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Dynamics of leaf area for climate and weather models
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[1] Leaf area is the most relevant scalar variable for describing the dynamics of
vegetation on seasonal time scales, and hence is required as part of the land-surface
component of a meteorological model. A mathematical scheme for the dynamic vegetation
component of such a model is formulated and reduced to a toy model for seasonal leaf
dynamics. Leaf growth is seen as a temperature-initiated instability of the ecosystem that
drives it away from its state of winter dormancy; the onset of dormancy in autumn consists
of cold temperatures breaking the summer-time attractor; the temperature-dependent
controls are represented by a “ramp-up” function. Results from ensemble simulations
driven by a stochastic temperature model show that leaf variability statistics have a very
strong seasonality, such that variability is largely confined to spring and autumn. These
variability windows promote non-Gaussian and nonstationary statistics that occur when
the stable attractor of one season has flipped to the stable attractor of the other season.

During such periods of high variability, any dynamic vegetation model will be most
unreliable without observational constraints because of its unstable trajectory.
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Res., 113, D16115, doi:10.1029/2007JD008934.

1. Introduction: What is Needed?

[2] Terrestrial ecosystems have significant interactions
with the physical climate system. These interactions occur
through many parameters and on multiple time scales,
determining the hydrological and thermal aspects of surface
and near surface climate for days out to seasons [e.g.,
Fitzjarrald et al., 2001; Levis and Bonan, 2004; Friend
and Kiang, 2005]. On interannual time scales, the seasonal
statistics of this coupling plus biogeochemical processes
determine the longer time scale evolution of plant canopy
properties such as the leaf cover during the peak growing
season, resulting from the changing competitive status for
light, water, and nutrients, and hence shifts in species and
plant functional type composition and in the net ecosystem
storage of carbon [e.g., Fung et al., 2005].

[3] The longer time scale changes of the terrestrial
biosphere have been addressed with models that change
carbon storage and plant functional types [e.g., by Foley et
al., 1998; Bonan et al., 2003; Arora and Boer, 2006]. A
major state variable of such models on all time scales is the
leaf area index (LAI). This term has been described by
empirical phenology rules relating the LAI to temperature
[e.g., Prentice et al., 1992; Foley et al., 1996; Levis and
Bonan, 2004; Kim and Wang, 2005; Arora and Boer, 2005].

[4] The modeling of the dynamics of leaf area on the
seasonal and shorter time scales, the thrust of this paper, has
been less addressed, and has consisted of two distinct
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directions: (1) processes models [Dickinson et al., 1998,
2002], intended to simulate variability of LAI on shorter
time scales and (2) remote sensing modeling that uses
quantitative satellite imagery to infer canopy properties, in
particular, leaf area, albedo, fractional cover, and plant
functional types [e.g., Knyazikhin et al., 1998; Schaaf et
al., 2002; DeFries et al., 1999; Friedl et al., 2002]. Simple
process concepts have been used to constrain such data,
e.g., the observational inference of phenology [e.g., Justice
et al., 1985; Kaduk and Heimann, 1996; Botta et al., 2000;
Zhang et al., 2003; Ahl et al., 2006], and the filling of holes
for missing data which is based on the concept of the
continuity/correlation between canopy properties at differ-
ent pixels and at different times [e.g., Moody et al., 2005].

[5] Linear regression correlations for the onset of spring
growth have commonly used accumulated degree days. For
individual species, this approach improves by a few days
upon a simple day of the year climatological relationship
[e.g., Hunter and Lechowicz, 1992; Richardson et al.,
2006]. Some such temperature related phenology models
have been tested for assimilation of leaf area [e.g., Koetz et
al., 2005]. However, the use of such degree day estimates
by dynamic vegetation models may produce timing errors as
large as 6 weeks [Kucharik et al., 2006] unless correlated to
additional parameters such as midwinter or annual mean
temperatures [White et al., 1997; Zhang et al., 2004;
Kathuroju et al., 2007]. Because various stress terms and
the range of LAI can be scaled from 0 to 1, hyperbolic
tangent (i.e., “logistic’”) functions may provide better fitting
than a linear function [e.g., Leinonen, 1996; Chuine, 2000]
for the construction of a dynamic model.

[6] Plants can also depend on photoperiod (i.e., length of
day) signals for initiation or termination of various pheno-
logical stages as can be established from growth chamber
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data, e.g., as modeled by Yan and Wallace [1998]. The
photoperiod of natural vegetation is entirely controlled by
latitude and day of the year. Fisher et al. [2007] used 6 years
of MODIS data to determine patterns of greenness over
New England and found that a photoperiod model (equiv-
alent to climatological average) was as accurate as a degree-
day model in establishing the onset of greenness (both with
RMS error of 6.6 days).

[7] The present paper develops an approach to modeling
the time evolution of leaf area for use in a meteorological
model and with a dynamical response to meteorological
drivers. It is not intended to describe directly biological
processes or phenological data but rather to simply repre-
sent the meteorological dependences of leaf area including
especially its time scales of adjustment. This model is
formulated as a differential equation that can take a time
series of noisy data on leaf-area and establish a smooth
curve in time through the latter. Such smoothing is founded
on a priori information captured by the dynamical model.
For such modeling, it is convenient to take leaf area as a
stochastic variable, i.e., one with random statistics varying
in time. This is a mathematical, not a physical assumption
about the nature of the leaves so treated.

[8] An overarching intent of the modeling described here
is to provide a framework for the assimilation of global
satellite data. Such assimilation requires a dynamic model
for the controls on the variation of leaf area that can be
integrated as part of a meteorological model and that uses
data available to such a model for assimilation of measured
information related to leaf area. For such applications, it is
not as important that what equations to use as the applica-
bility of the dynamical model. The details of this application
are presented in another paper [Liu et al., 2008]. The
explicit intent of this study is not to generate a particular
set of model parameters or particular leaf area climatology
but rather to provide a model structure that depends on
parameters whose values can be efficiently determined by
the appropriate data assimilation procedures.

[9] Section 2 describes the mathematical framework in
which leaf area becomes part of a meteorological model
through its connections to climate and hydrological varia-
bles and introduces the idea of a “toy’” model of this system
to better illustrate the components of this coupling most
related to the dynamics of leaf area. It also describes how
temperature variability is generated that is used to force the
model. Section 3 describes the details of the toy model with
an example of a cold-limited Northern deciduous forest.
Section 4 describes the climatological statistics of this toy
model, followed by sections 5 and 6 of discussion and
conclusions.

2. Dynamical System Approach to Coupling
Between the Physical Climate System, Ecosystems,
and Hydrology

[10] Current meteorological models, as used for climate and
weather simulations, provide complicated time-dependent
systems of differential equations for the climatological and
hydrological states of the system. The climate and hydrology
state variables of these equations can formally be denoted T’
and W. Some versions of such models also include equations
for dynamic vegetation Let L be a vector state variable
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representing all the components of such that dynamically
couple to the climate and hydrological systems. The evolution
of L in a meteorological model is, in principal, provided by
the vector differential equation:

dL/dt = G(L,T,W) —S(L, T, W) (1)

where ¢ is time, and G and S denote a vector valued
functions respectively for the gain (or growth) of L and its
stress (i.e., loss). The required functions will include many
parameters, including external forcing terms such as the
solar radiation incident at the top of the atmosphere and
aspects of soil and atmospheric composition whose change
is not part of the modeling. A primary motivation for this
paper has been the mismatch between what is used for
equation (1), if anything, in current meteorological models
and what appears to be required for the successful
assimilation of information on leaf area.

[11] For this toy model, we assume that all the variability
of the ecosystem can be projected onto the leaf area index
which is denoted L, that all the climate variability can be
described by a temperature 7, and that all of the hydrolog-
ical variability by a soil stress water parameter 7. Thus we
reduce the dimensionality of our system from very large to
the 3 state variables (L, 7, W). This paper treats all these
variables as random, as this provides a useful mathematical
framework for characterizing their statistical properties. The
definition of this time evolving state requires some geo-
graphical description of what spatial averaging is intended.
In particular, the model could apply globally, as an average
over a region, or at a local site.

[12] The water stress parameter W will depend mostly or
entirely on the profile of soil moisture. Leaves undergo
moisture stress when they cannot fully respond to the
atmospheric and radiative driven demand, i.e., the “poten-
tial” evapotranspiration. Thus moisture stress can be scaled
to the ratio of actual evapotranspiration to potential evapo-
transpiration which can be related to W.

[13] Recent phenological studies of semi-arid systems
provide a good observational basis for prescribing the
needed water stress parameters. Jolly and Running [2004]
address the seasonal dynamics of L for a savanna and a
woodland pft in the Kalahari region of southern Africa.
They compared observations from AVHRR with L modeled
with a version of the BIOME-BGC ecosystem model that
was modified to turn on its productivity after adequate
precipitation. They used hydrological budgeting arguments
to determine the initiation of leaf-growth and the loss of
leaves from water stress but did not include a coupled
dynamical model for soil moisture. Zhang et al. [2005]
examined the “NBAR EVI” product from MODIS. They
characterized the phenology of three regions of Africa,
including the sub-Saharan zone down to 5 N. Both studies
indicate no extended plateau periods of maximum green-
ness, although this inference may be an artifact of the fitting
to low-temporal resolution data. Zhang et al. [2005] show
extended periods of minimum leaf northward of 10N. They
found that the integral of seasonal precipitation provided a
good indicator of the onset of green-up, and days since the
end of the rainy season as an indicator of the probability of
the onset of dormancy.
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[14] The conclusions of these papers involve water-stress
driven phenologies and so their derivation would requires
additional consideration of hydrological inputs to the models.
In order to analyze the simplest example of equation (1), this
paper only addresses further (in section 3) a cold-stress
formulation depending on coupling to a variable temperature.

[15] As explained above, the climate state is assumed to
be adequately described by a simple scalar temperature 7
that represents a distribution of values. The present study
uses this term only to generate variability of the ecosystem
state variable L. The most realistic inclusion of temperature
might be through particular observations at some site. This
form of forcing is not used here for two reasons: (1) the
model for L is intended to be driven by temperatures
provided by a meteorological model, not observed values;
(2) perhaps more importantly, we want to establish explicitly
how and in what form the climatological statistics of L are
established, given a statistical model of T.

[16] The variability of temperature is represented by a
seasonal cycle, a stochastic term, and an adjustment term for
the effect of the diurnal cycle, i.e.:

T=T,+T +1y, (2)

where 7, is an annual cycle of temperature, e.g., as
prescribed by using linear interpolation between monthly
mean values or by expanding monthly means in a Fourier
series with annual periodicity, T’ is a stochastic term and T,
is an adjustment term for a diurnal cycle contribution with
constant amplitude, i.e., it is the diurnal cycle contribution
at some time of a day. How the latter term contributes to leaf
change does not appear to be established.

[17] We hypothesize that daytime maximum 7 contributes
to initial leaf growth and that nighttime minimum 7 affects
the development of leaf senescence or frost damage as cold
stress develops. Empirical studies of phenology have for
convenience used meteorological station data to infer a
driving temperature. We follow such a practice in this paper,
but recognize that the leaf development phenology is likely
more closely linked to leaf and soil temperature, as may be
estimated by satellite radiometric skin temperature [e.g., as
used by Zhang et al., 2004]. We mimic the possibility of a
seasonally changing contribution of the diurnal temperature
to leaf dynamics by adjusting 7" by 7, = 5 K cos[(2n(t —
140)/365]. The 5 K is the amplitude of the diurnal cycle, but
the cosine term provides an annual periodicity. Together,
these two factors provide near the maximum positive bias
contribution in the spring and negative in the fall. The
approach might be equally effective with this term being left
out given that observed daytime average temperatures are
constituted from the daily maximum and minimum values
and are highly correlated with them. It illustrates the
hypothetical but plausible possibility that daily maximum
temperatures are needed for leaf growth in spring and daily
minimum values for senescence or frost damage in the fall.
Inclusion of an actual diurnal cycle would introduce rapid
but largely reversible changes. The 7, as formulated will
contribute more irreversible effects of daily temperature
extremes.

[18] The stochastic term 7’ is what is left over after
seasonal and diurnal cycles are removed. The statistics of
this term can be approximated by a Gaussian distribution

DICKINSON ET AL.: LEAF AREA DYNAMICS FOR CLIMATE MODELS

D16115

with memory of past weather disturbances. It can be and is
modeled by:

dT'Jdt + (T' —f - 6T) /7 =0 (3)

where f'is chosen from a random Gaussian distribution of
unit variance at a daily frequency (that is also taken as the
interval of the differencing of equation (3) for numerical
solution), 7 is the temporal autocorrelation time, taken to be
6 days, as suggested by Shukla and Kinter [2006], and 6T is
a prescribed scale of temperature variability in K taken to be
6T =16 — 10sin(t - 7/365.0).

[19] The random f term provides the variability contrib-
uted by daily weather disturbances. Without it, the 7" would
decay to zero with time scale 7. The factor 67 is designed
to represent the daily RMS variability that would occur
from the random forcing in the absence of temporal auto-
correlation. Its half-sine seasonal variation fits the lower
variability experienced in summer. Daily variability corre-
sponds approximately to the averaging of 7 such samples
and is reduced from 67 by a factor of about 0.3 whereas
monthly variability is reduced by a factor of about 0.18.
Winter variability is larger than summer in the extratropics
by about a factor of 2. Allowing for this difference in
equation (3) makes the statistics “cyclo-stationary” rather
than stationary.

[20] Equation (3) is, in practice, no more than a simple
stochastic ““weather generator” intended to adequately
provide the most essential variability of L that might
otherwise be obtained from a much more elaborate climate
model. The technical difficulties arising in the numerical
integration of white noise forcing [e.g., as discussed by
Ewald et al., 2004] are avoided by assuming that the
temperature variability varies smoothly between the daily
samples. Equation (3) is instead a shortcut to avoid for the
paper the complication of running an actual weather model,
the intended driver of the leaf area model.

[21] Equation (3) was evaluated using an ensemble of
10,000 members. An annual temperature 7, is obtained
from 35 years of observed daily temperatures at a meteo-
rological station close to Harvard Forest [Williams et al.,
2006]. Initiation of leaf growth at this site is only temper-
ature limited [Jolly et al., 2005].

3. The Ecosystem State Model L as a Dynamic
Leaf

[22] A scalar version of equation (1) for L is written
similarly to equation (3) as:

dL/dt + \(L,T, W)L = 0 4)

[23] The term A is the inverse of the time scales on which
L grows (negative \) or decays (positive A). It is simply
obtained from the G of equation (1) by dividing this term by
L. As was assumed for G, it has a nonlinear dependence on
the state variables 7, W, and L.

[24] Although not indicated in equation (4), it should also
have a small photosynthate forcing term that is only relevant
when L is small. The effect of such a term is implemented
in the code by taking L = max (L, ), with ¢ = 0.01. This
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term is necessary for biological and mathematical reasons.
Biologically, at the initiation of budburst, stored photo-
synthate is necessary to provide growth as there are no
leaves to accumulate carbon. Mathematically, the solution
of equation (4) at L = 0 is at a point of unstable equilibrium
and will remain there until some mechanism is provided to
push it away from 0. Smaller values than used were found
to noticeably retard the springtime growth.

[25] Equation (4) is used as a forecast model, i.e., only the
past is known [e.g., White and Nemani, 2006]. Because we
have assumed no direct stochastic forcing in equation (4),
the variability of L is controlled entirely by that of 7and W
and so L will remain within reasonable values if the
controlling relationships are reasonable. The stochastic
forcing is multiplicative and included indirectly through
the nonlinear dependence of A on 7 and W.

[26] The term A, obtained from the scalar version of G' in
equation (1) by dividing it by L, similarly divides into gain
(—Ag) and stress (\g) terms. Positive terms Ag will represent
the loss of L to predictable respiration and stresses, e.g., as
depending on temperature and water, while negative terms
—M¢g represent the contribution to leaf growth of the
predictable physiology of carbon assimilation.

[27] The stress component of Ag is parameterized as

As = do{l. +all. = R(x)] + b1 = R(y)]}, (5)

where Ay (Ao = 0.05 day ') is an inverse time scale
characterizing normal respiration losses balancing normal
growth at steady state, a, b express enhanced loss from
stress terms, R(x) is a smooth version of Heaviside “‘ramp-
up”’ function, with the latter going from near 0 atx < —1 to 1
at x > 1. We assume that R(x) = 0.5 (1. + tanh(x)) = 1./(1. +
exp(—2x)), a basis function commonly used for various
non-linear statistical fitting techniques. The term x is the
normalized range of temperatures over which cold stress
switches off and y is the range of W over which water stress
switches off. For initial investigation, we have taken b = 0,
i.e., have omitted the water stress term; x = (7 — Tynin)/AT,
where AT =5, Tin = 5°C, and a = 9. These numerical
values are guesses that were derived from time scale
estimation and limited testing. They are not given as
recommended values but as explanation for what was used
to generate subsequent figures, and have been easily
modified by optimization to data, a step not described here
to limit the complications of the paper.
[28] The growth component —\ is parameterized as

Ao = MR(x)(Lo/L)[1. — exp(—cL)]. (6)

[29] At small L equation (6) gives growth linear in L
but at large L the growth rate approaches the constant A\oLg
(Lo = 5.) representing light limited growth. If the term
[l.—exp(—cL)] is expanded by Taylor’s series to two terms
in L, it would form the logistic differential equation more
familiar to biologists, with stable equilibrium point L = 2/c.
The [1.—exp(—cL)] dependence on L mimics a dependence
on light attenenuation, e.g., PAR absorbed by sunlit leaf
area. It has commonly been used in simple nonlinear
modeling of vegetation dynamics (e.g., Zeng et al. [2005])
for past references and a consideration of alternative such
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“ramp-up” functions). The numerical value of ¢, has been
taken to be 1.0. It affects the degree to which light saturation
depends on L and, growth at small L is proportional to it.

[30] With the use of the “sigmoid” temperature depen-
dence of A in equations (4)—(6), the leaf trajectory has a
stable limit point at L = 0 at cold temperatures, until A
changes sign with warmer temperatures at some temperature
threshold 7. The commonly used accumulation models for
phenological onset are used to trigger a “green-up” phase
of leaf growth. Over the steep central part of the sigmoid, A
is linearly proportional to 7, so its integration for logl =
JAdt = [Tdt, initially accumulates degree days, after
temperature exceeds some minimum value. Some studies,
e.g., by Chuine [2000], have assumed “sigmoidal” rather
than linear dependence on 7 for the accumulation statistic,
an algorithm even closer to that of equations (4)—(6). Jolly
et al. [2005] use an index for beginning of growth derived
from a temperature ramp, smoothed over a 21-day running
average, which also closely resembles the results of
equations (4)—(6). The integration of A is not determining
a threshold, but rather increasing the exponential growth
rate of L. After accumulation of about 100 degree days, —\
has been increased to )\, large enough to initiate growth.
Degree days are defined as accumulation of the excess of T’
over Tpmin = 5°C. More degree days are needed when the
growing season starts at the steepest part of the annual
temperature cycle, as the interval over which A is linearly
proportional to 7 is more quickly exceeded, and its accu-
mulated growth rate consequently reduced.

[31] The ramp-up functions and associated constants are
intended to incorporate the general knowledge of how
phenology depends on temperature 7 and soil water W.
Such ramp-up functions are characterized by a width scales
and a number of other shape parameters. These parameters
would be expected to differ between the two stress terms
and the growth term. However, by initially using a fixed
shape and the same terms for all 3 components, we reduce
the dimensionality without seriously altering the system
dynamics. Equations (5) and (6) so constrained, only
capture the strongest such functional relationships between
L, T, and W. However, because all the biochemical kinetics
of plant growth and respiration also depend on 7, many
other weaker dependences are recognized in process level
models. The scaling of such dependence to ecosystems,
especially that of respiration, can be somewhat controver-
sial. Further details could be warranted in the context of
fitting to good data.

[32] The derivatives of A with respect to L and 7 approx-
imate the factors relating variability of A to that of L and T.
The L derivative is needed in the next section:

(L) = ON/OL = R(x)(NoLo)[1. — (1 + cL) exp(—cL)]/L* (7)

[33] The trajectories of the ensemble of 7 simulations as
described in the previous section are used to generate an
ensemble of L simulations. For plotting purposes, ensemble
members within small ranges of L or A are binned to
provide distributional statistics. Figures 1 and 2 provide
different perspectives on the resulting seasonally varying
probability density function (pdf) of L and \. Figure la
shows for each day the boundaries for the smallest and
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Figure 1. The distribution of leaf trajectories. (a) Percentile boundaries forced by the stochastically
generated 7 (top) without and (bottom) with the inclusion of the diurnal term 7, that provide daytime
maximum in spring and nighttime minimum temperature in fall. Three years Harvard Forest data are also
plotted as “plus” from White et al. [1997] for comparison. (b) The leaf pdf at various times of year,
defined as the % of samples in each 0.1 interval of L.
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Figure 2. The seasonal variation of the distribution of (a) A in day ' and (b) —1/)\ in days showing the
periods of stability and instability (positive or negative values of \).

largest 5% of the L trajectories, the smallest and largest 25%
and the median. The variability of these trajectories is
controlled by the modeled temperature variability. When
the effect of the diurnal cycle (7)) is considered, the L
seasonality apparently is better characterized in spring.
Although a given trajectory will show substantial variability
on a weekly time scale, these percentile statistics have
smooth annual cycles. Figure 1b shows the shape of the
pdfs at given times. The major points seen are that the pdfs
are narrowly peaked in summer and winter about their
climatological values, whereas in spring and fall, they can
be much wider, i.e., cover the whole range of possible
values of L. Furthermore, the pdf can be strongly positively
skewed in early spring or late fall, and negatively skewed in
later spring or early autumn. The pdfs of A have similar
asymmetries as illustrated in Figure 2a. The growth time
scale of L (—1/)\) is shown in Figure 2b. The peak rate of
growth occurs around day 110—115, corresponding to the
time of “budburst” seen in Figure 1, i.e., L growing up to a
value of about 0.5. In the autumn, the positive region of the
5% boundary suggests that some of the time, the dynamic
leaf, after a large loss, can start to grow before being
permanently lost to cold.

4. Climatological Statistics of the Dynamic Leaf

[34] A common observational approach to describing the
statistics of the leaf dynamics would be an average over as
many years as possible from available data. A common
theoretical approach might be to look at equilibrium statis-
tics, 1.e., what leaf area is determined by a balance between
carbon gains and losses. Because of the nonlinear and
dynamical nature of the trajectory of leaves, with the
resulting nonstationary and non-Gaussian statistics, any
such averaging or equilibrium description would be an

inadequate characterization of what is important about the
statistical distributions of the leaf trajectories. The purpose
of this section is to improve on the average or equilibrium
viewpoints to provide an adequate statistical characteriza-
tion of the leaf dynamics in terms of dependence on model
parameters, including statistics of the temperature forcing
and to show a graphical representation of the leaf distribu-
tional statistics. We establish in particular, how the average
time behavior of the leaves depend on correlation statistics.
This is a common result for description of meteorological
statistics but apparently has not been previously presented
as a characteristic of dynamic vegetation.

[35] The solutions to equation (4) as a nonlinear dynamic
equation consist of its climatological average L. = (L) (i.e.,
an ensemble average over many realizations, denoted “( )”
which is assumed to estimate a many year average) and L’,
the departure in any realization from the climatological
value, L= L — (L). The climatological average of a climate
state variable such as L. depends on various higher orders
statistics. What statistical information determines the sea-
sonally varying L. is now established.

[36] The term L. can be written as:

L.=L.(T.) + L*(T.) (8)

where L,(T.) is the equilibrium obtained from equation (4)
with the climatological temperature but without the dL/dt
term. The term L* is the additional term added to L.
resulting from the transient time derivative term with only a
climatological annual cycle forcing and a contribution from
the stochastic variability of 7 about its climatological
values. It is set to 0 in winter when L is at its prescribed
minimum value. Quantitatively, L, is the stable solution
of the nonlinear equation L, A(L., 7.) = 0 and hence the
stable attractor of equation (4). For the cold time of the year,
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L =L, =0 is the only stable solution, whereas in the warm
season, L, = 0 is unstable and there is at least one root of
A(L) = 0 that is stable, i.e., to which equation (4) would
converge if 7 were not changing in time.

[37] The two terms in equation (8) are determined as
follows: a) The equilibrium value L, (7;) is the solution to
the nonlinear equation

LA(L,) = 0. (9)
[38] For sufficiently large L., its root is approximated by:

L,=LY=RLy/[l.+a(l. - R)]. (10)
[39] This approximation will be accurate to 3 decimal
places when L% > 7. Otherwise, L, is determined by
iteration from:
Lm+1 —_m_ Le)‘(Le) , (11)
¢ ¢ NLm) 4 LrdX/dL
where L7 is the mth estimate of L., and d\/dL is obtained
from equation (7), evaluated at L = L.

[40] At a small enough values of LY, the estimate of
equation (11) will not converge, and the only accessible solu-
tion is L, = 0. To apply a uniform rule, we iterate equation (11)
10 times and consider the iteration to have converged if the
relative change from the 9th to 10th iteration is <5%.

[41] b) The equation for L*, i.e., the ensemble average
departure of L from L, is obtained by substituting equation (8)
into equation (4) and taking an ensemble average, i.e.:

dL*

= 4 AL.=—F,

7 (12)

where the change of L* is forced by the rate of change of the
equilibrium solution plus the covariance between L' and X"

dL,

F=(\L :
NL) +—

(13)

[42] For the region of parameter space that L* < L., A\*
(A* = Ae — Ao, Ao = A(L,)) can be expanded as \* = p, L*,
the term quadratic in L** dropped, and equation (12) can be
approximated by

*

dL
—+ (pLe + )L = —F.

7 (14)

[43] Equations (12) to (14) show how the stochastic
variability of A and hence L will contribute to the climato-
logical average of L. However, they do not suggest what
will determine the magnitude of the covariance (\'L’). For
that, it is useful to use the linearized equation for L, i.e.

dL’'

—+ AL + LN =0.
dt

(15)
[44] Equation (15) is multiplied by L’ and averaged over
its ensemble, giving

ML) 4 )
NL) = — % = —(term] + term2) (16)
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Figure 3. The seasonal variation of the two contributions to
covariance (\N'L') as defined in equation (16), terml and
term2, positive for contribution to growth, in units of day ',

and compared to the other two forcing terms in equation (12).

[45] Terml in equation (16) shows how the variance of L
contributes to this correlation. It will be negative in the
spring when negative \. dominates but can take positive
values in the fall when positive A\. dominates. Term2
contributes because of the cyclo-stationarity of the L statis-
tics, i.e., the maximum variability of L in spring and fall. It
is consequently of a dipole nature with positive values at the
beginning of the spring ramp-up and fall ramp-down and
negative values at the end of spring and fall. However, its
values at end of spring and beginning of fall are negligible
because of the large L. in the denominator. For either term,
positive values promote growth of L* whereas negative
values a decline. The values of these terms are compared to
the other terms in equation (12) contributing to change of L*
in Figure 3. They are relatively small and compensating in
the spring but term1 is the largest contribution to the forcing
of L* in the late autumn when A, is still close to 0, see
Figure 2. The negative L* in spring, is largely from the lag,
i.e., balancing dL./dt, whereas in fall its positive values after
day 285 are largely contributed by terml, see equation (16).

[46] Figure 4a compares L, with the 10-year average of L,
and Figure 4b shows L* = L. — L. The magnitude of L* is
much larger both during the spring ramp-up and fall ramp-
down than for the rest of the year, switching to exponential
growth and then decay at these times because of the strong
dependence of A on 7. Thus the updating of the model L from
observations is a most pressing need at these times, and more
generally at times of phenological change since these can
vary by several weeks from year to year. Equations (12)—(16)
effectively represent the contributions of various forms of
variability to the climatology of L. We found in comparison
to the more exact estimate that equation (14) gives substan-
tial error for the parameters assumed in the example as
expected from the large L* values shown in Figure 4, but that
equation (16) was a fairly accurate approximation.

5. Discussion of the Modeling Approach and
Its Parameter Dependences

[47] The modeling approach analyzed here represents the
observed phenological behavior of leaves in terms of as
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Figure 4. The annual cycle of (a) the ensemble average of L(=L.) and its equilibrium value L, and

(b) L* =L, — L.

parsimonious as possible a set of parameters and with a
model structure that mimics directly the net effect of
processes that give this observed behavior. Illustrative
calculations of the model dynamics are done with a cold
temperature stress term but the framework is intended to
also handle water stress terms.

[48] The model structure consists of temperature ramp
functions for the turn-off of leaf-loss by cold stress, and a
turn-on of growing season leaf-area development. A similar
but leaf-area-dependent factor expresses the limit to growth
from light saturation. The temperature ramp functions have
as parameters, a central temperature and a temperature
width. Since cold stress and initial leaf development are
totally different biological processes, it is unlikely that these
two processes would appear to be at all similar in their
temperature dependence. However, any more detailed shape
parameters than assumed here may not be resolvable from
available data, so for reasons of parsimony we assume the
same shape for both processes.

[49] The degree to which light saturation occurs for a
given L is controlled by the parameter ¢ that we set to 1,
again to limit the number of adjustable parameters. This
value has commonly been used by other authors [e.g., Zeng
et al., 2005]. The logistic shape of the dependence of A on L
is used primarily because of its simplicity and the judgment
that data would not be adequate to distinguish between
different choices of such a function.

[50] The model parameters that determine the climatolog-
ical statistics of the. seasonal trajectories, are controlled by
2 amplitudes, the seasonal minimum and maximum, and
two timings, the onset of leaf development and leaf senes-
cence. The model as designed has minimum leaf areas of
(near) zero, and maximum values that are controlled by and
nearly the same as L,. The initiation of leaf growth is

controlled by the normalized temperature x, the implicit
equation R(x) = (1 + a)/(Ly + a), and hence by the value of a
and the two parameters relating x to 7' giving the temper-
ature which initiates growth. Also affecting the initial
appearance of leaf growth and hence the time to its 25%
level is the bud/photosynthate forcing term ¢, or equiva-
lently some nonzero starting value of L. How fast the
leaves then grow and mature depends primarily on their
initial exponential growth rate that approaches Ao (Lo — 1)
(~(5 day) ") as R(x) — 1. However, this rate has little effect
on the autumn reduction of leaf area, whose initiation is
controlled by the same temperature related parameters as the
spring onset and whose loss rate then asymptotes to (A\g @)
(~(2 day)*l). Thus the ratio of the time scales for leaf out to
leaf drop is approximately [a/(Ly — 1)](=9/4), i.e., the leaf
out period is approximately double the length of the leaf
drop period for the parameters used here.

[s1] Although the parameter a controls the leaf loss rate
for cold temperatures in both autumn and spring (and for
which it could use different parameter values), its role in
autumn is much more dominant. Except for its implementation
with sudden cold snaps, its role in spring can be compen-
sated by the parameters of the temperature-dependent
ramp-up function. Another rate simplification choice that
has been made is to ignore warm season temperature
dependences of the growth and decay rates. We could have
included simplified aspects of the temperature dependence
of the Farquhar photosynthesis model [e.g., Dickinson et al.,
1998] in the growth rate and “Q10” respiration (i.e., the
parameter J)\o). However, such dependences would only
affect the leaf trajectory somewhat during the growth phase,
but are subsumed in the specification of L, over the summer
season of maximum leaf area.
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[52] The model can be extended to allow for additional
“slow” variability by an introduction of additional state
variables. Previous authors have utilized several assump-
tions for doing such. For example, the IBIS model, Foley et
al. [1996] adjusts the maximum leaf area from year to year
according to the annual net productivity. Wei et al. [2006],
on the other hand, use an equation for potential leaf area that
is driven by interaction with soil moisture and the actual leaf
area. Cold tolerance can also be modeled as a state variable
[e.g., Leinonen et al., 1995]. Many other process state
variables, e.g., various components of vegetation such as
roots or stems, or involving nutrient or carbon cycles [e.g.,
Dickinson et al., 2002] can be added and would be needed if
the parameters of equation (4) are to be adjusted with annual
productivity.

[s3] Latitudinal and seasonal controls on phenology not
explained by temperature are commonly correlated to
“photo-period” [e.g., Jolly et al., 2005]. Outside the tropics,
such control is largely indistinguishable from daily PAR,
which appears to be important in the tropics [e.g., Myneni et
al., 2007]. A daily PAR control could be an additional
source of climate variability.

6. Conclusions

[s4] Dynamic vegetation, as a component of a meteoro-
logical prediction model, should include the coupling of
thermal and hydrological inputs from the meteorological
model, and vary on the shorter time scales of phenological
development. The nature of such coupling is illustrated
through a toy model that relates leaf-area to scalar measures
of temperature and water stress, and illustrative details of
this toy model are analyzed for the example of temperature
stress.

[55] The toy model for leaf-area is forced by temperature
with seasonal, diurnal, and stochastic components. This
temperature forcing would likely be related to the canopy
and soil temperatures of a meteorological model, but for
illustrative purposes, it is generated by a large ensemble of
stochastic simulations that mimic statistics of data from a
meteorological station. The model remains at its stable
equilibrium point of no leaves during the cold season but
undergoes unstable growth with warming spring temper-
atures until it achieves a stable summer equilibrium. The
resulting pdfs of the leaf-area are non-Gaussian and non-
stationary, with most of their variability concentrated in spring
and fall at the times of maximum growth and loss. What
determines a climatological leaf-area is analyzed in terms
of the statistics of the dynamical model. It is shown to be
contributed to by an equilibrium term, a transient term, and
various terms determined by correlation statistics, i.e., terms
proportional to the variance over the ensemble of the leaf-
area and the cyclo-stationary variation of the variance.

[s6] Some version of the model of dynamic vegetation
described here, if coupled to an adequate canopy radiation
model, can be used to provide forward simulations of
satellite observed radiances and so should be useful for
data assimilation applications.
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