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Regional climate models with high-resolution simulation are particularly useful for providing
a detailed representation of land surface processes, and for studying the relationship
between land surface processes and heat events. However, large differences and
uncertainties exist among different land surface schemes (LSSs). This study
comprehensively assesses the sensitivity to different LSSs based on two extreme heat
events in eastern China using the Weather Research and Forecasting (WRF) model.
Among the five LSSs (i.e., 5TD, CLM4, Noah, Noah-MP and RUC), Noah is closest to
observations in reproducing the temperatures and energy fluxes for both two heat events.
The modeled warm biases result mainly from the underestimation of evapotranspirative
cooling. Our results show that how each LSS partitions the evapotranspiration (ET) and
sensible heat largely determines the relationship between the temperature and turbulent
fluxes. Although the simulated two extreme heat events manifest similar biases in the
temperatures and energy fluxes, the land surface responses (ET and soil moisture) are
different.
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INTRODUCTION

Extreme heat events, such as hot days, heat waves or multi-day heat events, have become more
frequent over a large majority of global land areas under global warming (Hartmann et al., 2013), and
have drawn an increasing amount of attention (e.g., Beniston, 2004; García-Herrera et al., 2010;
Barriopedro et al., 2011; Trenberth and Fasullo, 2012). Extreme heat events have significant impacts
on society and ecosystems. For instance, the mega European heat wave of 2003 and the Russian heat
wave of 2010 causedmany types of heat-related illnesses andmore than 80,000 deaths (WMO, 2013).
Hence, understanding the nature and cause of extreme heat events and improving the ability of its
prediction and projection are of significant societal, economic and environmental importance.

Many studies have explored regional changes in extreme heat events (Hartmann et al., 2013, also
see their citations). In eastern China, the rapid increase in summer warm extremes has been
documented in recent years (Sun, 2014; Zhou et al., 2014; Freychet et al., 2017; Chen et al., 2019;
Zhou et al., 2019). Multi-day heat events are often directly associated with large-scale atmospheric

Edited by:
Gen Li,

Hohai University, China

Reviewed by:
Xuezhen Zhang,

Institute of Geographic Sciences and
Natural Resources Research (CAS),

China
Yong Zhao,

Chengdu University of Information
Technology, China

*Correspondence:
Wenjian Hua

wenjian@nuist.edu.cn

Specialty section:
This article was submitted to

Interdisciplinary Climate Studies,
a section of the journal

Frontiers in Earth Science

Received: 05 September 2021
Accepted: 20 October 2021

Published: 03 November 2021

Citation:
Hua W, Dong X, Liu Q, Zhou L, Chen H

and Sun S (2021) High-Resolution
WRF Simulation of Extreme Heat
Events in Eastern China: Large

Sensitivity to Land Surface Schemes.
Front. Earth Sci. 9:770826.

doi: 10.3389/feart.2021.770826

Frontiers in Earth Science | www.frontiersin.org November 2021 | Volume 9 | Article 7708261

ORIGINAL RESEARCH
published: 03 November 2021

doi: 10.3389/feart.2021.770826

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.770826&domain=pdf&date_stamp=2021-11-03
https://www.frontiersin.org/articles/10.3389/feart.2021.770826/full
https://www.frontiersin.org/articles/10.3389/feart.2021.770826/full
https://www.frontiersin.org/articles/10.3389/feart.2021.770826/full
https://www.frontiersin.org/articles/10.3389/feart.2021.770826/full
http://creativecommons.org/licenses/by/4.0/
mailto:wenjian@nuist.edu.cn
https://doi.org/10.3389/feart.2021.770826
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.770826


anticyclonic circulation anomalies that produce prolonged hot
conditions at the surface (e.g., Wang et al., 2016). However, the
causes of long-term changes in the persistence of the quasi-
stationary anticyclonic circulation anomalies are very complex.
The rapid increase in the intensity of summer heat waves was
attributed to anthropogenic influences (Sun et al., 2014; Stott,
2016; Ma S. et al., 2017; Hua et al., 2021). External SST forcing
and internal atmospheric variability also contribute to the
changes of summer heat waves (Arblaster and Alexander 2012;
Chen and Zhou, 2018; Deng et al., 2019; Liu et al., 2019).
Furthermore, warm extremes can be amplified by pre-existing
dry soil conditions, and the persistence of soil moisture anomalies
(Fischer et al., 2007a; Lorenz et al., 2010; Seneviratne et al., 2010;
Zhang and Wu, 2011). The amplification of soil moisture-
temperature feedbacks was suggested to modulate the duration
of extreme summer heat waves (Hirschi et al., 2011). Given that
the summer warm extremes were felt more profoundly in urban
areas of eastern China, urban warming also contributed to the
intensity of heat waves (Zhou et al., 2004; Yang et al., 2017a;
Wang et al., 2017).

Regional climate models (RCMs) are particularly useful tools
for studying extreme heat events. RCMs could produce high
horizontal resolutions, that provide additional details beyond
global reanalysis or climate simulations and realistically
describe refined atmospheric and land surface processes and
features (Feser et al., 2011). For example, an increase in RCM
resolution (e.g., from 50 to 12 km) does enable better simulation
of warm extremes (Seneviratne et al., 2012; Vautard et al., 2013),
and increases extreme wind speeds more than the mean wind
speed (Pryor et al., 2012). Several factors including domain size,
location, lateral boundary condition and process
parameterizations also contribute to the quality of RCM
results (Xue et al., 2007; Laprise, 2008; Leduc and Laprise,
2009; Kanamitsu et al., 2010; Køltzow et al., 2011; Mooney
et al., 2013). Note that the errors and uncertainties of RCM
are largely owing to the shortcomings in physical
parameterizations, including radiation, microphysics,
convection, planetary boundary layer and land surface
parameterization schemes (Foley 2010; Flaounas et al., 2011;
Crétat et al., 2012; Evans et al., 2012; Gianotti et al., 2012; Roy
et al., 2012; Solman and Pessacg, 2012; Güttler et al., 2014; Ratna
et al., 2014). Previous studies have suggested that dynamic
downscaling of RCM studies, long-term climate simulations,
and short-range heat weather are sensitive to land surface
processes (Zeng et al., 2011; Sato and Xue, 2013; Zeng et al.,
2015; Li et al., 2016). The representation of land surface processes
in RCM is therefore important, particularly for simulating
monsoon regions (e.g., Boone et al., 2010).

The Weather Research and Forecasting (WRF) model is a
currently widely used RCM with a broad range of applications
across scales ranging from air quality, wind energy and
hydrological research studies (Zeng et al., 2014; Powers et al.,
2017; Xia et al., 2019), especially for producing realistic
simulations in the monsoon regions of eastern China. With
the land surface models (LSMs) embedded in WRF, it can
describe the details of land surface processes, such as diurnal
cycle of temperature, features of warm extremes and also give

better understanding of land surface and atmosphere coupling
than other RCMs. As previous studies show that the RCM at
higher resolutions can produce better simulations of extreme heat
waves (Seneviratne et al., 2012) and land surface processes that
affect the extreme heat events over eastern China (Yang et al.,
2017a; Wang et al., 2017), it is important to know whether the
WRF is able to simulate extreme heat waves with fine horizontal
(e.g., grid size of 1 km) and whether such simulations depend on
land surface schemes.

Considering the complexity of land-atmosphere interactions
and the challenges in observing andmodeling such interactions, it
is extremely difficult to separate different physical processes
involved in extreme heat waves and attributing the causes
from various confounding contributors in the fully coupled
land-atmosphere system (Zhou, 2021; Zhou et al., 2021). Here
we focus on the land surface contribution via WRF simulations
using different land surface schemes (LSSs) forced by the same
initial and lateral boundary conditions and described by the same
physical parameterizations. Doing so will help us to isolate the
impacts of land surface processes while minimizing the
complication of other factors.

With this in mind, the present study aims to examine the
sensitivity to land surface schemes in heat events with fine-scale
simulation and understand the role of land surface processes in
simulating extreme heat events, rather than investigate the role of
atmospheric circulation anomalies. As eastern China has
experienced rapid increases in summer warm extremes in
recent years, we chose two cases of extreme heat events over
eastern China, including the early August 2013 and late July 2017
to explore the similarities and differences.

MODEL, EXPERIMENTAL DESIGN AND
METHODS

Model Description and Experimental Design
The Advanced Research WRF (ARW) model, version 4.0, is
employed in this study to conduct high resolution simulations.
As a state-of-the art regional modeling system, the WRF model
has been used for weather and climate research across various
spatial scales (Skamarock et al., 2008). The model domain is
centered at 35°N, 110°E with a total of 481 × 361 grid points at
15 km spacing (Figure 1). This domain is optimal for modeling
regional climate over China (Liang et al., 2019). In order to better
simulate the regional feature and structure, we used three two-
way interactive domains, the resolutions of two inner domains are
3 and 1 km (Figure 1A). The middle domain has 706 × 706 grid
points with a resolution of 3 km whereas the small domain
includes 802 × 802 grid points at 1 km spacing. The model
consists of 42 vertical levels with a top at 50 hPa. If not
otherwise specified, we focus on the outputs of the smallest
domain.

WRF offers an option among multiple land surface schemes
that can be used to describe the heat, moisture and momentum
exchange across the surface-atmosphere interface. We use five
land surface schemes (LSSs) in this study (Table 1). The 5-layer
thermal diffusion scheme (hereafter 5TD) is based on the same
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module of the mesoscale model MM5 5-layer soil temperature
model (Dudhia, 1996). There are five layers with the thicknesses
of 1, 2, 4, 8, and 16 cm. Below these the temperature is fixed at
diurnal average. The energy budget includes radiation, sensible,
and latent heat flux. The Noah land surface scheme was
developed from the Oregon State University land surface
model (Chen and Dudhia, 2001). The Noah predicts the
temperature and moisture contents in four soil layers by using
the force-restore method and includes detailed descriptions of the
vegetation canopy and hydrological processes, such as the
evapotranspiration, soil drainage and runoff. In particular,
Noah includes an improved urban treatment that takes into
account the urban emissivity properties on temperature. The
Rapid Update Cycle (hereafter RUC) LSM contains energy and
moisture transfer equations, together with energy and moisture
budget equations for the ground surface, and uses an implicit
scheme for computing the surface fluxes (Smirnova et al., 2016).
The RUC LSM currently uses 9 levels (0, 1, 4, 10, 30, 60, 100, 160,
and 300 cm) in soil with higher resolution near the interface with
the atmosphere. The Noah-MP LSM (Niu et al., 2011) is based on
the Noah model and uses multiple options for key land-
atmosphere interaction processes (e.g., dynamic vegetation
option). It also introduces various augmentations in the initial

model (e.g., a vegetation canopy layer to calculate the canopy and
ground surface temperatures separately). The Community Land
Model, version 4 (CLM4, Lawrence et al., 2011) has a vertical
structure of a single-layer vegetation canopy, a five-layer
snowpack, and a ten-layer soil column. It contains
sophisticated treatment of biogeophysics, hydrology,
biogeochemistry and dynamic vegetation.

To assess the sensitivity of WRF simulations to land surface
schemes in simulating the extreme heat events in eastern China,
we conducted five experiments with the 5TD, Noah, RUC, Noah-
MP and CLM4. All the physics options except for the LSS are the
same and briefly summarized in Table 1. Differences between
these simulations are mainly attributed to different
parameterizations and parameters of land surface processes.
The National Centers for Environmental Prediction (NCEP)
Final Operational Global Analysis (FNL) data with a
horizontal resolution of 1° × 1° was used as initial and
boundary conditions for the WRF simulations with a time
interval of 6 h. The specified boundary conditions are only
used in the outmost domain. The rows and columns of the
relax zone in the boundary conditions are both 4 points. The
grid nudging analysis is only applied to the outmost domain to
maintain stability of the boundary conditions for the nested two

FIGURE 1 | (A) Model domain and terrain heights (units: m). The inner boxes represent the domains for the 3 km (d02) and 1 km (d03) resolution experiments,
respectively. (B) The land cover map derived from MODIS covering the domain d03.

TABLE 1 | Overview of the physical parameterizations used in this study. The microphysics, radiation, boundary layer and cumulus convection schemes were the same for
different LSSs.

Name Land surface Microphysics Radiation Boundary layer Cumulus
convection

5TD 5-layer thermal diffusion WRF single-moment 6-class scheme
(WSM6) Hong and Lim (2006)

RRTMG radiation scheme
Iacono et al. (2008)

Yonsei University scheme
Hong and Lim (2006)

Kain-Fritsch scheme
Kain (2004)Noah Noah land surface model

RUC RUC land surface model
Noah-
MP

Noah-MP (multi-physics)
land surface model

CLM4 Community land model
version 4
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domains. The temperature and vapor from the FNL data are used
in the grid nudging analysis, and we also apply the horizontal
winds above the PBL to the grid nudging analysis.

In the summer of 2013 and 2017, extremely hot weather events
occurred in eastern China, especially over the urban area of
Shanghai (Zhou et al., 2019). Therefore, we chose the summer
of 2013 and 2017 as two case studies. For the 2013 case, the
simulations were carried out from 0000 UTC, August 6 through
0000 UTC, August 10. For the 2017 cases, the simulations were
carried out from 0000 UTC, July 20 through 0000 UTC, July 24.
We took the first day as a model spin-up and analyze the
remaining days. We also performed the 6-day simulations for
further validation and analyses and treated the first 3 days as spin-
up. The modeling results are shown to be insensitive to the length
of simulations and choice of the days of spin-up. Note that no
special initialization procedures are used in the simulations. For
all the experiments, the meteorological and land surface fields
(e.g., soil moisture and temperature) are the same.

Observational Data and Methods
The Chinese observed daily temperature data sets from
meteorological stations are collected and processed by the

National Meteorological Center of the China Meteorological
Administration (https://data.cma.cn). The data sets include the
daily mean, maximum and minimum surface air temperature.
Figure 2 shows the locations of these stations in 2013 and 2017,
which are well distributed across eastern China. We also used the
gridded datasets (referred to CN05.1) based on observations from
more than 2,400 surface meteorological stations to provide better
support for high-resolution climate change research and model
validation over the Chinese region (Wu and Gao, 2013).

To further demonstrate the model’s capability in simulating
surface energy fluxes in eastern China, we use the observed
radiative fluxes (including upward and downward shortwave
and longwave radiation) and clouds obtained from Clouds and
the Earth’s Radiant Energy System (CERES) SYN1deg (Wielicki
et al., 1996).

The satellite-based evapotranspiration (ET) and surface soil
moisture products from 2003 to 2018 were derived from GLEAM
(Global Land Evaporation Amsterdam Model) v3.3b (Miralles
et al., 2011; Martens et al., 2017). The GLEAM v3.3b used a new
data assimilation strategy and assimilated microwave soil
moisture observations into GLEAM satellite-derived soil
moisture, as this approach allows the correction of potential

FIGURE 2 | (A)Observed daily maximum air temperature anomalies (°C) in eastern China during the 2013 summer for (A) CN05.1, (B) station-based observations.
(C,D) Same as (A,B), but for the summer of 2017. The abbreviations of CSH, JS, and ZJ in (B) stand for the city of Shanghai, Jiangsu and Zhejiang provinces. The
outlined boxes in (A) and (C) depict the local areas for further regional analysis.
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seasonal biases between the modelled and observed soil moisture
states (Martens et al., 2017). The GLEAMproducts (e.g., ET) have
been validated against eddy covariance towers worldwide
(Miralles et al., 2011; Michel et al., 2016; Miralles et al., 2016).
GLEAM is more consistent with daily gauge observations than
other products, and shows the best consistency with point
observations and basin-scale benchmark data over China
(Yang et al., 2017b; Bai and Liu, 2018).

Because of the very high resolution (i.e., 1 km) of model
simulations and relatively coarse resolution of CN05.1 (0.25° ×
0.25°) data, the model simulations are validated against the
station-based observations by converting the gridded outputs
using bilinear interpolation to match the observations. Our study
also compares the coarse resolution energy fluxes (1° × 1°), ET and
soil moisture (0.25° × 0.25°) products with the fine-scale WRF
simulations. However, the typically coarse spatial resolution fields
can be significantly biased over complex and heterogeneous
terrain at local scales. Furthermore, large scale systematic
model biases exist in simulating heterogeneous land surface
processes due to biases in lateral and lower boundary
conditions derived from coarse resolution reanalysis data
(Moalafhi et al., 2016). The direct comparison using absolute
values does not make much sense (Zhou et al., 2012; Hua et al.,
2014). Using reference values computed over the inner domain
(d03, Figure 1A) for the same time period establishes a baseline
from which anomalies are calculated. This effectively normalizes
the data so they can be compared among the simulations from
different LSMs and combined to more accurately represent the
spatial patterns of fine-scale features. For these reasons,
anomalies more accurately describe climate variability over
larger areas than absolute temperatures do. Herein, the time
series of the regional average fields over eastern China is used as
the baseline. Both the modeled and observed anomaly fields are
obtained by subtracting the baseline at each grid. We measure the
quality of model simulations with reference to the observational
data by calculating themean bias, root mean square error (RMSE)
and statistical correlation.

To examine the impacts of the two extreme heat events with
regards to their land surface conditions using observed
temperatures and GLEAM data from a longer time scales, we
calculate the standardized anomalies of temperature, ET, soil
moisture and energy fluxes for the summer of 2013 and 2017
following Xu et al. (2011). The standardized anomalies are
expressed as a�(x−m)/s, where a is the standardized anomaly of
a given variable (e.g., temperature, ET and soil moisture) in a
specific year (2013 or 2017). x denotes the values in 2013 or 2017.
m and s represent the long termmean and standard deviation over
a reference period from 2003 to 2018, but excluding 2013 and 2017.

RESULTS AND DISCUSSION

Extreme Heat Events in Observations and
Models
Multi-day averaged maximum temperature anomalies during the
summer of 2013 are shown in Figure 2. On average, the observed
daily maximum temperatures exhibit remarkable warming in the

eastern areas of the study region, with largest magnitudes (>2°C)
in Shanghai and north of Zhejiang province around 30°N
(Figures 2A,B). For the 2017 case, the magnitude is weaker
than that in 2013 (Figures 2C,D). There are two warming centers
in 2017, one with a strong maximum around 29 °N and the other
near Shanghai (Figures 2C,D).

For the model simulations, almost all of them show higher
warming near Shanghai and north of Zhejiang province
(Figure 3 and Figure 4). Despite their differences in magnitude,
all the LSSs have statistically significant spatial correlations (r > 0.54,
p < 0.05, n � 180, where r is the correlation coefficient and n is the
sample size hereafter) with the station-based observations over
eastern China. A closer inspection shows that Noah has the
significant positive correlation with the reference data, with r �
0.58 (p < 0.05). For the daily mean and minimum temperatures, the
simulations with Noah and Noah-MP show generally consistent
spatial distributions compared with the observed fields
(Supplementary Figures S1–S4). Overall, most LSSs-induced
experiments manifest similar distributions, with stronger warming
in north of ∼31°N latitude than south of ∼29°N latitude in Figures
3,4, but the simulations of extreme values (i.e., maximum and
minimum temperatures) are very sensitive to the LSSs choice.

We further examine the model performances using the
quantitative bias analysis. The comparison with observation
demonstrates that all the simulations show a tendency to
overestimate the maximum temperature around Shanghai and
south of Jiangsu province (Table 2). For the 2017 case, the bias
pattern is similar to that in 2013, except that CLM4
underestimates the daytime temperatures in Shanghai
(Supplementary Figures S5,S6). We also examine the biases
in the daily mean and minimum temperatures (Supplementary
Figures S7–S10). All the simulations basically overestimate the
temperatures over the west of east China, but underestimate the
temperature fields in Shanghai. Table 2 shows the statistics for
spatially averaged temperatures and diurnal temperature range
(DTR) for the two summer heat events in eastern China.
Basically, Noah shows the least biases and RMSE in describing
the maximum, minimum, mean temperatures and DTR against
the observational data relative to the other LSMs. Thus, Noah
outperforms other LSSs for the temperature fields.

Surface Energy Budget
Note that various LSSs can produce different surface energy
budgets that further affect the simulated temperature fields.
We next assess the model’s performance in simulating the
surface radiative fluxes against satellite observations from the
CERES. We focus on the areal mean of the study region over
eastern China (Figure 2A), as the CERES relatively has the lower
spatial resolution compared to the model outputs. Note that
model errors (i.e., RMSE) are typically higher for DTR, indicating
that the representation of the diurnal cycle remains a long-
standing issue in current models (Zhou et al., 2009; Zhou
et al., 2010; Davin et al., 2016).

Because of the same lateral-boundary forcings, the LSS-
simulated downward shortwave radiation (Sin) are almost the
same. However, there is a positive bias of Sin (4–11W m−2) that
leads to overestimate of solar energy absorbed (Figure 5A). For
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the upward shortwave radiation (Sout), LSS-simulated Sout also
exhibit positive biases, with Noah-MP and CLM4 have the largest
magnitudes (Figure 5B). Note that the 2013 and 2017 cases share
similar biases, indicating that systematic biases exist in simulating
the surface shortwave radiations (Figures 5A,B), which may be
due to lateral and lower boundary conditions derived from
reanalysis data (Moalafhi et al., 2016). Furthermore, changing
the LSSs can also substantially change the surface longwave
radiative fluxes. For instance, 5TD, CLM4 and RUC
underestimate the amplitudes of the upward longwave
radiation (Figure 5C). For the downward longwave radiation,

the model simulations show negative biases in the summer of
2017 (Figure 5D), leading to an underestimation of the net
longwave radiations (Figure 5E). We also examine the surface
net radiation (Rnet) (Figure 5F). The models all overestimate the
amplitudes of observed Rnet. By comparison, Noah is the best
relative to CERES, with the mean bias of ∼5W m−2 (Figure 5F).

Possible Causes of Model Biases
The aforementioned sections have shown that the simulated
surface energy fluxes and multi-day heat events can be
influenced by different LSSs. Most LSSs overestimate the

FIGURE 3 | Multi-day averaged daily maximum surface air temperature anomalies (°C) in eastern China during the 2013 summer from five individual experiments
with (A) 5TD, (B) CLM4, (C) Noah, (D) Noah-MP and (E) RUC land surface schemes.
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daytime temperatures (Table 2). These biases indicate that land
surface processes may modulate the available energy partitioning
between sensible and latent heat fluxes, leading to an
underestimation of cloud formations (Figure 6) and a
systematic overestimation of surface shortwave radiation
(Figures 5A,B). For example, all the LSSs in fact
underestimate the ET fields and 5TD show the least ET biases
(Figure 7). The reduced ET could lead to a decline in cloud cover
and an increase in surface shortwave radiation. To further
examine the daytime warm biases around Shanghai, Figure 8
shows the relationship between the daily maximum temperature
and ET. Most LSSs (except for CLM4 in 2017, discussed below)

indeed underestimate the ET in Shanghai and the magnitudes of
this underestimation correlates well with the daytime warm
biases (Figures 8A,B). That is, the modeled warm biases result
mainly from the negative ET biases. Note that 5TD has the
smallest ET biases (Figure 7), which would lead to the smallest
temperature biases. However, the 5TD scheme is an exception. It
is the simplest among the five LSSs, only calculated soil
temperature and ignores the representations of snow,
vegetation, and soil moisture processes (Dudhia, 1996). This
simplicity does not consider detailed land-surface hydrological
and biosphere processes in computing the soil temperature and
moisture which may result in unrealistic representation of surface

FIGURE 4 | Same as Figure 3, but for the summer of 2017.
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energy balance and Bowen’s ratio. Furthermore, 5TD has the
largest positive Rnet biases in particular in the summer of 2013
(Figure 5F). So least ET biases will not point to least warm
biases.

In model simulations, the air temperatures or daily maximum
temperatures in Noah, Noah-MP and RUC are closely related to
sensible and latent heat fluxes with respect to the spatial patterns
(p < 0.05, n � 376). The modeled temperatures in CLM4 have

TABLE 2 | Statistics for the mean biases and RMSE for the spatially averaged
temperature (°C) and DTR (°C) from the model simulations against the
observational data for the 2013 and 2017 cases. The study regions are outlined in
Figure 2.

2013/2017 Tmax Tmin Tmean DTR

Bias 5TD 0.05/−0.15 −0.46/−0.64 −0.25/−0.53 0.52/0.49
CLM4 0.21/0.04 0.46/0.22 0.33/0.03 −0.25/−0.18
Noah 0.19/0.00 0.42/0.18 0.33/0.08 −0.24/−0.18
Noah-MP 0.52/0.14 0.40/0.21 0.48/0.11 0.12/-0.07
RUC 0.76/0.41 0.09/−0.30 0.44/−0.01 0.67/0.71

RMSE 5TD 1.02/0.96 1.83/2.09 0.83/1.29 2.52/2.29
CLM4 1.22/1.35 1.75/1.99 1.15/1.36 2.33/2.36
Noah 1.13/1.03 1.52/1.92 0.82/1.08 2.22/2.27
Noah-MP 1.17/1.03 1.58/1.86 1.10/1.19 2.07/2.00
RUC 1.44/1.18 1.76/2.20 0.98/1.35 2.74/2.55

FIGURE 5 | The differences in areal mean surface energy fluxes (W m−2) over the study region (outlined boxes in Figure 2A) between the model simulations and
CERES data for the summer of 2013 (yellow) and 2017 (blue) for (A) downward shortwave radiation (Sin), (B) upward shortwave radiation (Sout), (C) upward longwave
radiation (Lout), (D) downward longwave radiation (Lin), (E) net longwave radiation (Lnet), and (F) net radiation (Rnet).

FIGURE 6 | The differences in areal mean total cloud cover over the
study region (outlined boxes in Figure 2A) between themodel simulations and
CERES data for the summer of 2013 (black) and 2017 (gray).
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statistically significant spatial correlations with the sensible heat
(r > 0.4, n � 376), but have weak connections with the latent heat.
Instead, 5TD shows strong relationship between the temperatures
and the latent heat (r > 0.53, n � 376), but weak relationship
between temperatures and the sensible heat. These results suggest
that how each LSS partitions the surface energy into the ET and
sensible heat would largely determine the relationship between
the temperature and turbulent fluxes.

LSS-induced surface energy changes (e.g., through
alteration of the surface albedo, ET and roughness) could
control the variations of surface temperatures. As Noah is
the “best” LSS in capturing the spatiotemporal characteristics
of temperatures and surface radiative processes, we also use
Noah as the reference data to explain the differences among
the model simulations (Figure 9). Results show that 5TD,
CLM4, and RUC exhibit similar albedo variations, whereas
Noah-MP yields remarkably larger albedo values. Previous
studies have indicated that Noah-MP produces higher
modeled surface albedo (e.g., Ma N. et al., 2017). Tian et al.
(2004) indicated that discrepancies in the albedos between the
observation and land surface models were related to the
uncertainty in quantifying leaf area index (LAI) and stem
area index (SAI) in the model. Higher modeled surface
albedo in Noah-MP could lead to remarkably larger Sout
(Figure 5B).

Impact of Land Surface Processes
The land energy and water balances are coupled through the
ET (Seneviratne et al., 2010). Thus, soil moisture plays a key
role through its impact on the energy partitioning at the
surface. Soil moisture-temperature interactions or couplings
have been shown in particular to be associated with the

FIGURE 7 | The differences in areal mean ET (mm day−1) over the study
region (outlined boxes in Figure 2A) between the model simulations and
GLEAM data for the summer of 2013 (black) and 2017 (gray).

FIGURE 8 | The relationship between daily maximum temperature and ET for (A) 2013 and (B) 2017. (C,D) Same as (A,B), but for surface soil moisture over
Shanghai (30.8°–31.5°N 120.7°–122°E).
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occurrence of the drought, extremely hot temperatures and
heat waves (Seneviratne et al., 2006; Fischer et al., 2007b;
Fischer et al., 2017a; Dirmeyer et al., 2021). There is
generally a positive relationship between soil dryness and
heat (e.g., Fischer et al., 2007b; Hirsch et al., 2014; Dirmeyer
et al., 2021).

For observations, the air temperatures or daily maximum
temperatures in CN05.1 have statistically significant spatial
correlations with the GLEAM ET data over eastern China
(Supplementary Figure S11). This indicates atmospheric
control on ET, rather than soil moisture on ET and
temperatures (e.g., Seneviratne et al., 2006). Most simulations
(except for CLM4) also reproduce the positive relationships
between the temperatures and ET over eastern China. The
positive correlations in the observations and models show an
agreement with the relationship between the daytime
temperatures and soil moisture (Figures 8C,D). That is, the
partitioning of net radiation at the surface into sensible and
latent heat fluxes determines the soil wetness evolution, rather
than strong soil moisture-temperature coupling on ET and
temperatures.

We also calculate the standardized anomalies for the summer
of 2013 and 2017 to attribute the differences between these two
events. We characterize the anomalies more (less) than 1 (−1) as
the extreme values. The extreme heat events in 2013 and 2017
impact the entire eastern region of China, in particular around
Shanghai, south of Jiangsu and northern Zhejiang (Figures
10A,B). For the heat events in 2013, ET anomalies are related
to the extensive warming, in particular in Shanghai where the
surface soil moisture anomalies are relatively weak (Figures
10C,E). Thus, the modeled temperature biases result mainly
from the ET biases, especially in Shanghai (Figure 8A). For
example, RUC produces the largest ET biases (Figure 7),

leading to warm the surface and increase the daytime
temperature, in particular in Shanghai (Figure 8A). In
contrast, 5TD and CLM4 show a relatively weak
underestimation of the ET (Figure 7), resulting in slightly
increases in surface temperatures. Note that the soil moisture
anomalies (i.e., dryness) are very strong over the west parts of our
study regions (Figure 10E). Accurate simulations of soil moisture
are very important in simulating the temperature over these
regions.

For the 2017 case, the observed warming over eastern China is
not relevant to the ET changes (Figure 10D). The soil moisture
anomalies or surface dryness may play an important role
(Figure 10F). We also examine the soil moisture variations for
the LSS-induced simulations. Regardless of the inconsistencies in
the soil layering, the temporal variations are relatively consistent
across four LSSs in the top layer and in the top 1 m layer (5TD
does not provide this output). Basically, RUC overestimates the
magnitudes of surface dryness, resulting in more surface warming
over eastern China around Shanghai (Figure 8D, Figure 10F).
It’s interesting to note that CLM4 produces the lowest daytime
temperatures around Shanghai in 2017 (Figure 8D). This bias
reflects a systematic overestimation of latent heating over the
southern of Shanghai (not shown). Overall, although the
simulated extreme heat events in the summer of 2013 and
2017 manifest similar temperature and radiation biases, the
land surface responses are different.

SUMMARY AND CONCLUSION

In this study, high-resolution (∼1 km) WRF simulations of two
extreme heat events (i.e., August 7–9, 2013, July 21–23, 2017)
were conducted. Five land surface schemes (LSSs) (i.e., 5TD,

FIGURE 9 | The areal mean differences between Noah and other four LSSs in (A) albedo, (B) SH, (C) LH and (D) soil moisture over the study region (outlined boxes
in Figure 2A) for the summer of 2013 (yellow) and 2017 (blue).
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CLM4, Noah, Noah-MP and RUC) were used to investigate their
impacts on regional temperatures and energy fluxes in eastern
China. We first assess the sensitivity to different LSSs on WRF
simulations of extreme heat events over eastern China based on
the quality-controlled gauge-based observations, and then
analyze the possible causes of different LSSs in describing
land-atmosphere interactions.

Our results indicate that all the model simulations show
similar warming patterns (e.g., extensive warming over the

urban areas of eastern China), analogous to the observations.
Most LSSs show a tendency to overestimate the daily maximum
temperature around Shanghai and Jiangsu province. Noah is
closest to observations for the spatial variations over eastern
China. Thus, the simulations of extreme heat values are very
sensitive to the LSSs choice.

To attribute the distinct differences in the heat events
among the LSS-induced simulations, we also examine the
surface radiative fluxes. Noah is closest to CERES in

FIGURE 10 | Spatial patterns of standardized anomalies of air temperature for (A) 2013 and (B) 2017. The standardized anomaly is shown as a reference period
(i.e., August 7–9, 2013 or July 21–23, 2017) calculated from its long term mean and standard deviation from 2003 to 2018, excluding 2013 and 2017. (C,D) Same as
(A,B), but for ET. (E,F) Same as (A,B), but for surface soil moisture.
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reproducing the net radiations and has the smallest biases.
Basically, the modeled daytime temperature biases result
mainly from the ET biases. The underestimated and
reduced ET could also lead to a decline in cloud cover and
an increase in surface shortwave radiation. In model
simulations, the temperatures in Noah, Noah-MP and
RUC are closely related to sensible and latent heat fluxes.
However, the temperatures in CLM4 (5TD) have statistically
significant correlations with the sensible (latent) heat, but
weak connections with the latent (sensible) heat. CLM4 has
the largest Bowen ratio, whereas 5TD has the smallest one.
That is, how each LSS partitions the ET and sensible heat
largely determines the relationship between the temperature
and turbulent fluxes.

Although the simulated temperature and radiative fluxes in
the two extreme heat events manifest similar biases, the
observed land surface responses are different. Extensive
warming is related to the ET anomalies during the heat
events in 2013, while the ET is insignificant in 2017. Instead,
the soil moisture anomalies play an important role in 2017 in
particular in Shanghai. Note that the simulated surface radiative
flux bias in 2013 is much lower than that in 2017. These results
suggest that the simulated surface radiative flux and non-
radiative processes (e.g., ET, turbulence, or indirect effect of
cloud) for the summer of 2013 and 2017 may be different,
although they show similar biases in the temperature. Thus, it is
important to account for the combined effects of radiative and
non-radiative at the land-atmosphere interface regarding
different extreme heat events.

We also find that the nighttime simulations in eastern
China are very sensitive to LSSs. The possible causes of the
nighttime temperature biases can be due to underestimation
of surface longwave radiations, and underestimation of could
cover and ET. Furthermore, we should note that the model
performance is largely affected by the initial and boundary
conditions, and physical parameterizations. Using more
suites of model settings to investigate the LSS effects
would help understand the LSS-induced sensitivity of
extreme heat events.
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