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circulation patterns cannot be reproduced, the CEA drought 
will not be captured. Despite the large intra-ensemble 
spread, the model simulations indicate an essential role of 
SST forcing in causing the drought. These results suggest 
that the long-term drought may result from tropical Indo-
Pacific SST variations associated with the enhanced and 
westward extended tropical Walker circulation.
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1 Introduction

The Earth’s climate has significantly changed under global 
warming due to increasing anthropogenic greenhouse gases 
(Hartmann et al. 2013). Not only are temperatures varying 
but rainfall variability and patterns are also changing. The 
impacts of climate change are not spatially uniform, and 
Africa is identified as one of the most vulnerable continents 
(Ludwig et  al. 2013). Recent studies on African climate 
have focused mostly on the interannual to decadal vari-
ability in rainfall in West Africa, East Africa and Southern 
Africa (e.g., Zeng 2003; Dai et  al. 2004; Hoerling et  al. 
2006; Giannini et al. 2008; Williams and Funk 2011; Lyon 
and DeWitt 2012; Maidment et al. 2015; Nicholson 2016), 
while Central equatorial Africa (CEA), where the second 
largest rainforest on the world is, has been the subject of 
much less investigation primarily due to the dearth of avail-
able observations (Todd and Washington 2004; Washing-
ton et al. 2013; Maidment et al. 2015). Therefore, a greater 
understanding of how CEA climate varies is imperative.

Few studies have attempted to understand the tropical 
climate system and mesoscale convective processes that 
determine the rainfall over CEA (e.g., Laing and Fritsch 
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1993; Jackson et  al. 2009; Nicholson and Grist 2003). 
Oceanic conditions, especially sea surface temperatures 
(SSTs), are the main cause of rainfall variability over 
Central Africa (Farnsworth et  al. 2011). Camberlin et  al. 
(2001) proposed a strong teleconnection between tropical 
Atlantic SSTs and CEA rainfall and a negative association 
of the Nino-3 SST index and rainfall in the western part of 
CEA (e.g., Gulf of Guinea region). Todd and Washington 
(2004) suggested that CEA rainfall anomalies are related 
to the large-scale circulation over the CEA/Atlantic region. 
Balas et al. (2007) examined the rainfall variability in west-
ern equatorial Africa and its links to SSTs and found that 
the influence of SSTs in the tropical Atlantic, Pacific and 
Indian Oceans is seasonally dependent.

CEA has experienced a long-term drying trend in recent 
decades (Malhi and Wright 2004; Asefi-Najafabady and 
Saatchi 2013; Diem et al. 2014). Based on multiple remote 
sensing data sets, Zhou et  al. (2014) found a widespread 
decline in forest photosynthetic capacity and moisture con-
tent over the Congo Basin and attributed this large-scale 
decline, at least partially, to this drying trend. Hua et  al. 
(2016) linked this drying trend to the tropical Indo-Pacific 
SST variations. However, the underlying physical mecha-
nisms for this drought are still not clear due to observation 
limitations. Using a combined approach of observations 
and model simulations may provide some insight into the 
drying mechanisms over CEA.

General circulation models (GCMs), which are built 
based on physical principles and are generally able to 
reproduce past climate at large scales, have played a criti-
cal role in climate science and our confidence in climate 
simulations has been enhanced substantially in recent 
decades (IPCC 2013). Reliable GCMs are useful tools for 
understanding the physical mechanisms of climate vari-
ability and trend (Pegion and Kumar 2010) and for provid-
ing additional and supplementary information over regions 
with limited observations, such as CEA. Previous stud-
ies have highlighted the role of global SSTs in the cause 
of rainfall variability in central and eastern Africa (Todd 
and Washington 2004; Hoerling et  al. 2006; Lyon and 
DeWitt 2012; Hua et al. 2016). However, fully coupled cli-
mate models still have difficulties in reproducing observed 
regional rainfall changes. One of the main reasons is that 
models cannot realistically simulate natural variations 
such as observed tropical SST changes (e.g., Hoerling 
et  al. 2010). Currently the simulated rainfall changes and 
variability over Central Africa and other regions are still a 
matter of some controversy in historical simulations (e.g., 
Washington et al. 2013; Aloysius et al. 2016). On the other 
hand, Atmospheric Model Intercomparison Project (AMIP) 
simulations were proposed to assess the model errors and 
have been proven useful in addressing a number of climate 
change questions (Gates et al. 1999). In AMIP simulations, 

SSTs and sea ice concentrations are prescribed according 
to observations. Given the large uncertainties in describing 
the connections between rainfall and SSTs from fully cou-
pled climate models, AMIP simulations provide an effec-
tive way to examine atmospheric responses and rainfall 
changes to the SST perturbations.

This study aims to examine and attribute the recent long-
term drying trend over CEA in the AMIP simulations from 
the ECHAM4.5 model. We will address the following four 
scientific questions: (1) Can the AMIP simulations repro-
duce the mean rainfall climatology over CEA? (2) Can the 
AMIP simulations reproduce the observed drying trend? 
(3) What causes the CEA drought in the AMIP simula-
tions? (4) Are the physical mechanisms for the drought in 
the model consistent with the observations? Answering 
these questions will help to attribute the long-term drought 
and to improve our understanding of the physical processes 
that determine the CEA rainfall variability related to SST 
forcing. The rest of this paper is organized as follows. Sec-
tion 2 describes the observations, AMIP simulations, rea-
nalysis data and methods. The results and discussion are 
presented in Sect. 3. The study concludes with a brief sum-
mary in Sect. 4.

2  Data and methods

2.1  Observations, model simulations and reanalysis 
data

This study combines both ground observations and satellite 
retrievals to represent rainfall quantities and characteristics. 
We use two observational gridded monthly rainfall data sets 
from the Global Precipitation Climatology Centre (GPCC; 
Schneider et  al. 2014) at 1°  ×  1° resolution (1950–2014) 
and version 2.2 of the Global Precipitation Climatology 
Project (GPCP; Adler et  al. 2003) at 2.5°  ×  2.5° resolu-
tion (1979–2014). GPCC is the gauge-based data, whereas 
GPCP provides the combined rainfall product derived from 
satellites and gauge measurements (together with other 
major improvements in merging approaches). In addition, 
we have examined two other gridded gauge-only data sets 
from Climatic Research Unit (CRU) (Harris et  al. 2014) 
and the National Oceanographic and Atmospheric Admin-
istration (NOAA) PRECipitation REConstruction over 
Land (PREC/L) (Chen et  al. 2002b). However, these two 
data sets have a dramatic decline in the number of rain 
gauges over CEA (not shown), particularly during the satel-
lite era, and thus are not included into this study.

We use the AMIP-type simulations (1950 to the pre-
sent) from the International Research Institute for Climate 
and Society (IRI) forecast model (ECHAM4.5) forced 
by observed monthly evolving SSTs (http://iridl.ldeo.

http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.FD/
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columbia.edu/SOURCES/.IRI/.FD/). Similar AMIP prod-
ucts are available from many other models but have shorter 
records (1979 to around 2008), which cannot depict the 
recent drying afterwards and thus are not used. ECHAM4.5 
is an atmospheric general circulation model (AGCM) from 
the Max-Planck Institute for Meteorology in Hamburg with 
a horizontal resolution of approximately 2.8°  ×  2.8° and 
19 vertical levels. More detailed description of the AGCM 
ECHAM4.5 is given in Roeckner et al. (1996). The model 
has 24 ensemble members initialized with slightly different 
atmospheric conditions starting in or before 1950. Its AMIP 
simulations are run with observed SSTs derived from the 
OISSTv2 data, but greenhouse gasses are held constant 
and land use forcing is fixed. These simulations have been 
widely used in climate change studies (e.g., Liebmann et al. 
2007; Lyon and DeWitt 2012; Yang et al. 2014).

To evaluate the model performance on simulating 
atmospheric circulation and related fields, we use the 
global atmospheric reanalysis (ERA-Interim) produced by 
the European Centre for Medium-Range Weather Forecast 
(ECMWF), which employs a 4-dimensional variational 
(4D-Var) data assimilation (Dee et al. 2011). The monthly 
geopotential height and winds at different vertical levels 
and sea level pressure (SLP) are used for analysis.

2.2  Methods

Our study region of Central equatorial Africa (CEA) covers 
the broad contiguous swath of Central Africa (10°S–8°N, 
14°E–32°E), including the Congo Basin and surround-
ing areas as done in Hua et  al. (2016). We focus only on 
the 3-month period of April, May and June (AMJ), when 
the drying trend is most significant and its impacts on veg-
etation photosynthetic capacity are most pronounced (Zhou 
et al. 2014; Hua et al. 2016).

To analyze the effect of SST variations on atmospheric 
circulation and rainfall, we use the AMIP-type simu-
lations described above. Note that the ensemble mean 
(referred to as EM) is supposed to provide a more robust 
estimate of the forced climate signals than any individual 
runs and could reduce the uncertainties associated with 
internal variability (e.g., Deser et  al. 2012). We also 
choose the “good” and “poor” ensemble members, which 
represent the best and worst simulations of the CEA 
drought, to examine the intra-ensemble variability and 
explore alternative ways of attributing the drought. The 
“good” and “poor” ensemble members are selected based 
on two criterions: (1) interannual rainfall correlations 
with observations during the period 1950–2014 and (2) 
linear rainfall trends since 1979. The “good” ones have 
the strongest and statistically significant correlation and 
the significant drying trend that can best reproduce the 

observations, while the “poor” ones have the opposite. 
Both the ensemble mean and individual runs are included 
in the present study.

Two approaches are used to quantify and attribute 
the long-term drought over CEA. First, atmospheric cir-
culation and related climate variables are investigated 
using composite analysis. As discussed by previous stud-
ies (e.g., Zhou et  al. 2014; Hua et  al. 2016) and shown 
below in our results, CEA rainfall has decreased signifi-
cantly since the late 1990s. The recent period 2000–2014 
and the period 1979–1993 are tagged as the dry and wet 
period, respectively, in line with Hua et  al. (2016). The 
differences between these two periods are calculated in 
order to examine the rainfall and associated changes in 
atmospheric circulation. Note that these two periods can 
be defined differently when using the composite analysis 
method, such as the choice of the last and first 12 or 18 
years, but similar results will be obtained. Second, lin-
ear trend analysis using least squares regression is also 
conducted to quantify the long-term drying. The slope of 
the regression is defined as the trend per decade and the 
statistical significance of the trend is determined by Stu-
dent’s t test. These two methods should bolster our confi-
dence if consistent results are obtained.

3  Results and discussion

3.1  Observed rainfall variability and trend

Figure  1 shows the areal mean anomalies of the CEA 
rainfall for the period 1950–2014 from GPCC. The anom-
alies have both positive and negative values before 1980s, 
with no statistically significant increasing/decreasing 

Fig. 1  The areal mean AMJ rainfall anomalies (mm/day) rela-
tive to the 1971–2000 base over Central Equatorial Africa (CEA, 
10°S–8°N, 14°E–32°E) from GPCC (black solid line) and ensemble 
mean (EM, black dashed line) from the ECHAM4.5 simulations. The 
ECHAM4.5 ensemble ranges are indicated by shading. Red and blue 
solid lines indicate the individual ensemble run 12 and 16, respec-
tively

http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.FD/
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trends. However, the rainfall has decreased significantly 
in the most recent decades, with a decline trend of 
0.19  mm/day per decade from 1979 to 2014 (P < 0.01). 
As the data temporal coverage differs between the rainfall 
and reanalysis products, our focus will be on the period 
starting with the so-called satellite era from 1979 onward 
when most observations are available and the long-term 
drying trend is most significant over CEA.

The spatial patterns of AMJ rainfall linear trends for the 
period 1979–2014 are shown in Fig. 2. There is a signifi-
cant decline in CEA but insignificant changes over other 
tropical rainforests (Amazon and South Asia). The time 
series of rainfall anomalies indicate a decrease in AMJ 
rainfall across CEA in 1998 afterwards. GPCC is in agree-
ment with GPCP, with a correlation coefficient of 0.97 
(p < 0.01) for the period 1979–2014 over CEA. Although 
GPCC and GPCP are not independent, GPCP can provide 

Fig. 2  Spatial patterns of AMJ rainfall linear trends (mm/day per 
decade) for the period 1979–2014 from a GPCC and b GPCP. The 
trends with solid dots are statistically significant at the 0.1 level. 

The rectangular box indicates the study region of Central equatorial 
Africa (CEA, 10°S–8°N, 14°E–32°E). c The areal mean AMJ rainfall 
anomalies (mm/day) from GPCC (color bar) and GPCP (dash line)
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more reliable information over Central Africa where there 
are limited in situ observations (unpublished data).

Figure  3 shows the spatial patterns of AMJ rainfall 
anomalies for the dry and wet periods from GPCC and 
GPCP, respectively. For the wet period, positive values are 
found over south of the Congo Basin and eastern Africa. 
The largest negative values basically occur in most of CEA 
during the dry period when there is a dramatic decrease 
in rainfall by more than 20% (Fig.  3b, d). The consistent 
spatial structures of rainfall changes between GPCC and 
GPCP, together with in  situ observations (unpublished 
data) further bolster our confidence that the CEA has expe-
rienced a long-term drought and these two rainfall data sets 
could be used to quantify the long-term drought over CEA.

3.2  Modeled rainfall variability and trend in ensemble 
mean

For the ECHAM4.5 model with 24 ensemble members, 
we first examine whether the ensemble mean (EM) can 
correctly simulate the climatological features over CEA 
by comparing the AMJ rainfall in EM with observations 
(Fig.  4). The maximum in the coast of Guinea exceed-
ing 6  mm/day observed from GPCC and GPCP is also 
evident in the model. The tropical rain belt located north 
of the equator is also reproduced by the model, although 
the model overestimates the amount of rainfall over the 
western Congo Basin and Ethiopian highlands in eastern 

Fig. 3  Spatial patterns of AMJ rainfall percentage difference (relative to the 1979–2000 mean, unit: %) for the period a 1979–1993 and b 2000–
2014 from GPCC, and c 1979–1993 and d 2000–2014 from GPCP

Fig. 4  Spatial patterns of climatological AMJ rainfall (mm/day) from 
a GPCC, b GPCP and c ECHAM4.5 ensemble mean
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Africa. Overall, the latitudinal position of rainfall is similar 
between modeled and observed, although the magnitude in 
the model is overestimated.

Since the model can generally reproduce the climatolog-
ical rainfall patterns, we then investigate whether the model 
can reasonably capture the observed rainfall variability and 
long-term drying trend. Basically, EM reasonably captures 
the interannual variability, with a temporal correlation 
of 0.40 across CEA for the period 1950–2014 (p < 0.01), 
although the magnitude is underestimated (Fig. 1). This is 
expected as EM amplifies the major SST-forced signals and 
smooths out the internal variability, while the observations, 
like one realization of the simulations, should have larger 
variability (e.g., Zhou et al. 2009, 2010).

Figure  5 displays the simulated AMJ rainfall trend for 
the period 1979–2014. Comparing with the observations 
(Fig.  2a, b), the model can capture the drying trend over 
equatorial Africa, especially in the Congo Basin, although 
the model has large drying biases in the Horn of Africa. The 
composite analysis also indicates a multi-decadal drought 
in recent decades (Fig.  6). Positive rainfall anomalies are 

found in parts of the Congo Basin and eastern Africa dur-
ing the wet period, whereas negative anomalies are seen in 
most of CEA areas during the dry period. The rainfall dif-
ferences between the wet and dry periods in EM resemble 
the spatial pattern of trend shown in Fig. 5 (Fig. 7a).

Overall, the ensemble mean, which is considered pri-
marily to be the forced climate signals, is generally con-
sistent with the observations in simulating the rainfall 
variability and trend. It gives us confidence in the model’s 
capability in attributing the long-term drying trend over 
CEA described next.

3.3  Drought linkage with changes in Walker circulation 
in ensemble mean

The above results indicate that the model can generally 
capture the observational rainfall variability and multi-dec-
ade drought over CEA. Because the rainfall variations are 
usually associated with the atmospheric circulations anom-
alies, we next examine whether the model can correctly 
simulate the atmospheric circulation variations and link the 

Fig. 5  Spatial patterns of 
AMJ rainfall linear trend 
(mm/day per decade) for the 
period 1979–2014 from the 
ECHAM4.5 ensemble mean. 
The trends with solid dots are 
statistically significant at the 
0.05 level

Fig. 6  Spatial patterns of AMJ rainfall percentage difference (relative to the 1979–2000 mean, unit: %) for the period a 1979–1993 and b 2000–
2014 from the ECHAM4.5 ensemble mean
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drought with the changes in zonal (Walker) circulation as 
found in Hua et al. (2016).

EM can reproduce the prominent features of the tropical 
and sub-tropical circulation system in the middle and lower 
troposphere (Fig.  8). The AMJ mean sea level pressure 
(SLP) field features the subtropical highs located at roughly 
30°S in the Atlantic and Indian Oceans and relatively 
lower pressure across the West and Central Africa con-
tinent and Arabian Peninsula. At 850  hPa, the model can 
also capture the winds parallel to the west coast of Africa 
and the southeast flow from the Indian Ocean through the 
coast into equatorial Africa. In addition, the model gener-
ally reproduces the Walker (zonal) circulation including 
upward branches over the western Pacific warm pool, east-
ern Indian Ocean and equatorial Africa and a downward 
branch over western boundary of Indian Ocean (Fig. 8c, d). 
On the whole, the modeled atmospheric general circulation 
agrees very well with the ERA-Interim reanalysis in the 
middle and lower troposphere (wind field and SLP), which 
provides the basis for examining the linkage between the 
atmospheric responses and rainfall changes.

What do the large-scale atmospheric circulation pat-
terns in EM look like? Figure  9a shows the AMJ lower 

troposphere winds and vertical velocity at 500 hPa. The dif-
ferences between the wet and dry periods indicate that the 
vertical velocity weakens in association with an anomalous 
anti-cyclonic circulation in the lower troposphere located in 
western Central Africa, although the magnitude is small. It 
is likely that the simulated AMJ drought results, at least par-
tially, from the large-scale atmospheric circulation changes 
(e.g., vertical motion and winds) induced by weaker mon-
soon circulation. This is consistent with the observational 
studies in Hua et  al. (2016). On the other hand, the rain-
fall over Central Africa is largely influenced by the sur-
rounding oceans and the zonal circulation due to the SSTs 
variations (e.g., Nicholson and Dezfuli 2013; Dezfuli et al. 
2015; Cook and Vizy 2016). Funk (2012) proposed that the 
warming in the Indo-Pacific SSTs could enhance the export 
of geopotential height energy from the warm pool, which 
tends to induce subsidence and reduce moisture transports 
across eastern Africa. Hua et al. (2016) indicated the multi-
decadal drought over CEA is closely linked to the changes 
in Walker circulation. In order to verify the impacts of 
zonal (Walker) circulation changes on CEA, we examine 
how this cell responds to the observed SST forcing. Basi-
cally, the EM can reproduce the walker circulation includ-
ing the upward branches over the Indo-Pacific warm pool 
and Central Africa and the downward branch over the west-
ern boundary of Indian Ocean (Fig. 10a, b). Observational 
studies have shown that the Walker circulation has experi-
enced a strengthening and westward shift during the late 
twentieth century (Chen et  al. 2002a; Williams and Funk 
2011; Funk 2012; Ma and Zhou 2016). When comparing 
the meridional mean vertical velocity during the wet period 
(Fig. 10a) to that of the dry period (Fig. 10b), the enhanced 
and westward extension of Walker circulation is clearly 
seen in the EM simulations (Fig. 10i).

3.4  Intra-ensemble variability

The individual ensemble members, which differ only in 
the initial conditions, could have a wide spread in climate 
responses/signals (e.g., Selten et  al. 2004; Branstator and 
Selten 2009). For the ECHAM4.5 model, the AMIP-type 
simulations have deficiencies in describing the rainfall 
processes, which may be owing to the underlying internal 
atmospheric variability and their sensitivities to initial con-
ditions (see more discussion in next section), although the 
ensemble runs are all forced by the same observed SSTs. 
For example, the ensemble results show large spread in 
interannual rainfall variability (shaded areas in Fig. 1), with 
a significant positive correlation (r = 0.39, p < 0.01) with 
observations in ensemble run 16 and a negative correla-
tion in ensemble run 12 for the period 1950–2014. These 
two extreme members are selected for detailed analysis. 
We compare the rainfall differences between the wet and 

Fig. 7  The differences (2000–2014 minus 1979–1993 averages) of 
AMJ rainfall (mm/day) from ECHAM4.5 a ensemble mean, b run 12 
and c run 16
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dry periods from run 12 and run 16 (Fig. 7b, c). The latter 
can capture the spatial patterns of rainfall decline in CEA, 
whereas the former cannot.

Why do the individual ensemble members from the same 
model with the same SSTs exhibit such a large spread? 
We illustrate the model behavior of climate responses by 
constructing the probability density function (PDF) of the 
regional rainfall trend. Figure 11 shows the empirical PDF 
of trends over CEA calculated from 24 individual mem-
bers. To increase the sample size, individual trends over all 
grid points from the CEA region are used. On the one hand, 

most of the individual members exhibit a drying trend 
forced by SSTs, although the amplitude and sign of trends 
differ among the 24 members. On the other hand, the intra-
ensemble variability could be largely due to the internal 
atmospheric variability (e.g., Deser et al. 2012).

Next we examine the “good” and “poor” ensemble mem-
bers to see how their atmospheric circulation responses dif-
fer over CEA. As shown in Fig.  9, a decrease in vertical 
velocity is evident over Central Africa in run 16, whereas 
slight ascent is found in run 12. In addition to the vertical 
motion, the horizontal wind fields associated with the water 

Fig. 8  Spatial patterns of climatology of AMJ sea level pressure 
(shading, hPa) and wind (vectors, m/s) at 850  hPa derived from a 
ERA-Interim and b ECHAM4.5 ensemble mean (EM) for the period 

1979–2014. Spatial patterns of climatology of AMJ meridional mean 
(10°S–10°N) vertical velocity (ω, Pa/s) from c ERA-Interim and d 
ECHAM4.5 ensemble mean (EM) for the period 1979–2014
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vapor transport modulate the rainfall variability. Run 16 
features stronger southeast wind anomalies in western and 
central equatorial Africa than run 12 (Fig. 9b, c), suggest-
ing reduced moisture advection from the Atlantic Ocean 
(e.g., Pokam et  al. 2014). The subsidence associated with 
a reduction of low-level moisture transport toward Central 
Africa from the Atlantic Ocean leads to a decrease in AMJ 
rainfall over these areas (e.g., Hua et al. 2016). To further 
support our analysis, we also composite few “poor” ensem-
ble members (run 2, run 5, run 7 and run 12). The compos-
ite results resemble these in run 12 (Fig. 9d). Our previous 
evaluations have shown that the “poor” ensemble mem-
bers cannot reproduce the long-term drought and related 
circulation patterns over equatorial Africa. What are the 
differences in the oceanic and atmospheric teleconnection 

patterns from a global perspective? In run 16, the enhanced 
ascent from warm pool associated with the decreased 
ascent over Central Africa is clearly seen, in line with the 
observations and the EM results (Fig. 10e, f, k). However, 
these features are absent in run 12 (Fig.  10c, d) and the 
composite results in run2, run5, run7 and run12 (Fig. 10g, 
h), and instead the simulated vertical velocity decreases in 
the recent decades (Fig. 10j, l), which is not consistent with 
the observations.

Analyzing the two extremes in AMIP simulations pro-
vides another way to attribute the long-term CEA drought. 
We found that the rainfall changes over CEA are tightly 
associated with the tropical Walker circulation and atmos-
pheric teleconnection patterns due to the SSTs forcing. If 
the intensification and westward extension of the Walker 

Fig. 9  The differences 
(2000–2014 minus 1979–1993) 
of AMJ 850 hPa wind (vectors, 
m/s) and 500 hPa vertical veloc-
ity (shading,  102 Pa/s) from a 
ensemble mean (EM), b run 12, 
c run 16, and d the composite 
results in run 2, run 5, run 7 and 
run 12. Positive values indicate 
sinking motion
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Fig. 10  a Climatology of AMJ meridional mean (10°S–10°N) 
of vertical velocity (ω, −102 Pa/s) for the period 1979–1993 from 
ensemble mean (EM). b Same as a but for the period 2000–2014. c 
Same as a but from run 12. d Same as b but from run 12. e Same as 
a but from run 16. f Same as b but from run 16. g Same as a but from 

the composite results in run 2, run 5, run 7 and run 12. h Same as b 
but from the composite results. i Differences between the wet (a) and 
dry (b) period. j Same as i but from run 12. k Same as i but from run 
16. l Same as g but from the composite results. Positive values indi-
cate rising motion



1125Understanding the Central Equatorial African long-term drought using AMIP-type simulations  

1 3

circulation cannot be reproduced in the AMIP simulations, 
the drying trend over CEA will not be captured. This is 
consistent with and provides further support to the observa-
tional findings in Hua et al. (2016).

3.5  Uncertainties in ensemble simulations

Why are the rainfall and atmospheric responses forced with 
the same observed SSTs different among the individual 
ensemble runs? Previous studies have indicated that model 
uncertainties mainly stem from initial conditions, bound-
ary conditions and parameter and structural uncertainties 
(e.g., Tebaldi and Knutti 2007). If the model is assumed to 
be perfect, the uncertainties may be due to the initial and 
boundary conditions. For the ECHAM4.5 AMIP-type sim-
ulations, the model has 24 ensemble members initialized 
with slightly different atmospheric conditions but with the 
same observed SST forcing starting in 1950. Because the 
uncertainty in initial conditions increases at shorter time 
scales, the recent multi-decadal drought over CEA may be 
largely insensitive to the small variations in the initial and 
boundary conditions during our focused study period start-
ing from 1979 (Tebaldi and Knutti 2007; Hawkins and Sut-
ton 2009).

Internal atmospheric variability, also termed as cli-
mate noise or natural fluctuations of the climate system, 
derived from non-linear dynamical processes intrinsic to 

the atmosphere, could play a dominant role in the climate 
changes (Deser et  al. 2012). For instance, the ensemble 
members from the same model could exhibit a large spread 
in the climate change projections (e.g., Selten et al. 2004; 
Branstator and Selten 2009). Therefore, the intra-ensemble 
differences can be confounded by internal variability. To 
measure the uncertainty determining the CEA drought, 
the spread among the 24 multiple members is analyzed. 
The individual runs exhibit large spread based on the PDF 
(Fig. 11), which is probably owing to the presence of inter-
nal variability (e.g., Hoerling et al. 2006; Deser et al. 2012). 
Because the internal variability of the atmosphere is unpre-
dictable, it would be helpful to perform a large number of 
individual runs with a “perfect” model in order to provide a 
robust estimate of the contribution of model’s climate sig-
nals/responses in addition to the internal variability.

Hawkins and Sutton (2009) indicated that internal 
variability dominates at smaller spatial scales and shorter 
time scales for climate change projections. In our study, 
we found that the internal variability may also influence 
the multi-decadal climate signals in the historical simula-
tions. Hence, further work is needed to use more ensem-
ble members to characterize the forced climate signals and 
uncertainties owing to the unpredictable internal variability 
at decadal time scales. On the other hand, the climate sys-
tem is highly complex and it is fundamentally impossible 
to accurately describe the coupled land-ocean-atmosphere 
processes in one single climate model, no matter how 
complicated the model itself is. In addition, climate mod-
els have structural and parametric uncertainties and so 
may differ from the observations in both their forcing and 
boundary conditions (e.g., Zhou et  al. 2003, 2009; Tian 
et al. 2004). Therefore, another way to quantify all aspects 
of model uncertainties is to make use of multi-model 
ensembles (Tebaldi and Knutti 2007; Knutti et  al. 2010). 
The multi-model approach supplies a broader test to the 
models’ responses due to different physical and numerical 
formulations, and could provide more reliable information 
than a single model, which will be explored in future work. 
For example, the upcoming experiments simulated by mul-
tiple CMIP6-AMIP models (at least the period from 1979 
to 2014) will allow us to further attribute the CEA drought 
and to better account for model uncertainties (Eyring et al. 
2016).

The current study is focused on the role of SST forc-
ing on the CEA drought. However, the model underesti-
mates the magnitude of the drought, indicating that some 
other factors may also have some contributions. For exam-
ple, changes in key land surface variables such as sur-
face albedo, vegetation, and moisture that can influence 
atmospheric processes via various hydrological, biophysi-
cal, and biogeochemical mechanisms and thus potentially 
induce significant rainfall variability on local to regional 

Fig. 11  The empirical probability density function (PDF) of AMJ 
rainfall trends during the period 1979–2014. The PDF is calculated 
from the 24 individual members of the AMIP simulations over all 
grid points over CEA. The observed trend values are indicated by the 
blue (GPCP) and red (GPCC) vertical line. The ensemble mean (EM) 
is indicated by the black vertical line
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scales (e.g., Zhou et al. 2003, 2009; Tian et al. 2004; Hua 
et al. 2015; Xue et al. 2016). One major research topic on 
this aspect is related to land use and land cover change 
(LULCC) over tropical rainforests. In West Africa where 
deforestation and human-induced forest degradation are 
significant, the decreases in surface net radiation and the 
increases in Bowen ratio due to LULCC could result in 
less moisture convergence and rainfall (Wang et  al. 2016; 
Boone et  al. 2016). However, deforestation is much less 
significant in the Congo Basin than other tropical rainfor-
ests (Zhou et al. 2014). On the other hand, moisture recy-
cling plays a significant role over CEA (Pokam et al. 2012) 
where evapotranspiration (ET) from the dense Congolese 
forests could contribute largely to the regional rainfall recy-
cling. Trenberth (1999) found that the recycling activity 
over CEA is higher than that in the Amazon basin, suggest-
ing the importance of land surface processes in influenc-
ing the CEA rainfall. Since Congo Basin has experienced a 
long-term drought and a widespread decline in forest pho-
tosynthetic capacity and moisture content, the changes in 
land surface properties may have modified the atmospheric 
exchange of carbon, water and energy, and thus have a 
negative feedback on the rainfall variability over the CEA. 
However, the land use forcing in the ECHAM4.5 simula-
tions is fixed and so the role of land surface on the recent 
drought over the CEA needs to be further investigated.

4  Conclusions

Hua et  al. (2016) found that the long-term drought dur-
ing April-May-June (AMJ) over Central equatorial Africa 
(CEA) may largely result from tropical Indo-Pacific SST 
variations. However, the underlying physical processes for 
such associations are still in the exploratory stage due to 
observational limitations. To further this finding, we use 
the AMIP-type simulations with 24 ensemble members 
forced by observed SSTs from ECHAM4.5 model produced 
by International Research Institute for Climate and Society 
(IRI), to understand the physical processes that determine 
the rainfall variations over CEA. We not only examine the 
ensemble mean, but also choose and compare “good” and 
“poor” ensemble members, which represent the best and 
worst simulations of the CEA drought, in order to under-
stand the intra-ensemble variability and further confirm our 
proposed mechanisms.

The model can generally capture the observational CEA 
rainfall variability and climatology, and relevant features 
of atmospheric circulation. The ensemble mean (EM) and 
the “good” ensemble member (run 16) can reproduce the 
multi-decadal drought over CEA, with decreasing rain-
fall in the Congo Basin and eastern Africa and associated 
reduction in vertical velocity and anomalous anti-cyclonic 

circulation in the lower troposphere in western Central 
Africa during recent decades. They both can reproduce 
the observational findings (Hua et al. 2016) in terms of the 
zonal vertical circulation anomalies in response to observed 
SSTs. However, the “poor” ensemble members cannot sim-
ulate the drying and associated circulation patterns despite 
the same SST forcing. The contrast between the “good” and 
“poor” ensemble simulations give a measure of confidence 
that the rainfall variability over the CEA is tightly coupled 
with the changes in tropical Walker circulation and atmos-
pheric teleconnection patterns. If the observational Indo-
Pacific circulation cannot be reproduced, the drying trend 
over CEA will not be captured. These results, together with 
the observational analysis of Hua et al. (2016), may suggest 
a fundamental pattern of zonal circulation changes over 
tropical Indo-Pacific Ocean that determine the rainfall vari-
ations in CEA.

Despite the large intra-ensemble spread, the observa-
tional trend is located within the range of modeled trends 
from the 24 individual members (Fig. 11), indicating that 
the recent CEA drying trend may be primarily modu-
lated by SSTs variations in the Indo-Pacific Ocean and the 
tropical zonal atmospheric circulation pattern. Given the 
uncertainties and complexities in the relationship between 
rainfall and atmospheric circulation associated with SSTs, 
more studies are needed to assess the relative roles of basin-
scale SSTs driving the rainfall responses of CEA. Model 
approaches using idealized or specific SST-driven experi-
ments (e.g., forced only with observed SST anomalies in 
Pacific Ocean) can provide a broader picture of physical 
mechanisms for the long-term drying over CEA.
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