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[1] The northern latitudes have warmed by �0.8�C since the early 1970s, but not all
areas have warmed equally. Eurasia shows an overall warming trend, while North America
exhibits warming at a lower rate and even a slight cooling trend during the last 50 years in
the eastern United States. We analyzed a recently developed satellite normalized
difference vegetation index (NDVI) data set (July 1981 to December 1999) to assess
vegetation response to these temperature changes. An index of persistence of the NDVI
trend was used to generate patches of different levels of persistence. The persistence data
were analyzed for patch area, patch perimeter, patch number, patch coherence, largest
patch size, patch fragmentation, pixel contiguity, pixel clustering, and conditional
probability of pixel adjacency. We address two questions: (1) Is there a difference in the
spatial pattern of long-term NDVI increase in comparison to short-term increase? and (2)
Are there differences in the spatial patterns of patches between Eurasia and North
America? The results indicate a persistent and spatially extensive and connected greening
trend in Eurasia, relative to North America. The regions showing short-term greening in
Eurasia show a scattered pattern of spatially remote small patches. In North America the
long-term greening pattern is spatially fragmented, and a mixture of short- and long-term
NDVI increase is found, unlike in Eurasia. Therefore we conclude that the greening trend
in Eurasia is more persistent and spatially extensive than in North America, which is
qualitatively consistent with near-surface air temperature observations. INDEX TERMS:

1640 Global Change: Remote sensing; 1620 Global Change: Climate dynamics (3309); 1851 Hydrology:

Plant ecology; KEYWORDS: NDVI, global warming, greening, spatial pattern, AVHRR

1. Introduction

[2] The effect of climate change on ecosystems, in
particular the consequences of temperature increase on plant
and animal life, is a topic of paramount importance.
Analysis of temperature records from meteorological sta-
tions shows unprecedented rate of temperature change
during the past 25 years [Hansen et al., 1999]. The northern
latitudes experienced enhanced warming, especially during
the winter and spring periods. The biotic response to
warming can be assessed in multiple ways, e.g., phenolog-
ical changes in plants [Myneni et al., 1997; Colombo, 1998;
Schwartz, 1998; Bradley et al., 1999; Menzel and Fabian,
1999; Cayan et al., 2001; Fitzjarrald et al., 2001; Zhou et
al., 2001] and changes in animal behavior [Crick et al.,
1997; Brown et al., 1999; Crick and Sparks, 1999; Parme-
san et al., 1999; Thomas and Lennon, 1999].

[3] Analyses of satellite-measured vegetation index data
suggest increased photosynthetic activity in a manner asso-
ciated with an increase in the length of the active growing
season in the northern high latitudes [Myneni et al., 1997;
Zhou et al., 2001]. This has implications for the global
carbon cycle. An increase in the amplitude of the seasonal
CO2 cycle in the Northern Hemisphere since the early 1960s
has been detected [Keeling et al., 1996] and related to
northern vegetation activity [Randerson et al., 1999].
[4] Spatially averaged normalized difference vegetation

index (NDVI) and near-surface air temperature anomalies
are shown in Figure 1a for vegetated regions in the 40�N–
70�N band [Zhou et al., 2001]. The correlation between
satellite NDVI and station temperature changes in both
Eurasia and North America suggests a possible vegetation
response to warming. The NDVI data capture the contrast
between red and near-infrared reflectance of vegetation,
which signals the abundance and energy absorption by
chlorophyll. Thus the NDVI data are generally well corre-
lated with the fraction of photosynthetically active radiation
absorbed by vegetation [e.g., Asrar et al., 1984; Myneni et
al., 1995, 1997]. This concept underlies the use of NDVI as
a proxy for monitoring photosynthetic activity on a global
scale [Tucker et al., 1985, 1986].
[5] A pattern of NDVI change distinct between Eurasia

and North America was noted by Zhou et al. [2001] based
on the same 18.5-year record. They report that North
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America shows a fragmented pattern of change in smaller
areas while Eurasia exhibits a persistent increase in growing
season NDVI over a broad contiguous swath of land.
Analysis of the distribution of vegetated area by temperature
trends confirms the findings of Zhou et al. [2001] (Figure 1b).
North America shows a skewed distribution of temperature
change with a larger fractional area under a marginal cooling
trend that is hardly compensated by the area under intensive
warming. Eurasia, on the other hand, shows mostly a warm-
ing trend with negligible occurrence of cooling. Zhou et al.
[2001] characterized the consistency of NDVI trends in terms
of a persistence index and draw these conclusions from a
cursory analysis of the areal extent of trends at different
persistence levels. Trends based on short record lengths must

necessarily be interpreted with caution. The spatial patterns
of temporal changes in NDVI provide information that
potentially can enhance confidence in the observed trends.
Trends that show spatial proximity and coherence are more
reliable than those observed only in spatially fragmented
regions because the patterns are indicative of the underlying
cause for change. The argument of Zhou et al. [2001] that
NDVI changes are spatially different between Eurasia and
North America thus raises two questions. First, what are the
differences in the spatial pattern of regions exhibiting short-
term NDVI increase in comparison to regions showing long-
term increase? Second, what are the differences in the spatial
pattern between Eurasia and North America of regions
showing a long-term NDVI increase? These issues are

Figure 1. Indications of temperature and normalized difference vegetation index (NDVI) increase in the
northern latitudes. (a) Spatially averaged NDVI and near-surface air temperature anomaly between 40�N
and 70�N for the growing season (April–October) for an 18.5-year record (July 1981 to December 1999).
R is the correlation coefficient; the double asterisk denotes statistical significance at the 0.01 level [Zhou et
al., 2001]. (b) Fraction of vegetated area in North America and Eurasia subjected to temperature increase
or decrease, calculated for an 18.5-year record (July 1981 to December 1999) and for the growing season
(April–October) between 20�N and 80�N.
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addressed in this article mainly with methods developed
in landscape ecology [Fortin, 1999], a branch of science
developed to analyze ecological processes in their spatial
context [e.g., Antrop, 2001; Stine and Hunsaker, 2001].
[6] Landscape ecology is based on the premise that there

are strong links between patterns, functions and processes
[Gustafson, 1998]. A number of studies have explored the
utility of spatial metrics in landscape analysis since the
1980s [e.g., Krummel et al., 1987; O’Neill et al., 1988;
Turner, 1989; Ripple et al., 1991; Haines-Young and Chop-
ping, 1996; Schumaker, 1996; Bogaert et al., 1999;He et al.,
2000; Bogaert et al., 2001]. A set of indices is frequently
evaluated because no single metric fully captures the com-
plexity of the spatial arrangement of patches. As a result, the
number of indices has proliferated, many of which have been
shown either to be correlated [Riiters et al., 1995; Hargis et
al., 1998; Bogaert et al., 1999] or to exhibit statistical
interactions with one another [Li and Reynolds, 1994]. There
have been attempts to develop metrics that combine multiple
components of a pattern into a single value [Bogaert et al.,
2000c]. On the other hand, the use of statistical methods
such as factor analysis to reduce the number of indices
[Riiters et al., 1995; Cain et al., 1997; Bogaert et al., 1999;
Herzog et al., 2001] does not render the ecological meaning
of a metric to the analyst [Riiters et al., 1995]. Generally, one
should attempt to describe independent and fundamental
components of a spatial pattern by utilizing a suite of metrics
[Li and Reynolds, 1994; Riiters et al., 1995; Giles and Trani,
1999]. Therefore, in the present study we use patch size
coherence [Jaeger, 2000], pixel contiguity and clustering
[LaGro, 1991], neighborship probability [Riiters et al.,
2000], and indices of largest patch [McGarigal and Marks,
1995] and fragmentation [Johnsson, 1995], in addition to
basic patch statistics of area, perimeter, and number, to study
the spatial structure of NDVI trends in the northern latitudes.

2. Data Set and Methods

2.1. GIMMS NDVI Data Set

[7] A global data set at 8-km resolution (square pixels)
developed by the Global Inventory Monitoring and Model-
ing Studies (GIMMS) group was used in this study. The data
are from the Advanced Very High Resolution Radiometers
(AVHRR) onboard the NOAA series satellites (NOAA 7, 9,
11, and 14) and cover the period July 1981 to December
1999. The data set contains channels 1 (0.58–0.68 mm) and
2 (0.73–1.1 mm) reflectances, channels 4 (10.3–11.3 mm)
and 5 (11.5–12.5 mm) brightness temperatures, solar and
view zenith angles, and the day of compositing. All data
correspond to the maximum NDVI value during a 15-day
composite period (|NDVI| � 1). The NDVI values are about
�0.2 to 0.1 for snow, inland water bodies, deserts, exposed
soils, and sparsely vegetated areas and increase from 0.1 to
�0.7 for increasing amounts of vegetation.
[8] The satellite data processing included improved nav-

igation, sensor calibration, and improved atmospheric cor-
rections. The data navigation algorithm used an accurate
orbital model, latest satellite ephemeris information and
instrument clock correction in addition to a digital elevation
model to account for target elevation [Rosborough et al.,
1994]. A technique based on data from high cold clouds and
dark ocean was used to calibrate the data set [Vermote and

Kaufman, 1995]. This calibration was deemed insufficient
and improved by a method developed by Los [1998]. The
data for the periods April 1982 to December 1984 and June
1991 to December 1993 were corrected to remove the
effects of stratospheric aerosol loading from El Chicon
and Mount Pinatubo eruptions [Vermote and El Saleous,
1994]. Residual atmospheric effects were minimized by
analyzing only the maximum NDVI value within each
15-day compositing period; days 1 to 15 form the first
interval, and days 16 to the end of the month the second.
These data generally correspond to observations in the for-
ward, nearest to near-nadir view directions [Los et al., 1994]
and clear atmospheres [Holben, 1986]. Bidirectional effects
and residual atmospheric effects are, however, not fully
eliminated by this approach. Further technical discussion on
the quality of AVHRR vegetation index data can be found in
the works of Kaufmann et al. [2000] and Zhou et al. [2001].
[9] Only vegetated pixels were analyzed to further reduce

any remaining nonvegetation effects on the data and to
exclude snow, barren, and sparsely vegetated areas. Vege-
tated regions were delineated as those with (1) June to August
NDVI composite values exceeding 0.1 in all years; and (2)
June toAugust averageNDVI value exceeding 0.3 in all years
[Zhou et al., 2001]. The 8-km resolution datawere aggregated
to a 0.25�� 0.25� resolution to reduce computational burden.
[10] The persistence index (PI ) as defined by Zhou et al.

[2001] was used to illustrate spatial occurrence of NDVI
changes during the growing season. Linear trends in growing
season average NDVI were calculated for the periods 1982–
1987, 1982–1989, 1982–1991, 1982–1993, 1982–1995,
1982–1997, and 1982–1999. These trends are denoted as
t(i), with i = 1, . . ., 7. A score of 1 is assigned if t(i + 1) > 0.8
t(i); otherwise, a score of 0 is given. The sum of these scores
is defined as PI; thus 0 � PI � 6. Regions can therefore be
identified where NDVI has increased consistently based on
the PI. The higher the PI, the longer the period a pixel shows
increase of NDVI. The analysis was restricted to pixels with
PI � 2 and to vegetated areas in the latitudinal band 20�N to
80�N.
[11] Pixels were aggregated into ‘‘patches’’ based on

orthogonal pixel neighborships for each persistence level
(Figure 2). Two pixels are grouped in one patch if they are
orthogonal neighbors (‘‘nearest’’ neighbors). Orthogonal
neighbors are also denoted as ‘‘adjacent’’. Two pixels that
are diagonal neighbors (‘‘next-nearest’’ neighbors) belong to
the same patch if they are connected through other pixels with
orthogonal neighborships. A threshold of 9 pixels was used in
the patch-level analysis because patches composed of small
numbers of pixels constrain pattern quantification [Milne,
1991;O’Neill et al., 1999]. Thus this study describes a patch-
level analysis to assess spatial patterning of NDVI increase
instead of pixel-level analysis, which is typical ofmost remote
sensing studies [e.g.,Myneni et al., 1997; Zhou et al., 2001].
Patch mosaics constitute another perception of the spatial
structure of the data in which data within patches are defined
as spatially homogeneous entities and in which spatial
arrangement among patches is of interest [Fortin, 1999].

2.2. Evenness as a Measure of Variability
of Index Values

[12] We use the concept of evenness to compare varia-
bility of the indices (see section 2.3) between Eurasia and
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North America and between low and high persistence
values. Higher evenness in this context indicates that the
index outcomes are closer to one another; lower evenness,
also denoted as ‘‘dominance’’, indicates otherwise. The
length of the Lorenz curve is used to assess evenness
[Lorenz, 1905; Rousseau et al., 1999]. The outcomes are
ranked from low to high, replacing their values by their
relative proportion, and using the sum of all values. The
data are thus transformed into a cumulative series. If vi
represents the ith value of a ranked series of z values (vi �
vi�1; z � i; z, i 2 ø), vi is hence replaced by v�i ,

v�i ¼
1

vt

Xi

j¼1

vj; ð1Þ

where vt = v1 + v2 + . . . + vz and v�i � v�i�1. To construct the
corresponding Lorenz curve, every v�i value is plotted on the
ordinate against its rank number, divided by the total
number of values (= i/z) on the abscissa. The length of

the Lorenz curve L can be derived from the graph and is
calculated as [Bogaert et al., 2000b]

L ¼
Xz

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

z2
þ v�i � v�i�1

� �2r
¼

Xz

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

z2
þ vi

vt

� �2
s

: ð2Þ

In case of perfect evenness, i.e., 8i, j � z : vi = vj, the curve
coincides with the diagonal (1:1 line) and L ¼

ffiffiffi
2

p
, because

both abscissa and ordinate have a length equal to one (v�z = 1).

For a data series characterized by high dominance, i.e., 9!
i 6¼ j: vi � vj, L � 2. Higher L values hence indicate higher
variation within the data series. Evenness is at best
expressed as a partial order [Rousseau et al., 1999] and
is thus adequately represented by a Lorenz curve [Taillie,
1979]. The order is not total because the curves can cross
each other in which case evenness cannot be used for they
can generate identical L values [Bogaert et al., 2000b].

2.3. Spatial Pattern Metrics

[13] The main properties of planar shapes are area and
perimeter [Bribiesca, 1997]. Patch area can be expressed in

Figure 2. Spatial presence of persistent NDVI increase in the northern latitudes. (a) Zones of long-
term greening, characterized by five or six periods of growing season average NDVI increase. (b)
Zones of short-term greening, characterized by less than five periods of growing season average NDVI
increase. For spatial analysis, adjacent pixels representing an identical persistence index value are
clustered into ‘‘patches.’’ See color version of this figure at back of this issue.
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two ways: by the pixel number or by the actual area
represented by the pixel cluster or patch. In our equal angle
data set, pixel size is dependent on latitude. The pixel size sq
at latitude q is given by

sq ¼
0:25Rp
180

� �2

cos q; ð3Þ

with R = 6.371 � 106 m, the radius of the Earth. The patch
area is the sum of the pixel areas sq. Classic perimeter
formulas [Bribiesca, 1997; Bogaert et al., 2000a] are not
applicable because of varying pixel size. Therefore we
define patch perimeter as the sum of the adjusted pixel side
lengths forming the outer boundary of a patch.
[14] Patch coherence C measures the degree of partition-

ing of one continuous area into several smaller fractions
[Jaeger, 2000]. C is calculated as

C ¼
Xn
i¼1

ai

at

� �2

; ð4Þ

where ai is the area of the ith patch, at the total area, n the
number of patches considered, and 0 � C � 1. Higher

values of C result when a few, large patches are present; the
occurrence of many small patches will cause low values of
C. The degree of coherence can also be considered as a
measure of patch size evenness, i.e., C quantifies the
partitioning of at over n patches. Perfect evenness is
observed if all patches have an equal area, i.e., 8i, j: ai = aj.
Perfect unevenness or dominance is observed when one
single patch has a large area and all others have a minimum
area. To show the relationship between L and C, equation
(4) can be rewritten as

C ¼ c1 þ c2 þ . . .þ cn; ð5Þ

with ci equal to (ai/at)
2. Analogously, using ai as substitute

for vi, equation (2) is reformulated as

L ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n2
þ ai

at

� �2
s

¼ l1 þ l2 þ � � � þ ln: ð6Þ

Consequently, the relationship between L and C is given by

li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n2
þ ci

r
: ð7Þ

High ci values, generating a high overall degree of
coherence, will cause an increase of the corresponding li
values which result in longer Lorenz curve lengths,
reflecting unevenness of patch area distribution. Coherence
measures the tendency of pixels to aggregate in large
clusters and hence will increase when large differences of ai
are present. For perfect evenness, (8ci: ci = n�2), C = n�1.
[15] The largest patch index S was calculated to assess the

fractional area occupied by the largest patch in each data
layer [McGarigal and Marks, 1995], thus relating the patch
area to the total area of the persistence level,

S ¼ amax

at
; ð8Þ

with amax the largest patch area observed, i.e., 8i: ai � amax.
High values of S are associated with data layers dominated
by one single large patch.

Figure 3. Spatial pattern metrics: (a) 3 � 3 template to cal-
culate pixel contiguity G1 and (b) 5� 5 template to calculate
pixel clustering G2.

Table 1. Patch Number and Area Statisticsa

PI n at km
2 n/at, 10

�5 km�2 �a, km2 amax km
2 C.V.

Eurasia
2 10 59,241 16.88 5,924 7,367 0.267
3 92 864,802 10.64 9,400 98,698 1.231
4 292 3,468,074 8.42 11,877 194,906 1.603
5 258 8,937,630 2.89 34,642 3,724,820 7.035
6 103 1,671,698 6.16 16,230 392,067 2.494

North America
2 50 385,303 12.97 7,706 39,982 0.750
3 89 1,242,232 7.16 13,958 165,418 1.597
4 150 2,350,342 6.38 15,669 187,223 1.699
5 102 2,645,420 3.86 25,935 548,311 2.660
6 41 553,940 7.40 13,511 43,932 0.800

aPatch number and area statistics for persistence index (PI ) data in Eurasia and North America. Number of
patches (n), total area (at), patch density (n/at), mean patch area (�a), maximum patch area (amax), and the coefficient
of variation (C.V.) are listed.
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[16] The fragmentation index F measures the aggregation
of pixels into patches and is considered as a measure of
image complexity [Johnsson, 1995]. F is calculated as

F ¼ n� 1

m� 1
; ð9Þ

with n the number of patches (n� 1),m the number of pixels
considered, and 0 � F � 1. Increasing degrees of
fragmentation, i.e., the occurrence of a higher number of

spatially separated pixel clusters, will result in higher values
of the fragmentation index. F = 0 is measured in the case of
one single patch, regardless of its area. Considering that a
threshold value of 9 pixels was used in our analysis
(section 2.1), the maximum value (Fmax) is observed for
n = m/9 and is for m � 1 equal to

Fmax ¼
m� 9

9 m� 1ð Þ ¼
n� 1

9n� 1
� 0:11: ð10Þ

Figure 4. Patch area and perimeter distributions. (a) Cumulative patch size distribution for different
persistence values (PI = 2, 3, . . ., 6) in Eurasia. (b) Cumulative patch size distribution for different
persistence values (PI = 2, 3, . . ., 6) in North America. The curves in Figures 4a and 4b represent the
proportion of the total area in the data layer that is covered by patches of a particular size. (c) Cumulative
patch perimeter distribution for different persistence values (PI = 2, 3, . . ., 6) in Eurasia. (d) Cumulative
patch perimeter distribution for different persistence values (PI = 2, 3, . . ., 6) in North America. The
curves in Figures 4c and 4d represent the proportion of the total boundary length in the data layer that is
taken by patches with a particular perimeter.

ACL 4 - 6 BOGAERT ET AL.: SPATION PATTERN OF NDVI INCREASE IN THE NORTH



Note that (1) equation (9) has no solution if m = 1 and (2)
F is measured using pixel counts instead of actual patch
and pixel areas based on equation (3), as for C and S.
[17] Assessing the spatial connectedness or contiguity G1

of cells within a grid cell data set provides information on
the overall spatial structure [LaGro, 1991]. Contiguity is
quantified by convolving a 3 � 3 pixel template, or mask,
with a binary digital image in which the pixels within the
class of interest are assigned a value of 1 and the back-
ground pixels a value of 0. A template value of 2 is assigned
to quantify horizontal and vertical relationships and a value
of 1 is assigned to quantify diagonal relationships with the
central pixel (Figure 3a). Orthogonally contiguous pixels
are consequently more heavily weighted than diagonally
contiguous pixels. The value of each pixel in the output
image G1(i, j), computed when at the center of the mask,
equals the sum of the products of each template value and
the corresponding input pixel value g(k, l ), within the nine-
cell pixel neighborhood, i.e.,

G1 i; jð Þ ¼
Xiþ1

k¼i�1

Xjþ1

l¼j�1

tg k; lð Þ; ð11Þ

with t the template value dependent on V = |i � k| + | j � l|:

t ¼
1 , V ¼ 0ð Þ _ V ¼ 2ð Þ
2 , V ¼ 1

	

where _ denotes that one of both conditions should apply.
Consequently, 1 � G1(i, j) � 13. The occurrence of large
patches will go together with observing the highest pixel
contiguity values.
[18] Characterizing the spatial clustering G2 of pixels

provides information on the spatial pattern not provided by
assessment of contiguity [LaGro, 1991]. A pixel neighbor-
hood of 5 � 5 pixels is applied to detect, in the vicinity of
each image pixel, the presence of nearby noncontiguous
pixels of the class being analyzed. Sensitivity to clustering
of both contiguous and noncontiguous pixels is achieved
by decreasing the template values outward from the central
pixel (Figure 3b). For any given pixel, G2 reflects the
pixel’s proximity to other pixels within the same class. By

analogy with contiguity the clustering value of each pixel
in the output image G2(i, j) is calculated by summation of
the products of the template values with the corresponding
input pixel values g(k, l ), i.e.,

G2 i; jð Þ ¼
Xiþ2

k¼i�2

Xjþ2

l¼j�2

tg k; lð Þ; ð12Þ

with t also dependent on V = |i � k| + | j � l|:

t ¼

1 , V ¼ 0ð Þ _ V ¼ 4ð Þ
2 , V ¼ 3

3 , V ¼ 2ð Þ ^ i ¼ kð Þ _ j ¼ kð Þð Þ
4 , V ¼ 2ð Þ ^ i 6¼ kð Þ ^ j 6¼ kð Þð Þ
5 , V ¼ 1

8>>>><
>>>>:

where ^ denotes that both conditions should apply. The
main difference between G1 and G2 is the incorporation in
G2 of pixels that are noncontiguous to the central pixel.
Note that 1 � G2(i, j) � 69 and that large patches localized
in each other’s vicinity will generate the largest G2 values.
[19] Finally, we measure the conditional probability Pc

that, given a pixel of the class of interest, the nearest
neighbor is also a pixel of the class of interest [Riiters et
al., 2000]. This measure is considered a measure of frag-
mentation and can be used as a variant of contiguity
assessment. The main difference with G1 and G2 is that
not only contiguity with the central input pixel is assessed
but that all nearest neighborships in the template are
weighted equally. Diagonally neighboring pixels are not
considered as pixel pairs. Pc was assessed using four
templates: 3 � 3, 5 � 5, 7 � 7, and 9 � 9. The templates
do not contain weight factors but only delimit the vicinity in
which pixel adjacencies are quantified. Pc is calculated as

Pc ¼
n2

n1
; ð13Þ

with n1 the number of pixel pairs that include at least one
pixel of the class of interest and n2 the number of pixel
pairs of which both pixels belong to the class of interest.
For each calculation in a m � m template, 2m(m � 1)

Table 2. Perimeter Statisticsa

PI pt, km �p, km pmax, km C.V.

Eurasia
2 5,279 528 730 0.284
3 68,014 739 6,217 0.965
4 243,405 834 7,758 1.004
5 417,054 1,616 122,802 4.977
6 102,267 993 15,176 1.635

North America
2 32,105 642 2,769 0.614
3 86,257 969 8,059 1.225
4 155,233 1,035 11,778 1.336
5 144,595 1,418 20,208 1.867
6 36,680 895 2,897 0.704

aPerimeter statistics for persistence index (PI ) data in Eurasia and North
America. Total perimeter ( pt), mean patch perimeter ( �p), maximum patch
perimeter ( pmax), and the coefficient of variation (C.V.) are listed.

Table 3. Coherence, Largest Patch Index, and Fragmentationa

PI C S F

Eurasia
2 0.106 0.124 0.058
3 0.027 0.114 0.046
4 0.012 0.056 0.036
5 0.194 0.417 0.013
6 0.069 0.235 0.028

North America
2 0.031 0.104 0.056
3 0.039 0.133 0.031
4 0.026 0.08 0.030
5 0.078 0.207 0.020
6 0.039 0.079 0.040

aCoherence (C ), largest patch index (S ), and fragmentation (F ) for
persistence index (PI ) data in Eurasia and North America.
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pairs have to be considered. Pc equals zero if none of the
pairs includes two pixels; Pc equals one if all pixels in the
template are pixels of the class of interest. In the output
image the value of Pc is given to the central pixel of the
template.
[20] Note that G1, G2, and Pc are only evaluated if the

central pixel of the template belongs to the class of
interest; otherwise, a value of zero is assigned to the pixel
in the output image corresponding to the template’s central
pixel. Because calculation of G1, G2, and Pc is an
intermediate between a pixel-level analysis and a patch-
level analysis (only pixel-to-pixel neighborships are con-

sidered; patch extent can exceed the template size or can
fractionally intersect), the threshold of 9 pixels was not
applied.

3. Results and Discussion

3.1. Patch Number, Area, and Perimeter

[21] The number of patches (n) increases with persis-
tence level, peaks at a persistence index (PI) value of 4,
and then decreases on both continents (Table 1). The peak
values represent �39 and 35% of the total patches in
Eurasia and North America, respectively. The decline from

Figure 5. Pixel contiguity G1 and clustering G2 distribution: (a) cumulative contiguity value distribution
for different persistence values (PI = 2, 3, . . ., 6) in Eurasia; (b) cumulative contiguity value distribution for
different persistence values (PI = 2, 3, . . ., 6) in North America; (c) cumulative clustering value
distribution for different persistence values (PI = 2, 3, . . ., 6) in Eurasia; (d) cumulative clustering value
distribution for different persistence values (PI = 2, 3, . . ., 6) in North America.
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this value is different on the two continents. For instance,
patches of PI = 5 (PI = 2) are �34 and 24% (1 and 12%)
of the total patches in Eurasia and North America, respec-
tively. Thus there are relatively more (fewer) patches in
Eurasia at high (low) persistence levels compared to North
America. This is indicative of a more persistent greening
in Eurasia.
[22] The largest total patch area (at) is observed for PI = 5

on both continents. However, in Eurasia this represents 60%
of the total area, while it is only 37% in North America. The
NDVI trend was therefore less persistent over a larger area
in North America than in Eurasia, proportionally. In fact, for
PI � 3 the absolute area in North America even exceeds that
of Eurasia despite its smaller areal extent. This suggests
high interannual variability in North American NDVI
changes; i.e., the trend is not consistent with time that is
characteristic of low persistence levels.
[23] The mean patch size (�a) increases with increasing

persistence level, up to PI = 5. The decrease at PI = 6 is to
be expected in view of a global cooling trend following
the eruption of Mount Pinatubo in June 1991 (cf. Figure
1a). This decrease is observed for at and also for several
other indices. A related metric, the patch density (n/at =
(�a)�1), which is a measure of spatial ‘‘scattering’’ or
fragmentation, likewise decreases with increasing persis-
tence level, and is higher (lower) in Eurasia than in North
America at low (high) persistence levels. Thus regions
showing a persistent increase in NDVI are relatively more
fragmented in North America.
[24] The cumulative distribution of patch sizes is shown

in Figures 4a and 4b for different persistence levels. The
contribution of large patches to the total patch area increases
with persistence level, up to PI = 5. For PI > 5 a decrease is
observed (cf. Table 1), which is more pronounced in North
America, compared to Eurasia. The presence of large
patches signifies an identical trend in many vicinal pixels.
Correspondingly, smaller patches are indicative of a more
fragmented pattern. At low persistence levels (PI � 4) a
larger fraction of the area is associated with large patches in
North America relative to Eurasia. The opposite is the case
at higher persistence levels, where for PI = 5, fully 60%
(50%) of the area is present in these large patches in Eurasia

(North America). Thus a larger fraction of the region
exhibiting consistent greening is situated in large patches
in Eurasia. In North America the same is true, but of regions
exhibiting a short-term trend.
[25] The tendencies seen in patch size distributions are

reflected by the size of the largest patch (amax), which
increases from PI = 2 to 5 (Table 1). This affects patch
size variation, as expressed by the coefficient of variation,
defined as the ratio of the standard deviation to the mean
value (C.V., henceforth), which peaks at PI = 5 in both
continents, more notably in Eurasia. The C.V. decreases
clearly if only small patches of a comparable size are
present, as in the case of PI = 2. The larger C.V. values at
high persistence levels in Eurasia indicate an aggregated
pattern formed from a mixture of large and small patches.
[26] The total patch perimeter pt values increase with

persistence level, up to PI = 4 in North America and PI = 5
in Eurasia and decrease thereafter (Table 2). The average
perimeter �p likewise increases up to PI = 5 and then
decreases. Elongated patches are characterized by large
perimeter lengths and compact patches by small perimeter
lengths. Patches of low (high) persistence have higher
(lower) perimeters in North America relative to Eurasia.
This is consistent with observations of patch areas. Perim-
eter values generally increase with area because minimum
perimeter lengths are associated with given area values in
raster data [Bribiesca, 1997; Bogaert et al., 2000a].
[27] The fraction of total perimeter taken by different

perimeter length values is shown in Figures 4c and 4d. A
general increase of the fraction of large perimeter lengths
with increasing persistence is observed on both continents,
up to PI � 5. At low persistence levels (PI � 4), patches
in North America are more elongated, while at higher
persistence levels Eurasian patches show extended perim-
eters. Alike for the patch size distribution (cf. Figures 4a
and 4b), for PI = 6, lower values are observed, where
North America shows a larger fraction of smaller perimeter
values than Eurasia. The increase in perimeter lengths with
persistence can also be seen in pmax results (Table 2). The
presence of longer perimeters mixed with smaller lengths
is confirmed by the C.V. The highest value is in layer
PI = 5 in Eurasia; in North America this is less clear.

Table 4. Contiguity, Clustering, and Neighborship Probability Statisticsa

PI �G1 C.V. �G2 C.V. �Pc C.V. �Pc C.V.

3 � 3 9 � 9

Eurasia
2 3.47 0.70 12.10 0.81 0.17 1.11 0.14 0.80
3 5.00 0.60 21.01 0.66 0.28 0.86 0.24 0.62
4 6.36 0.51 28.64 0.54 0.38 0.71 0.34 0.53
5 8.85 0.40 43.42 0.43 0.60 0.52 0.55 0.44
6 6.55 0.55 28.89 0.63 0.41 0.72 0.37 0.58

North America
2 4.95 0.59 20.40 0.62 0.28 0.84 0.23 0.56
3 5.97 0.55 26.38 0.58 0.36 0.75 0.31 0.55
4 6.54 0.50 29.92 0.52 0.40 0.69 0.35 0.50
5 7.23 0.48 33.60 0.51 0.46 0.64 0.41 0.49
6 5.99 0.53 25.27 0.57 0.37 0.68 0.32 0.47

aMean contiguity (G1), mean clustering (�G2), and mean conditional probability of neighborship (�Pc) for persistence index (PI) data in Eurasia and
North America. Each statistic precedes its coefficient of variation (C.V.). Pc results are listed only for a 3 � 3 and 9 � 9 template. Several value pairs
are statistically not different at the 0.05 level. For �G1, value pairs (5.00; 4.95), (6.55; 6.54), and (5.97; 5.99). For �G2, value pairs (21.01; 20.40) and
(28.64; 28.89). For Pc with a 3 � 3 template, value pair (0.36; 0.37). For Pc with a 9 � 9 template, value pairs (0.24; 0.23) and (0.31; 0.32).
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Overall, these results suggest increasing perimeters with
higher persistence level, and patches with extended perim-
eters at high persistence levels in Eurasia.

3.2. Coherence, Largest Patch Index, and
Fragmentation

[28] Coherence (C) is preferably evaluated using the
reference value for the case of perfect evenness (= n�1).
Although all coherence values exceed the reference value,
three data layers in particular show a clear deviation from
perfect evenness (Table 3). Coherence is �50 times the
reference value for PI = 5 (�7 times for PI = 6) in Eurasia

clearly indicating dominance of a few large patches. The
corresponding coherence value in North America is only �8
times the reference value and reflects a less aggregated
pattern. This is consistent with observations of patch size
distribution (Figures 4a and 4b), amax, and the C.V. (Table 1).
Note that the relatively high coherence value of the PI = 2
layer in Eurasia (C = 0.106) is an artefact of too few patches
(n = 10).
[29] The largest patch index (S) reveals that the PI = 5

layers are especially dominated by a large patch, which in
Eurasia occupies about 42% of at (Table 3). A large patch is
also seen in Eurasia for PI = 6 (S = 0.235), but not in North
America (S = 0.079). The S values are comparable for the two

Figure 6. Cumulative distribution of the conditional probability of neighborship (Pc) for different
persistence values (PI = 2, 3, . . ., 6): (a) Eurasia, using a 3 � 3 template; (b) North America, using a 3 � 3
template; (c) Eurasia, using a 9 � 9 template; (d) North America, using a 9 � 9 template.
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continents at low persistence levels. The low values for PI = 4
layers are associated with high patch numbers (cf. Table 1)
which leads to patch size evenness, as confirmed by C.
[30] The fragmentation index F should be evaluated by

taking into account the minimum number of pixels per patch
(which is nine) and expressed relative to Fmax (Table 3). The
index decreases with increasing persistence, up to PI = 5,
and increases again. The low F values for PI = 5 (F = 0.013
and 0.020 for Eurasia and North America, respectively)
indicate a tendency for pixel aggregation, which is also
reflected by the larger clusters in this layer, as previously
described (section 3.1). In general, all data layers show low
F values, but the PI = 2 layer shows a degree of fragmenta-
tion exceeding 50% of Fmax. One can also note that in
Eurasia low persistence patches (PI < 5) show higher
fragmentation and high persistence patches show higher
aggregation, as compared to North America.

3.3. Contiguity, Clustering, and Neighborship
Probability

[31] Mean contiguity (�G1) increases with increasing
persistence level up to PI = 5 and then decreases (Table 4),
thus establishing a general relation between persistence
and connectedness. Low C.V. values are seen in the PI = 5
layers, which indicates a more homogeneous spatial struc-
ture characterized by a high degree of connectedness. The
mean values for North America exceed those of Eurasia
only at low persistence levels (PI � 4). Thus, on the basis
of neighborships, Eurasia shows a less fragmented pattern
than North America at high persistence levels. The cumu-
lative percentage of pixel contiguity values also shows the
largest proportion of high G1 values for PI = 5 (Figures 5a
and 5b). This increasing fraction of high G1 values with
persistence level is reflected by the concave to convex
change in the shape of the curves. The higher convexity of
the Eurasian curves for PI � 5 thus reflects a higher
degree of connectedness. All differences between the

average contiguity values are significant at the p = 0.05
level (Table 4), with the exception of three out of a total of
45; i.e., G1 enables identification of the various persistence
layers.
[32] The results for clustering G2 are similar to those for

contiguity (Table 4). Pixels with higher persistence exhibit
higher values of mean clustering �G2 and vice versa. Regions
of low (high) persistence in Eurasia are less (more) clustered
and more (less) spatially remote compared to North Amer-
ica. Because less clustering is typical of fragmented pat-
terns, regions of high persistence are more fragmented in
North America. The C.V. values reveal (1) maximum
clustering heterogeneity for PI = 2, indicating patterns
formed by mixtures of clustered and remote pixels (C.V. =
0.81 and 0.62 for Eurasia and North America, respectively)
and, (2) minimum C.V. values for PI = 5 generated by
dominance of high G2 values representing an overall
(homogeneous) clustered pattern (C.V. = 0.43 and 0.51).
The �G2 values are significantly different (Table 4, p = 0.05),
with the exception of two out of a total of 45 tests. Thus
every layer is characterized by a particular degree
of clustering. The increase in clustering with persistence
level is also reflected by the concave to convex change in
the shape of the pixel distribution (Figures 5c and 5d). The
most convex distribution represents the most clustered layer,
and this is in Eurasia, PI = 5.
[33] Assessment of conditional neighborship probabil-

ities Pc further confirms contiguity and clustering results.
The probability of finding an adjacent pixel is highest for
the PI = 5 layer (Table 4). A stronger tendency for
adjacency is observed in Eurasia at high persistence levels
(�Pc = 0.60 and �Pc = 0.55 versus �Pc = 0.46 and �Pc = 0.41, for
the 3 � 3 and 9 � 9 templates, respectively). North
America shows higher connectedness at low persistence
values. The cumulative percentages of pixel probabilities
for both templates are shown in Figure 6. A tendency for
convexity in the shape of this distribution with increasing
persistence values indicates a higher probability of patch
formation and connectedness. The curves, especially those
for Eurasia, clearly indicate differences in the underlying
spatial patterns, which are characteristic of pixel scattering
in the case of PI = 2 and adjacency in the case of PI = 5.
Overall, the PI = 5 layer in Eurasia remains the least
heterogeneous (C.V. = 0.52 and 0.44 for the 3 � 3 and
the 9 � 9 template, respectively). Note that increasing the
template dimensions does decrease the number of low

Table 5. Lorenz Curve Lengths for Spatial Pattern Metricsa

Index L �%

Eurasia North America

n 1.508 1.450 +4.00
at 1.571 1.489 +5.51

�a 1.474 1.439 +2.43

amax 1.691 1.538 +9.95
pt 1.541 1.474 +4.55

�p 1.438 1.425 +0.91

pmax 1.663 1.497 +11.09
C 1.518 1.441 +5.34
S 1.484 1.438 +3.20
F 1.450 1.434 +1.12
�G1

1.430 1.417 +0.92

�G2
1.441 1.419 +1.55

�Pc 3 � 3 1.441 1.419 +1.55

�Pc 9 � 9 1.445 1.420 +1.76

aLorenz curve lengths (L) for persistence index data in Eurasia and
North America, where L is calculated for patch number (n), total patch
area (at), mean patch area (�a), maximum patch area (amax), total patch
perimeter ( pt), mean patch perimeter ( �p), maximum patch perimeter
( pmax), coherence (C ), largest patch index (S ), fragmentation (F ), mean
contiguity (�G1), mean clustering (�G2), and mean conditional probability of
neighborship (�Pc) for both the 3 � 3 and 9 � 9 template. �% equals the
relative difference between both values.

Table 6. Lorenz Curve Lengths for the Coefficient of Variation of

the Spatial Pattern Metricsa

Index L �%

Eurasia North America

a 1.533 1.451 +5.65
p 1.528 1.442 +5.95
G1 1.420 1.415 +0.35
G2 1.422 1.415 +0.50
Pc 3 � 3 1.425 1.416 +0.64
Pc 9 � 9 1.421 1.415 +0.42

aLorenz curve lengths (L) for persistence index data in Eurasia and North
America, where L is calculated for the coefficient of variation (C.V.) of
patch area (a), patch perimeter ( p), contiguity (G1), clustering (G2), and
conditional probability of neighborship (Pc) for both the 3 � 3 and 9 � 9
template. �% equals the relative difference between both values.
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Pc values because of higher probability of finding pixel pairs
within a larger window. However, this does not increase the
overall Pc value, as evidenced by decreasing �Pc from 3� 3 to
9 � 9, probably owing to detection of extra pixel pairs
containing not more than a single pixel. Inclusion of one
spatially isolated pair containing two pixels each can often
generate additional detection of six pairs containing only
one pixel. Also note that only one (two) statistically
insignificant difference is (are) observed for �Pc for the 3 �
3 (9 � 9) template (Table 4).
[34] It should be emphasized that patches with PI = 5 in

both Eurasia and North America exhibit a pattern statisti-
cally different from all other data layers, as measured by �G1,
�G2, and �Pc. Thus we conclude that the persistence index is a
suitable measure of sustained NDVI increase.

3.4. Variation in Index Values

[35] The Lorenz curve lengths L for the aforementioned
pattern indices are given in Table 5. No crossing Lorenz
curves were observed, which is the basic condition for
comparison of these curves. Low values of L indicate that
the corresponding metric poorly discriminates the different
persistence layers. High L values reflect large differences in
pattern metric outcomes and hence signify spatial features
that clearly change within the observed duration of NDVI
increase. Note that L does not take into account the absolute
values of the original data.
[36] The values of L for Eurasia always exceed those

of North America, which reflects higher unevenness
among the index outcomes for this continent. Thus the
differences in spatial pattern between data sets represent-
ing different persistence levels are more pronounced in
Eurasia than in North America.
[37] The largest L values are noted for amax and pmax

(1.691 and 1.663, generating differences of 10 and 11%,
respectively), because these indices describe an extreme
feature of the spatial pattern. Intermediate differences are
noted for n, at, pt, and C. Measures based only on pixel
patterns, without accounting for variability in pixel size, i.e.,
F, �G1, �G2, and �Pc, show less variation between persistence
levels. The inclusion of spatially isolated pixels and clus-
ters, fewer than 9 pixels, is the probable cause of higher
evenness in �G1, �G2, and �Pc outcomes. The intermediate
statistic for n confirms this. The major structural difference
between layers of different persistence is therefore associ-
ated with the occurrence of large pixel clusters. This is
quantified adequately by amax and pmax, features of the
largest patch(es) in the data.
[38] The Lorenz curve lengths can also be evaluated for

the coefficients of variation of the different metrics (Table
6). Analogously, the L values of a and p, i.e., those based
on patch data, show higher differences in evenness
between Eurasia and North America than those solely
based upon pixel data (G1, G2, and Pc).
[39] The differences in structural homogeneity between

the Eurasian data layers are more marked than those of North
America. Hence, in addition to changes in the spatial struc-
ture, the internal homogeneity of the layer also changes with
persistence level. Finally, it should be noted that spatial
metrics F, G1, G2, and Pc hardly discriminate the North
American data layers, as reflected by L values close to the
minimum, L ¼

ffiffiffi
2

p
. However, this evenness does not imply

statistically insignificant differences in spatial structure (cf.
section 3.3).

4. Summary and Conclusions

[40] A recent analysis suggests not only a strong corre-
lation between satellite vegetation index and station temper-
ature data, but also a more persistent greening trend in
Eurasia relative to North America, for the period 1982 to
1999 [Zhou et al., 2001]. In view of the linkage between
NDVI data and vegetation photosynthetic activity [Keeling
et al., 1996; Myneni et al., 1997; Randerson et al., 1999],
this inference requires a more rigorous elaboration than that
presented in Zhou et al. [2001].
[41] Zhou et al. [2001] characterized the greening trend

recorded in the satellite data, in the 40�N–70�N band, in
terms of a persistence index, which identified locations
where the NDVI had increased consistently during the
1981 to 1999 time period. We examine the spatial structure
of data layers associated with various persistence levels to
enquire (1) if an increase in persistence index value is
characteristic of a consistent long-term greening trend and
(2) if the spatial patterns of vegetation index changes are
different between Eurasia and North America. Because the
persistence index is calculated on a per pixel basis, spatial
information (pixel vicinity) is retained, and patches com-
posed of adjacent pixels of identical persistence value will
determine the spatial structure of the greening trend.
[42] The selection of metrics suitable for assessment of

spatial patterns is subject to debate. The use of multiple
indices, necessary because of pattern complexity, is mort-
gaged by index redundancy [Riiters et al., 1995; Haines-
Young and Chopping, 1996]. The selection of indices
should, however, be guided by the goals of the investiga-
tion. In our case we selected landscape indices characteristic
of fragmentation and connectedness. Indices based on
convolving a pixel mask with binary digital images were
used to complement indices generating a single value for the
entire image. In addition to mean and variance analysis, the
latter for assessment of spatial homogeneity, we used
Lorenz curve length statistics to evaluate internal variability
of metric outcomes.
[43] Regions of high NDVI persistence values in Eurasia

exhibit higher connectivity with large dominant patches,
lower patch density, higher patch coherence, more pixel
clustering, more contiguous pixels, more aggregation, and a
higher probability of finding orthogonal neighbors. In North
America the spatial pattern of long-term NDVI increases is
fragmented with a higher patch density, smaller patches, a
few large connected regions, less coherence, and higher
values of the fragmentation index. The template statistics
confirm this tendency for less connectedness, pixel remote-
ness, and a lower probability of finding an orthogonal
neighbor. It is thus we infer a persistent and spatially
extensive greening trend in Eurasia since the early 1980s.
Finally, we note that the spatial analysis reported here
convincingly demonstrates the utility of the persistence
index for characterizing a sustained long-term increase in
NDVI.
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Figure 2. Spatial presence of persistent NDVI increase in the northern latitudes. (a) Zones of long-term
greening, characterized by five or six periods of growing season average NDVI increase. (b) Zones of
short-term greening, characterized by less than five periods of growing season average NDVI increase.
For spatial analysis, adjacent pixels representing an identical persistence index value are clustered into
‘‘patches.’’
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