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ABSTRACT

The breakoff of the subducted slab removes downward pull to switch the compressional
stress in a collision zone to tensional stress, resulting in shortening structures in the collision
zone being cut by younger normal faults. Lateral propagation of the slab bre akoff requires
development of strike-dlip cross faults to accommodate differential strains caused by migration
of the marginal slab pull and the breakoff point. We illuminate late structures in the New Y ork-
V ermont-Quebec Taconic orogen in the context of alaterally propagating slab breakoff. The
last shortening along reverse-motion veins in the Cohoes Melange is correlated with the late
shortening along the Champlain thrust. The normal faults along the western boundary of
Taconic Allochthon and the Mettawee Fault, and many small normal faults/'veinsin the
melange were caused by the subducted slab breakoff. Timing of thisregio nal extension is
constrained to be immediately following the latest thrusting during the Caradocian and before
the latest Silurian. The strike-dlip cross faults/veins in the foreland zone resulted from the
propagation of this slab-breakoff event. Develop ment of the reverse-motion veins marks
conspicuous brittle deformation of the melange zones at the end of the Taconic shortening
caused by the marginal slab pull. The reversal of subduction polarity provides atectonic
framework that requires the slab breakoff. Propagation of the slab breakoff toward north at the
end of Taconic convergence is supported by progressively later occurrence of the last
shortening events in the same direction and oblique collision of the Laurentian margin with
Island arc(s).

INTRODUCTION

Rapid vertical uplift and lateral extension in some active convergence zones have been
suggested to be a surface expression of detachment of subducting slabs, based on geological
and geophysical observations (McCaffrey et al., 1985; Charlton, 1991, Chate lain et al., 1992).
A dlab breakoff marked by seismicity gap and attenuation of seismic waves (Isacks and
Molnar, 1969; Chatelain et a., 1992; Wortel and Spakman, 1992) can occur at various mantle
depths as a function of subduction rate (Davies and von Blanckenburg, 1995), and is an event
that must occur during reversal of subduction polarity in arc-continent collision zones (van
Staal et al., 1998). Slab breakoff also has been invoked as a possible mechanism for recycling
of continental crustal materials into the mantle, and as a mechanism for syn- to post-collisional
magmatism and metamorphism (Davies and von Blanckenburg, 1995; Hildebrand and
Bowring, 1999). The slab breakoff can propagate along strike (Wortel and Spakman, 1992).
Shear stress near the tip of tear point is of sufficient magnitude to cause further lateral
migration of the tear at velocities of centimeters to meters per year (Y oshioka and Wortel,
1995). The lateral propagation of slab breakoff may be reflected in corresponding changes at
the surface such as an orogen-parallel component of depocenter shifts, rebound of the orogen,
and along-arc migration of magmatism (Meulenkamp et al., 1996; Mason et al., 1998; van der
Meulen et al., 1999).

We discuss structures in the foreland zone of the Taconic orogen from eastern New Y ork
through western Vermont to Quebec in the context of amodel of slab breakoff that propagates
along strike below converging lithospheres, with consequent systematic changes in local
stresses and related structures. Characteristics of and age constraints on newly recognized
structures are related to changes in strain occurring during the slab-breakoff process.
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GEOLOGIC SETTING OF THE TACONIC OROGEN
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Fig. 1. CC: Chuctanunda Creek, MCQ: Manny Corners Quarry, RVW: Rip Van Winkle BridgeB: Boston, M: Montreal.

THE LATE STRUCTURES IN THE TACONIC OROGEN
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The reverse- and normal-motion veins are correlated with the Champlain thrust and the
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lll. Strike-Slip Cross Faults
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4. Detailed Maps and Ages of the Strike-Slip Cross Faults
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DISCUSSION

|. Significance of the Taconic Vein System in the Melange Zones

The reverse-motion vens consistently cross-cut the melange cleavages and are not

folded nor boudinaged. This suggests.

1. They formed following the end of mgor development of the melange zones.

2. The melange zones (apparently abruptly) became brittleto allow development of
many thrusts (reverse-motion vens).

3. The brittle deformation requires a sudden increase of shortening rate at the end of
the Taconic shortening event.

=> Possibility of Marginal Slab Pull.

|I. Reversal of Subduction Polarity

In the Taconic orogen of the northeastern US, occurrence of late-stage convergent
volcano-intrusive sequences in addition to older arc sequences (Fig. 1; Tucker and
Robinson, 1990; Karabinos et al., 1998; Moench and Aleinikoff, 2002) suggests a
reversal of subduction polarity during the Taconic collision.

=>» The reversal of subduction polarity requires slab breakoff.

I11. Along-Strike Propagation of the Slab Breakott

The northward decrease of homogenization temperatures of fluidinclusions in the

reverse-motion veins (Fig. 12) isinterpreted to be aresult of progressively later

occurrence of the last shortening events toward the north.

=> |f the convergence was terminated by the slab-breakoff, the diachronous
switch from the last shortening (marginal pull) toextension can be a
consequence of the northward propagation of the slab-breakoff event.

Thelocal Ordovician arc-continent collision was oblique, starting earlier at the New

Y ork promontory and being progressively later to the Quebec reentrant

(Bradley, 1989).

=> The continental lithosphere boundary at the New Y ork promontory must have
been subducted deeper (or sooner to a given depth), andwould be the most
plausible site for the slab-breakoff to start (Davies and von Blanckenburg,
1995); once initiated, it propagated northward to the Quebec reentrant.

THE SLAB-BREAKOFF MODEL
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*Marginal slab pull: As long as the slab breakoff does not proceed to completion, the pull of the
whole hanging slab is concentrated around the tear point, resulting in locally higher stresses over the
untorn portion adjacent to the tear point (Wortel and Spakman, 1992; Yoshioka and Wortel, 1995).

3. Along-Strike Propagation of the Slab-Breakoff.
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Table 1. Comparison of model events with the late Taconic structures

Sequence Model event Natural example

- right-lateral cross fault in the Bald
Mountain region, dextral-motion veins
near Amsterdam and Canajoharie.

- reverse-motion veins from the Capital
Region (New York) to Swanton
(Vermont), see Lim et al. (2005).

- normal faults/veins in the Bald Mountain
region, the Capital region and Mount
Merino (Lim et al., 2005), Mettawee Fault.

- strike-slip fault (vein) in PoestenikKill,
sinistral-motion veins near Amsterdam
and Canajoharie.

5 Right-lateral strike-slip cross faults form. - a right-lateral cross fault near West Haven.

1 right-lateral strike-slip cross faults form

2 brief and rapid shortening.

3 The regional extension starts.

4 Left-lateral strike-slip cross faults form.

CONCLUSIONS

Recently recognized late structures of the margin of the Taconic orogen in New Y ork and
Vermont match well the structures that can be related to a propagating slab-breakoff model. We
suggest that the reverse-motion veins in the Taconic melange reflects a brief episode of higher strain
rate caused by the effect of localized marginal slab pull. The east-downthrow normal fault marking
the western boundary of the Taconic Allochthon, and the Mettawee Fault, as well as many small
normal faults/'veinsin the Cohoes Melange were caused by the subducted slab-breakoff at the end of
the Taconic orogenic event. The reversal of subduction polarity at the end of the Taconic collision
also requires breakoff of the eastward-subducted slab. The decrease toward the north of
homogeni zation temperatures of fluid inclusions in the reverse-motion veinsresu Ited from
progressively later occurrence of the last shortening events (marginal pull) toward the north. The
geometry and regional pattern of subsidence of the Laurentian continental margin are also consistent
with the dlab-breakoff propagating toward the north. Distribution and slip sense of the strike-dlip
cross faults/veins in the western margin of the New Y ork-Vermont-Quebec Taconic orogen and
foreland also can be interpreted in the context of differential strain accommodating the laterally-
propagating slab-breakoff (Fig. 14, 15).

We propose a model of structures produced by major change of stressfield during laterally
propagating slab breakoff. At the dab tear-point, the compressional stress over collision zone
switches to tensional stress in response to the rapid rebound of the partially-subducted continental
margin, resulting in the shortening structures cut by many normal faults. Lateral propagation of the
slab breakoff explains strike-dlip cross faults formed as accommodation structures at the boundaries
of contrasting areas of shortening and extensional strains.




