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Dry season length strongly influences tropical rainforest veg-
etation and is largely determined by precipitation patterns1,2. 
Over the Amazon, the dry season length has increased 
since 1979 and severe short-term droughts have occurred3,4. 
However, similar changes have not been investigated for the 
world’s second largest rainforest, the Congo Basin, where 
long-term drying and large-scale declines in forest greenness 
and canopy water content were reported5. Here we present 
observational evidence for widespread increases in the boreal 
summer (June–August) dry season length over the Congo 
Basin since the 1980s, from both hydrological and ecological 
perspectives. We analysed both dry season onset and dry sea-
son end via multiple independent precipitation and satellite-
derived vegetation datasets for the period 1979–2015. The 
dry season length increased by 6.4–10.4 days per decade in 
the period 1988–2013, primarily attributed to an earlier dry  
season onset and a delayed dry season end. The earlier dry 
season onset was caused by long-term droughts due to 
decreased rainfall in the pre-dry season (April–June). The 
delayed dry season end resulted from insufficiently replen-
ished soil moisture, which postpones the start of the next 
wet season and hinders vegetation regrowth. If such changes 
continue, the enhanced water stress in a warming climate may 
affect the carbon cycle and alter the composition and struc-
ture of evergreen rainforest1,6.

One distinct feature of tropical rainforests is the seasonal tran-
sition between dry and wet seasons. In the tropics, dry seasons 
represent periods with low rainfall and coincide with the seasonal 
shift of the rain belt over the course of the year7. Tropical rainforests 
are often considered as light-limited rather than water-limited due 
to persistent cloudiness and adequate water availability8. Previous 
studies based on in situ and satellite observations over the Amazon 
suggested that peak photosynthesis coincides with peak irradiance 
over humid rainforest in the dry season8,9. Photosynthesis contin-
ues because the deep roots of trees can access groundwater, allow-
ing them to grow during the sunnier and drier part of the year9. 
However, soil moisture becomes a limiting factor due to enhanced 
evapotranspiration and low rainfall as the dry season progresses, 
making tropical rainforests water-limited rather than light-lim-
ited10. Any large change in rainfall seasonality that modifies the dry 
season length (DSL) and intensity, rainfall amount and insolation 
availability may influence the photosynthesis and productivity of a 
tropical rainforest.

Dry season duration is closely related to the frequency of 
droughts and affects the composition of local vegetation. Short-
term droughts have immediate impacts on vegetation green-
ness. Three major droughts, in 2005, 2010 and 2016, occurred in 
the Amazon, causing decreases in the water level of the Amazon 
River and in forest photosynthetic capacity11–13. A more intense and  
longer dry season will enhance the frequency and intensity of short-
term droughts and eventually alter the distribution and structure of 
forest vegetation6.

The Congo Basin has experienced a long-term drying trend. 
Consequently, forest browning, reduced canopy water content 
and decreased rainfall have been detected by multiple satellites in 
recent decades5,14. However, changes in dry season duration have 
never been studied and are poorly understood over the Congolese 
rainforest. Unlike the Amazon, the Congo has a drier climate with 
less annual rainfall, more fragmented forest surrounded by tropi-
cal savannas with high fire counts and a higher percentage of semi-
deciduous vegetation. Therefore, the Congo rainforest is thus more 
sensitive and less resilient to climate changes15. The Congolese 
rainforest might be tolerant to short-term rainfall reduction, but 
long-term drying may result in transition from higher-biomass and 
closed-canopy forests to lower-biomass and open-canopy forests5. 
Hence, variations in the DSL over the Congo have important eco-
logical, societal and climate implications. Furthermore, previous 
studies on DSL changes in the Amazon were based on analysis from 
the hydrological perspective only, while little attention was paid to 
the ecological perspective3. Here we analysed DSL changes over the 
Congo Basin from both hydrological and ecological perspectives.

One difficulty in studying DSL variations over the Congo is the 
complicated seasonality of precipitation. The seasonality varies with 
distance to the equator and along a west-to-east gradient. A zonal 
strip (4° N–4 °S) extending over equatorial Africa is identified as a 
region of bimodal precipitation (Supplementary Fig. 1a). Peak rain-
fall in the bimodal region occurs during transitional seasons, corre-
sponding to the northward and southward passages of the rain belt 
(Supplementary Fig. 1b–e). Our study focuses on the Congo Basin 
(12° E–32° E, 5° N–6° S) during the June–August (JJA) dry season 
given the long-term drying trend observed in equatorial Africa 
during the pre-dry season (April–June, AMJ)14, which is expected 
to affect the following dry season. The study domain is carefully 
chosen to cover the contiguous forested area with similar precipita-
tion patterns and limited anthropogenic and orographic influences 
(Supplementary Figs. 1f,g and 2).
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To quantify variations in the DSL, first, the dry season onset 
(DSO) and dry season end (DSE) for each grid box within the study 
region were determined using an objective method by calculation of 
the cumulative rainfall anomaly (see Methods and Supplementary 

Fig. 3). Next, trend analyses of annual DSL time series were con-
ducted (see Methods). To overcome the paucity of observations 
over the Congo Basin, various precipitation data and satellite-
retrieved geophysical variables were used to quantify robust DSL 
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Fig. 1 | Spatial patterns of linear trends of the JJA DSL from four precipitation datasets for the period 1988–2013. a, GPCC. b, GPCP. c, CMAP.  
d, MERRA-2. The green line delineates the boundary of the Congolese rainforest. Grid boxes with crosses have a significant linear trend at P < 0.1.  
Grid boxes with circles pass the Mann–Kendall (MK) trend test and have increasing trends at the 10% significance level.

150

a

c

e

g

b

d

f

h

160

140

120

100

160

140

120

100

160

140

120

100

160

140

120

100

100

50

D
S

L
D

S
L

D
S

L
D

S
L

D
S

O
D

S
O

D
S

O
D

S
O

1980

Trend = +6.4 ± 3.5

Trend = –7.2 ± 2.4

P = 0.079
PMK = 0.058

P = 0.006
PMK = 0.003

Trend: increasing

Trend: decreasing

Trend = –6.6 ± 1.6 P = 0.001
PMK = 0.000Trend: decreasing

Trend = +6.8 ± 2.7 P = 0.019
PMK = 0.013

Trend = +10.4 ± 5.5 P = 0.072
PMK = 0.002

Trend = –6.9 ± 3.8 P = 0.086
PMK = 0.025Trend: decreasing

Trend = –7.4 ± 2.5 P = 0.007
PMK = 0.000Trend: decreasing

Trend = +10.3 ± 5.0 P = 0.050
PMK = 0.004Trend: increasing

Trend: increasing

Trend: increasing

1985 1990 1995 2000 2005 2010 2015

1980 1985 1990 1995 2000 2005 2010 2015

1980 1985 1990 1995 2000 2005 2010 2015

1980 1985 1990 1995 2000

Year Year

2005 2010 2015 1980 1985 1990 1995 2000 2005 2010 2015

1980 1985 1990 1995 2000 2005 2010 2015

1980 1985 1990 1995 2000 2005 2010 2015

1980 1985 1990 1995 2000 2005 2010 2015

150

100

50

150

100

50

150

100

50

Fig. 2 | Regionally aggregated interannual variations and linear trends of the JJA DSL and DSO. a,b, GPCC (1988–2013). c,d, GPCP (1979–2014).  
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changes. For the hydrological analysis, we used precipitation data 
from the Global Precipitation Climatology Center (GPCC)16, Global 
Precipitation Climatology Project (GPCP)17, Climate Prediction 
Center (CPC) Merged Analysis of Precipitation (CMAP)18 and 
Modern-Era Retrospective Analysis for Research and Applications, 
v.2 (MERRA-2)19. For the ecological analysis, the preprocessed 
normalized difference vegetation index (NDVI)20, newly merged 
vegetation optical depth (VOD)21 passive microwave data and 
solar-induced fluorescence (SIF)22 measurements using moderate-
spectral resolution radiances (see Methods) were employed. NDVI 
represents vegetation photosynthetic capacity and correlates well 
with leaf area index and primary productivity20. VOD represents 
water content in above-ground woody and leaf biomass and is sen-
sitive to long-term climate change21. SIF can provide a proxy for the 
functioning of plant photosynthesis22.

The spatial patterns of DSL trends derived from GPCC, GPCP, 
CMAP and MERRA-2 are shown in Fig. 1. Although differing 
in spatial resolution and data sources, all rainfall datasets show a 
lengthening DSL (P ≤ 0.1) over the Congo Basin, particularly over 
the central and south basin and part of the north basin, which is 
usually wet during JJA. GPCC and GPCP detected a longer DSL in 
the northwest basin as well, while CMAP and MERRA-2 showed 
stronger drying in the east. Overall we observed a strong drying 
trend over the Congo Basin, where all gridded precipitation datasets 
show a maximum DSL increasing rate of 30 d decade−1.

Figure 2 shows the interannual variations in DSL spatially aver-
aged over the Congo Basin from the four precipitation datasets.  
The DSL increased significantly, by 6.4–10.4 d decade−1 for the period 
1988–2013, with a rapid increase around the early 2000s matching 
previous records of droughts in Central Africa23. This increased DSL 
is attributed to an earlier DSO, by 6.6–7.4 d decade−1, with an insignif-
icant delay in the DSE (not shown). The advanced DSO is consistent 
with the observed long-term decline in rainfall during AMJ.

Since rainforest is largely determined by precipitation patterns, the 
satellite-derived vegetation variables NDVI, VOD and SIF were uti-
lized to provide ecological verifications for the above results. Seasonal 
cycles of rainfall, NDVI, VOD and SIF show that peak geophysical 
vegetation values lag behind peak rainfall. Vegetation variables are 
significantly correlated with rainfall in earlier months: NDVI lags 
behind rainfall by about one month (R = 0.86, P = 0.000), VOD lags 
by two months (R = 0.84, P = 0.000) and SIF lags by half a month 
(R = 0.89, P = 0.000) (Supplementary Fig. 4). Vegetation variables 
may detect different DSO or DSE dates due to the lagged correlations 
with precipitation, but the seasonal cycle in vegetation is comparable 
to the bimodal precipitation cycle observed over the Congo.

Figure 3 shows changes in DSL according to NDVI and VOD. 
DSL increased by 10.5–18.2 d decade−1 for the period 1993–2012, 
particularly over the east and west basin, while NDVI detected a sig-
nificant increase in DSL in the central basin as well. There are a few 
grid boxes showing decreasing DSL near the edges of the rainforest 
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Fig. 3 | JJA dry season changes estimated by NDVI and VOD. a,b, Spatial patterns of linear trends of the DSL from NDVI (a) and VOD (b) for the period 
1993–2012. The green line delineates the boundary of the Congolese rainforest. Grid boxes with crosses have significant linear trends (P < 0.1 using least 
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according to the VOD data. This is probably due to the uncertainty 
attributable to drought-tolerant shrublands constituting a varying 
mixture of grass and woody components with high water content, 
which may have resulted in relatively high VOD values leading to 
shorter DSL21.

The lengthened DSL can mainly be attributed to a delayed  
DSE, which is delayed by 9.9–18.4 d decade−1, indicating a delayed 
start of the next growing season. Differences in the spatial pat-
terns of DSL trends among precipitation and vegetation variables 
are expected. Besides uncertainties in rainfall datasets, the complex 
lagged correlation among rainfall, soil moisture and vegetation 
(Fig. 4 and Supplementary Fig. 4), differences in drought tolerance 
among plant species and forest fragmentation also contribute to  
the differences1,5. Dense forest with deep roots has access to ground-
water, delaying the inception of moisture stress through redistribu-
tion of soil moisture. Open forest with semi-deciduous vegetation 
has less resilience to drought and is thus more sensitive to hydro-
logical disturbances5,15.

The delayed DSE detected by vegetation variables coincides  
with the earlier DSO detected by precipitation. Higher rainfall in 
the months preceding the dry season replenishes groundwater, pro-
viding a water source that plants can access using deep root systems 
during the drier months. Therefore, the decline in precipitation 
during AMJ would reduce soil moisture, resulting in water stress 
and affecting soil rehydration and vegetation growth in the next  
wet season24.

Root zone soil moisture data from CPC, MERRA-2 and 
ERA-Interim were analysed (see Methods). Figure 4 shows the  
correlation between soil moisture and rainfall. Soil moisture sig-
nificantly lags behind rainfall in the precedent wet season, while 
autocorrelation within rainfall anomalies is much smaller and 
insignificant (Fig. 4b). Precipitation and soil moisture have both 
decreased since the 1980s: precipitation declined dramatically 
from March to June, by 0.24–0.42 mm d−1 decade−1 (P = 0.001) 
(Fig. 4a). Consequently, soil moisture decreased dramatically and 
was not fully replenished during JJA. Vegetation variables declined  
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during JJA, presumably due to the water deficit (Fig. 4c).  
Thus, more rainfall was required to replenish soil water deficit to 
stimulate rainforest growth in the next wet season (September–
November). Water stress in the pedosphere elucidates how 
reduced precipitation at the DSO affects the vegetation phenology 
and leads to a delayed ecological DSE. Besides water availability, 
rainforests are also affected by light. However, increased photosyn-
thetically active radiation may actually enhance water stress and 
adversely influence plant growth, by exacerbating water deficits 
during long-term droughts and longer DSL5. This is demonstrated 
by the observed delay in DSE and decline in vegetation greenness 
(Figs. 3g,h and 4c).

We analysed the newly developed SIF data and compared the 
results to NDVI data for the period 2007–2015 given the exacer-
bated drying trend since the 2000s (Fig. 5). DSL increased steadily 
and rapidly over the north, south and east Congo Basin in the latest 
decade, by 24.4–40.6 d decade−1. The sharply increased DSL is attrib-
uted to an earlier DSO rather than to a delayed DSE, as detected by 
the long-term datasets over different periods. The earlier DSO can 
be explained by seasonal variations in precipitation and soil mois-
ture. Soil moisture has declined during JJA since the 1980s, resulting 
in a water deficit during August–September at the DSE. However, 
the DSE water deficit reduced and recovered by approximately 
2005, probably attributable to a recent increase in precipitation and 
soil moisture during August–September, while the decline in rain-
fall continued during AMJ (Supplementary Fig. 5). This shifts the 

water deficit to April–May, resulting in an earlier DSO driving the 
increase in DSL for the period 2007–2015.

Attributing the DSL variations is an important question and 
warrants a better understanding of precipitation over Central 
Africa, which is influenced by moisture transport, circulations, 
local evapotranspiration and orography. During the DSO, the AMJ 
rain belt shrank and weakened during the dry period (2000–2014) 
(Supplementary Fig. 5c), and this coincided with less moisture 
transported from the Indian Ocean due to abnormal subsidence 
over Central Africa and the intensification and eastward extension 
of the Walker circulation over the Indo-Pacific Ocean14. In addition, 
the Congo Basin is characterized by a large recycling ratio (~25%)25. 
Evapotranspiration provides considerable moisture, and land–
atmosphere interactions play an important role during the dry sea-
son, particularly at the DSE, since moisture fluxes from the oceans 
are much weaker in August–October than in AMJ (Supplementary 
Fig. 6). Quantifying the contributions of different processes to the 
lengthened DSL should be the focus of future work.

Our research highlights an important scientific issue of dry sea-
son changes over the Congolese rainforest and their association with 
precipitation, vegetation and water availability under global warm-
ing. Historical records and climate models indicate increased aridity 
since the 1950s over Central Africa4. Our results show that the JJA 
dry season has lengthened over the Congolese rainforest since the 
1980s. Consequently, the longer DSL has increased land evapora-
tive demand, reduced cloud cover and increased surface incoming 
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solar radiation, which in turn amplified the aridity26. In addition, 
the Congo Basin stores extensive above-ground and underground 
carbon1,27. The local intact rainforest has become increasingly frag-
mented since 2001 (ref. 28), and widespread above-ground carbon 
loss has been observed during the latest decade in the central and 
north basin29, coinciding with the notable increasing DSL trends 
reported in this study. If long-term drought continues, the carbon 
sink is unlikely to continue but may transform to a carbon source 
and thus accelerate global warming30. This underscores the impor-
tance of studying lengthened DSL over tropical rainforests.
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Methods
High-frequency precipitation datasets. Considering the low-gauge density over 
the Congo Basin (Supplementary Fig. 7)31, this study adopted three widely used 
precipitation datasets that combine ground observations and satellite retrievals and 
one reanalysis dataset (Supplementary Table 1). To quantify the variations in the 
JJA dry season over central equatorial Africa from the hydrological perspective, 
we used the observational gridded daily rainfall data from the GPCC16 at 1° × 1° 
resolution (1988–2013), the pentad (5-d) data from the GPCP17 at 2.5° × 2.5° 
resolution (1979–2014) and the CPC CMAP18 data at 2.5° × 2.5° resolution 
(1980–2015). The daily GPCC data were produced based on abundant in situ 
observations and high-tech interpolation methods conducted by the World 
Meteorological Organization16. Both GPCP and CMAP precipitation have the 
advantage of combining gauge (including GPCC) and satellite observations. All 
three precipitation datasets were assessed using a newly created gauge-based 
monthly precipitation dataset32 over central equatorial Africa (details available in 
Supplementary Information Section A). Another hourly reanalysis dataset from the 
National Aeronautics and Space Administration (NASA) MERRA-2 (ref. 19), with 
land surface diagnostics at 0.625° × 0.5° resolution for the period 1980–2015, was 
also utilized. MERRA-2 can reproduce the observed rainfall climatology, patterns 
and variability over central equatorial Africa more efficiently than other available 
reanalysis products33,34. Monthly reanalysis of root zone soil moisture data for the 
period 1980–2015 from CPC (at 0.5° resolution)35, MERRA-2 (at 0.625° × 0.5° 
resolution)36 and ERA-Interim (at 1.0° resolution)37 were used as auxiliary 
parameters to measure water availability.

Satellite-derived vegetation variables. Three satellite-derived vegetation datasets 
were analysed to quantify variations in the JJA DSL over the Congo Basin from 
the ecological perspective. We chose the widely used bi-weekly maximum value 
composite NDVI3g (ref. 20) from the third-generation Global Inventory Modeling 
and Mapping Studies, generated based on Advanced Very High Resolution 
Radiometer data at 8-km resolution from 1982 to 2015. This dataset has been 
verified as having the best calibration and is the most accurate in terms of  
temporal changes in vegetation38 (Supplementary Information Section C).  
Nevertheless, as calculated from the red and near-infrared solar reflectance,  
NDVI over tropical forests is probably impacted by clouds and atmospheric 
aerosols, which raise data uncertainties and noise in surface reflectance data39. 
Hence, empirical orthogonal functions were applied to decompose the NDVI 
data into various spatial and temporal components for the long-term, large-scale 
pattern analysis40,41. Combined with the cloud mask available within this dataset, 
the first six components explaining 77% of the original data variance were used to 
reconstruct the NDVI data. To validate the NDVI3g results, dry season changes 
(Supplementary Fig. 8) and available good-quality observations (Supplementary 
Figs. 9 and 10) were compared between NDVI3g and other Moderate Resolution 
Imaging Spectroradiometer vegetation products (Supplementary Information 
Section B). The DSL trend was further verified by other long-term NDVI records 
(Supplementary Fig. 11).

A newly merged daily VOD21 at 0.25° spatial resolution, from 1993 to 2012, 
was derived from a series of passive microwave satellite sensors, including 
Special Sensor Microwave Imager, Advanced Microwave Scanning Radiometer, 
Fengyun-3B Microwave Radiometer Imager and Windsat. VOD measures the 
dynamics of water content within vegetation and is less sensitive to abundant 
clouds and atmospheric aerosols than the NDVI dataset. In addition, to make 
results comparable to precipitation, these two vegetation datasets were remapped 
on a 1.0° grid box using the nearest neighbour interpolation.

A newly developed dataset of solar-induced fluorescence (SIF v.27)22,42, from 
2007 to 2016, was also used from the Global Ozone Monitoring Experiment 2 
instrument on the MetOp-A satellite. SIF is emitted from chlorophyll during 
photosynthesis and is primarily driven by the amount of absorbed photosynthetic 
radiation43. Although chlorophyll fluorescence has been used as a major tool  
for basic research in photosynthesis for many years44, it was discovered recently 
that SIF can be retrieved from space using moderate spectral resolution radiances 
and has provided a new proxy for global plant photosynthesis43. Here, the 
40 × 40 km2–40 × 80 km2 individual SIF observations were processed into 5-d time 
steps at a spatial resolution of 2.5°.

Definition of dry season onset and end. The variety of rainfall regimes over 
Central Africa complicates the characterization of the seasonality. Rather than 
setting a unified precipitation threshold, such as 100 mm d–1 as done in previous 
studies, the method based on calculation of cumulative rainfall anomaly45,46 was 
adjusted and applied to identify the onset and end of the dry season. First, the 
climatological pentad (5-d) mean rainfall rate P  was calculated using the data 
from all months in all years, and from this the annual cumulative pentad rainfall 
anomaly on pentad d, A(d) was found:

∑= −A d P P( ) ( ) (1)
j

d
j

0

where Pj is the rainfall on pentad j and j ranges from March (j0) to the pentad 
d being considered. A(d) was calculated from March to November to include 

the JJA dry season. A(d) increases when the pentad precipitation is above 
the climatological mean and decrease when the precipitation is below the 
climatological mean 5-d rainfall (Supplementary Fig. 3). Thus, the day of 
maximum A(d) is the DSO and the day of minimum A(d) is the DSE. This method 
was applied to all datasets mentioned above to explore the spatial pattern of 
climatology and trends of the dry season.

Long-term trend analysis. Before the trend analysis, all precipitation and 
vegetation datasets were interpolated onto the unified pentad temporal resolution. 
After identifying the DSE and DSO, annual DSL in days can be calculated as the 
difference between DSE and DSO within each grid box over the study region. 
Two methods were used to quantify and validate the temporal changes at both 
the grid and regional level. First, the linear trend of annual DSL time series was 
estimated using ordinary least squares regression over the same time period for 
each grid box. Its statistical significance level (P) was assessed by the two-tailed 
Student’s t-test to verify whether the trend was statistically significant rather 
than random noise. Trends of DSO and DSE were estimated similarly. Second, 
the non-parametric Mann–Kendall trend test was applied on the time series 
of DSL, DSO and DSE to detect whether a significant monotonic increasing or 
decreasing trend exists. The P value was also measured by the two-tailed Student’s 
t-test. The Mann–Kendall test provides additional verification for the robustness 
of the linear regression trend analysis, as it is less sensitive to the beginning and 
end of the analysis period. In particular, for the spatial pattern of DSL trends, 
results were plotted only for grids with annual rainfall >250 mm and a dry spell 
of at least 5 d, to avoid singular and inauthentic trends over extreme dry or wet 
grids47. Similarly, trends were shown only for grids with annual mean NDVI > 0.3 
(refs. 5,20), VOD > 0.4 (ref. 21), SIF > 0.4 (ref. 48) and a dry spell of at least 5 d for 
satellite-derived vegetation variables. Finally, to maximize large-scale features while 
minimizing local-scale variability and noise, the time series of DSL/DSO/DSE at 
the regional aggregated level were calculated using area-weighted averaging over 
the Congo Basin (12° E–32° E, 5° N–6° S). The corresponding linear trends of DSL/
DSO/DSE at the regional level were estimated as done at the grid level.

Data uncertainties. Due to insufficient observations over the Congo Basin, 
we used reanalysis and satellite datasets to study the variations in precipitation 
and vegetation seasonality. Our analyses indicate a comparable and consistent 
increasing trend in the JJA DSL from all datasets for the period 1979–2015 and 
similar peaks of DSL around 2004 and 2005 at the regional level. However, there 
are some discrepancies in the magnitude and spatial distribution of DSL trends 
that may have resulted from data uncertainties and the different approaches used 
to generate homogeneous climate records.

For the precipitation datasets, gauge-based GPCC and satellite-combined 
CMAP and GPCP are quite sensitive to the number and density of observations 
used16–18. Due to sparse observational stations over the Congo Basin, different 
interpolation methods were adopted to fill data gaps, which might have generated 
errors in the rainfall products. For satellite-retrieved vegetation variables, effects 
of satellite change-over, orbital drifts, volcanic aerosols and changes in solar 
zenith angle have been corrected, but residual non-vegetation signal may still 
remain. Despite intensive cloud screening and preprocessing, NDVI may still 
contain residual non-vegetation signals due to contamination of sub-pixel clouds 
and biomass burning, which can cause spurious NDVI changes (Supplementary 
Information Section B)49. In addition, bi-weekly temporal resolution may miss 
the detailed temporal evolution of NDVI phenology on time scales shorter than 
two weeks. VOD is less affected by clouds and aerosols because it measures water 
content contained in biomass via passive microwave radiation. Nevertheless, VOD 
is underestimated when there are substantial open water bodies in the observation 
footprint21,50. The SIF dataset includes bias due to instrument degradation42. 
Overall, these issues probably introduced some uncertainties in our estimates of 
dry season changes.

Data availability
The daily and monthly GPCC precipitation datasets are available at https://doi.
org/10.5676/DWD_GPCC/FD_D_V1_100. The 5-d GPCP precipitation data are 
available at https://precip.gsfc.nasa.gov/. The 5-d CMAP precipitation data are 
available at https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html. The 
satellite-observed NDVI datasets are available from the NASA Earth Exchange 
(NEX) website (https://nex.nasa.gov/nex). VOD and SIF datasets are available upon 
request from L.Z.

Code availability
The Python language was used to generate all results. Scripts are available upon 
request from L.Z.
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