1B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position:</td>
<td>4–1 4–2</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.30 0.37</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>44.03 45.28</td>
</tr>
<tr>
<td>FeO</td>
<td>13.40 13.27</td>
</tr>
<tr>
<td>MgO</td>
<td>18.62 18.80</td>
</tr>
<tr>
<td>CaO</td>
<td>0.17 b.d.</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>23.49 22.29</td>
</tr>
<tr>
<td>Total</td>
<td>100.01 100.01</td>
</tr>
</tbody>
</table>

Atomic Formulae

\[\text{Si} \quad 0.066 \quad 0.081 \]
\[\text{Al} \quad 11.407 \quad 11.659 \]
\[\text{Fe}^{2+} \quad 1.819 \quad 1.828 \]
\[\text{Fe}^{3+} \quad 0.718 \quad 0.676 \]
\[\text{Cr} \quad 4.081 \quad 3.849 \]
\[\text{Mg} \quad 6.107 \quad 6.128 \]
\[\text{Ca} \quad 0.04 \quad \text{b.d.} \]
\[\text{Mg}^{#} \quad 0.77 \quad 0.77 \]
\[\text{Cr}^{#} \quad 0.26 \quad 0.25 \]
\[\text{Fe}^{3#} \quad 0.04 \quad 0.04 \]

Total iron reported as FeO. Atomic formulae were calculated on the basis of 32 oxygens. Total iron as Fe²⁺ and Fe³⁺ was apportioned using the stoichiometric assumption: \(2(\text{Mg} + \text{Mn} + \text{Ca} + \text{Fe}^{2+}) = (\text{Cr} + \text{Al} + \text{Ti} + \text{Fe}^{3+})\).

\[\text{Mg}^{#} = \text{Mg}/(\text{Fe}^{2+} + \text{Mg}); \text{Cr}^{#} = \text{Cr}/(\text{Cr} + \text{Al}); \text{Fe}^{3#} = \text{Fe}^{3+}/(\text{Fe}^{3+} + \text{Al} + \text{Cr}). \]
depletion. Al is consistently slightly depleted compared with Si, and this relationship may be due to loss of Al or addition of Si. Decrease in LOI (Fig. 4) suggests devitrification of glass. Na is the only element to show major net addition in the rims. We suggest that the final rim alteration is consistent with devitrification and diageneis involving low-temperature formation waters and slight silicification, although a sea-floor alteration process cannot be excluded.

In summary, Stark’s Knob pillow alteration involved three phases. The first was conversion of some ferromagnesian minerals to carbonate (Fig. D2d), which increased porosity. This must have occurred before burial in siliciclastic sediment. We suggest that this type of sea-floor alteration took place with hydrothermal circulation through the basalt and associated carbonate-rich sediment, as proposed on the modern sea floor by Staudigel et al. (1981). The second phase involved porosity filling by development of chlorite (Fig. D2e) and albite by hydrothermal circulation that passed through siliciclastic sediment. This implies that siliciclastic sedimentation was essentially coeval with ocean-ridge processes and eventually buried the ridge basalts. The third stage involved devitrification of pillow rims and their alteration by cool circulating water. The timing of this phase is unknown, although it may have occurred after the overrunning of the Stark’s Knob basalt lens by the Taconic master thrust. If so, it may have included conversion of original smectite to illite and resulting release of water.

Tectonic setting of Stark’s Knob basalt

The Stark’s Knob pillow basalt is not referable to the long-transported (ca. 75 + km) frontal slices of the Taconic allochthon (e.g., Zen 1967) but rather to the Cohoes melange under the Taconic master thrust. Interpretations of this basalt as a flow within the Taconic allochthon (Fisher et al. 1970; Fisher 1977) may have been based on Cushing and Ruedemann’s (1914, p. 92) report of the graptolite Didymograptus saggitarius Hall, 1847, from “beds abutting at the north and south against” Stark’s Knob. However, recovery of a graptolite known in the allochthonous Mount Merino and lower Austin Glen Formations is not relevant to determining the age, stratigraphy, or structural context of Stark’s Knob. Cushing and Ruedemann’s (1914) map shows the northern graptolite locality 100 m north of Stark’s Knob in complex melange that also has a 2.0 km-long, lowest Orlovician block. The southern graptolite locality is not plotted on Cushing and Ruedemann’s (1914) map and may be from an older block in the Cohoes melange.

The small Leiospira? sp. shows that limestone deposition and pillow extrusion correlate with the Middle Upper Orlovician Trenton Group and are younger than the highest unit (lower Upper Orlovician Austin Glen Formation) of the Taconic allochthon (see Mitchell et al. 1997 for new international definition of the Middle–Upper Orlovician boundary).

The abundant, nearly siliciclastic-free limestone lenses on and within the pillows and occurrence of Leiospira? are not consistent with the easterly provenance of synorogenic flysch (e.g., Rowley et al. 1979). Alternative explanations of shallow-marine carbonate production on Laurentia and carbonate transport to the east or abiotic carbonate production in sea water heated by basalt extrusion in a setting protected from siliciclastic input can explain the limestone lenses. Interior and shallower parts of the Laurentian margin were sites of Trenton Group carbonate production early in the Taconian orogeny, until carbonate production ended with transport of orogen-derived detritus across the platform. Thin, Trenton-equivalent sandstones with mollusk-rich faunas persist in synorogenic flysch that became the Cohoes melange on the meridian of Stark’s Knob in the Hudson River valley (Ruedemann 1912). Continued carbonate deposition on the Laurentian margin into the early stages of the Taconian orogeny provides a western source for the limestones on the Stark’s Knob pillows.

Tectonic interpretation of the Stark’s Knob basalt must be consistent with igneous geochemistry. Immobile elements and stable minerals indicate extrusion as N-MORB in an ocean-ridge setting. This is emphasized by abundance of Zr, Ti, and Y (Fig. 5), REE distribution (Fig. 6), and presence of chromian spinel with a low Cr/Al ratio (Fig. 8).

Occurrence of limestones and fossils between the pillows and preservation of original pillow textures suggest a comparison with modern ocean ridges where basalts are extruded into relatively shallow environments associated with pelagic carbonates. The caveats to this comparison are the facts that important early Paleozoic pelagic carbonate sources are unknown and that abiogenic carbonate production by sea water heating during pillow extrusion is an alternative explanation of the inter- and intra-pillow limestones.

Adjacent mudrock and sandstone at Stark’s Knob suggest that the basalts were buried by and (or) tectonically incorporated into siliciclastics. These sediments likely supplied the Si and Al required to develop albite by hydrothermal alteration. The depth of extrusion associated with most modern MORB basalts is 2 km or more, as on the modern Juan de Fuca ridge (Saunders et al. 1982; Fouquet et al. 1998). This further emphasizes that the Stark’s Knob limestones are best interpreted as derived from the Laurentian shelf or abiotically produced.

Comparison with Jonestown volcanics

The Ordovician Jonestown volcanics of eastern Pennsylvania (Lash 1986) crop out in the allochthonous Hamburg klippe and occupy similar paleogeographic and temporal relationships to the parautochthonous Stark’s Knob basalt. In the Hamburg klippe, basalt flows and subvolcanic intrusions are interbedded with deep-water siliceous mudstones and are overlain by turbidites. Chemical analyses of Jonestown basalts (although not as detailed as in our study) suggest a MORB origin. Lash (1986) proposed that the Jonestown volcanic–sedimentary association resulted from the encounter of a spreading ridge or a leaky transform fault with a trench (i.e., a setting similar to the subducting Juan de Fuca plate).

The Jonestown volcanics and the Stark’s Knob basalt are MORB-type volcanics. In addition, both volcanics are associated with limestones (albeit the Hamburg klippe limestones are bedded and occur in older, late Early Ordovician rocks under the Jonestown volcanics). Both volcanic deposits were covered by siliciclastics after extrusion, as shown by the stratigraphic relationships of the Jonestown volcanics and the type of alternation of the Stark’s Knob basalts. A cratonic source of siliciclastics that buried the Jonestown volcanics has been suggested (Lash 1989). The difficulty with this suggestion is that the coarser grained Middle Ordovician and younger siliciclastics that appear in the Taconian allochthons and
spread across the Laurentian margin were derived from the Taconic orogen (Rowley and Kidd 1981; Landing 1988).

Similarities in eruptive history, composition, and burial history point to a common origin of the Stark’s Knob and Jonestown basalts and indicate formation of MORB basalt shortly before significant deposition of Late Ordovician siliciclastics. MORB basalt of this type is thus unrelated to the much older (Early Cambrian) rifting of Iapetus (e.g., Bédard and Stevenson 1999) and must have been produced and erupted during complex plate interactions with subduction of the Laurentian margin beneath the Taconic arc. We hypothesize that arc–craton collision in the Taconic orogen led to basalt production on the subducting plate by two possible mechanisms. By the first, the transfer of motion from subduction to strike-slip led to formation of short en-echelon spreading centers and development of small ocean basins in a predominantly strike-slip setting. This first model has modern analogs in the Gulf of California (Saunders et al. 1982). A second, more hypothetical explanation for Stark’s Knob basalt eruption does not require formation of small spreading centers in a strike-slip setting. By this process, deep faults develop with extensional flexing and faulting as a plate is forced into a subduction zone (see Bradley and Kidd 1991), and may lead to eruption of basalt through the subducting plate.

Acknowledgments

Support from the New York State Museum (NYSM), Albany, New York, and a Canadian Natural Sciences and Engineering Research Council of Canada grant to G. Pe-Piper is acknowledged. S. Ingram and E. Rutnick assisted with the figures. *Leiospira*?, collected during a SUNY-Albany geology class field trip, was evaluated by E.L. Yochelson (personal communication, 1986). W. Samsonoff provided access to scanning microscopy at the Wadsworth Center for Laboratories, New York State Health Department, Albany, New York. Illustrated specimens are reposited in the NYSM.

References

Kidd, W.S.F., Pleach, A., and Vollmer, F.W. 1995. Lithofacies and structure of the Taconic flysch, melange and allochthon, in the

