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Abstract
Fire is an integral part of Earth’s system that links regional and global biogeochemical cycles,
human activities, and ecosystems. Global estimates for biomass burning indicate that Africa is
responsible for ~70% of global burned area and ~50% of fire-related carbon emissions. Previous
studies have documented an overall decline in burned area in the African continent, but changes in
fire patterns, such as the frequency and size of different fire categories, have not been assessed. In
this study, long-term fire trends were investigated using the latest burned area data from the
MODerate resolution Imaging Spectroradiometer (MODIS) and the Global Fire Emission
Database (GFED4s) over Central Africa (10◦E–40◦E, 15◦N–15◦S). A 3D (latitude, longitude, time)
connected-component labeling algorithm was applied to identify individual fires and their sizes.
The results show a decline in burned area by 2.7–3.2 Mha yr−1 (~1.3% yr−1) for the period
2003–2017, particularly in northern Central Africa. This decline was attributed to significant
decreases in both fire frequency and size, particularly for large fires (>100 ha) which contribute to
~90% of the total burned area. Burned area declined in tropical savannas and grasslands but
increased at the edges of the Congolese rainforest. A random forest regression model was applied
to quantify the influences of climatic conditions, fuel availability, and agricultural activity on
burned area changes. Overall, suppressed fuel, increased dry season length, and decreased rainfall
contributed to significant declines in burned area in savannas and grasslands. At the edges of the
southern Congolese rainforest, suppressed rainfall and warmer temperature were responsible for
the increased burned area.

1. Introduction

Fires are an integral part of the Earth’s system, inter-
acting with climate, ecosystem, and human activit-
ies. Hot, dry, and windy conditions typically lead to
severe fires (Jolly et al 2015). Humans influence fire
regimes directly by igniting and suppressing fires but
also indirectly by modifying the vegetation structure
and composition (Lasslop and Kloster 2017). On the
other hand, frequent fires are integral for savannas
and grasslands, supporting a large range of endemic
species, large mammals, and other wildlife (Scholes
and Archer 1997). Inter-annual variability in wild-
fire extent largely drives variations in global carbon
dioxide and aerosols (Patra et al 2005, Schultz et al
2008). Thus, understanding variations of fire regimes

not only has implications for societal and economic
developments but is also an urgent issue for studies
on fire–climate–ecosystem interactions and fire pre-
diction and management.

Though increasingwildfire risk is suggested under
the warming and drying climate (Pechony and
Shindell 2010), a complex big picture of prospect-
ive global and regional fire trends is emerging based
on recent satellite observations (Aldersley et al 2011,
Andela et al 2017). Increasing wildfire activity and
burned area have been observed over themid-latitude
and subtropical forests in the Northern Hemisphere
(Westerling et al 2006, Riaño et al 2007). In con-
trast, over the tropics, large decreases in burned area
occurred in the savannas of South America, Africa,
and grasslands across the Asian steppes (Andela et al
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2017). On average, global burned area declined by
24% over the period 1996–2015, and there was a
potential shift in global pyrogeography from savanna-
dominated to forest-dominated (Andela et al 2017).

A holistic characterization of fire changes requires
not only the consideration of the mean state of
burned area but also variations in fire frequency
and size. Fire frequency and size exert first-order
impacts on biomass accumulations and land cover
types (Yates et al 2009). Naturally, examining spa-
tiotemporal variability in frequency and size of
individual fires provides important information on
changes in burned area. Previous studies sugges-
ted that decreased global burned area was mainly
attributed to decreased fire frequency, while regional
changes in fire frequency and size varied geographic-
ally (Andela et al 2017). Nevertheless, relatively few
studies have examined the changes in frequency and
size of differentwildfire categories over the tropic hot-
spots.

Recent studies have documented regulations of
weather or anthropogenic factors on wildfires by
applying first-order linear statistic models (Flan-
nigan et al 2009, Archibald et al 2010, Forkel et al
2019). One major challenge is determining the dom-
inant factors that provide cross-scale insights for
fire predictions under a changing climate (Archibald
et al 2018). The complex interactions between fires,
weather conditions and vegetation fuel make predic-
tions difficult. Climatic and anthropogenic factors
often show antagonistic and non-linear behaviors
with respect to fire occurrence (Aldersley et al 2011).
For instance, increased population density is associ-
ated with increased fire numbers, but it also reduces
fuel load, which reduces fire spread (Lasslop and
Kloster 2017). Recently, the random forest regression
model has been applied to study drivers of fire to
better interpret the explanatory nature of the inde-
pendent variables (Archibald et al 2009, Aldersley et al
2011,Mayr et al 2018). This advancedmodel provides
a promising new approach to deal with unpreceden-
ted amounts of data and to understand fire trends.

It is estimated that Africa is responsible for ~70%
of global burned area and ~50% of fire-related car-
bon emissions, mostly from local savanna ecosys-
tems (Andela and van der Werf 2014). Central Africa
contains complex savanna, grassland and rainforest
ecosystems and is a crucial hot spot for wildfires.
It has experienced a long-term drying trend and a
widespread increase in the boreal summer dry sea-
son length (DSL) since the 1980s (Zhou et al 2014,
Hua et al 2016, 2018, Nicholson et al 2018, Jiang
et al 2019), which may have exposed local ecosys-
tems and societies to a greater risk of wildfires. The
documented decrease in observed fires over Africa
(Andela and van der Werf 2014, Andela et al 2017)
based on the satellite-derived MODerate resolution
Imaging Spectroradiometer (MODIS) Collection 5
burned area data suffered from large uncertainties,

including the occurrence of false alarms caused by
small forest clearings, the omission of large fires
obscured by thick smoke and small fires by the lim-
ited algorithm, and sensor degradation (Giglio et al
2016).

The availability of an improved MODIS fire
product provides a great opportunity to investig-
ate robust trends in fires and possible drivers over
Central Africa. The Collection 6 burned area map-
ping algorithm and product have several algorithmic
improvements and calibration adjustments, which
address the aforementioned data quality issues
(Giglio et al 2018). This improved dataset also allows
us to better separate contributions from different
fire categories and different land cover types. With
these in mind, we analyzed fire changes and possible
drivers over Central Africa. Combining the utility of
the random forest model, we aimed to answer the
following questions: (i) Is there a decreasing trend
in burned area over Central Africa as reported at the
global scale? If yes, how does this change vary by land
cover and attribute to changes in fire frequency and
size? (ii) Which factors are primarily responsible for
the changes?

2. Study region, data andmethods

2.1. Study region
This study focused on Central Africa (10◦E–40◦E,
15◦N–15◦S). This domain was carefully chosen given
that it has the highest fire frequency and the most
extensive burned area in the world. Human influ-
ences vary from the minimum in the rainforest to the
maximum in the savannas and grasslands (Zhou et al
2014). These features make Central Africa an ideal
target to study the wildfire change in a warming cli-
mate and attribute human and climate drivers.

2.2. Satellite-retrieved burned area and land cover
products
Two global satellite-derived burned area products
were used. One was the monthly burned area variable
at 500 m spatial resolution (MCD64A1 Collection 6,
2001–2018) combining the Terra and Aqua satellites
from the National Aeronautics and Space Adminis-
tration (NASA) (Giglio et al 2018). It provides the
approximate date of burning by detecting changes in
daily surface reflectance to study the size distribu-
tion of individual fires (Andela et al 2017). The Col-
lection 6 algorithm offers better detection of small
fires and detects about 20% more burned area in
Africa (Giglio et al 2018). Burned area can be detec-
ted for many weeks after a fire has occurred and takes
advantage of temporal and spatial structural changes
in fires (Andela et al 2017). Since the Terra satellite
was launched in December 1999 and the Aqua satel-
lite was launched later in May 2002, the burned area
trend combined from both satellites was quantified
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from 2003–2017 to reduce instrumental uncertain-
ties. Only pixels marked as valid observations by the
pixel-level quality assurance (QA) information asso-
ciated with the MCD64A1 dataset were used.

The other burned area product was the monthly
Global Fire Emissions Dataset Version 4 (GFED4s,
1997–2016) at 0.25◦ spatial resolution (Randerson
et al 2012, Giglio et al 2013). This product used
the 500 m MCD64A1 Collection 5.1 product as
its primary data layer and incorporated small fires
using active fire detections from the Tropical Rainfall
Measuring Mission (TRMM), Visible Infrared Scan-
ner (VIRS) and Along-Track Scanning Radiometer
(ATSR) (Giglio et al 2013).

Both the MODIS and GFED4s products
depict a similar annual cycle of burned area
(supplementary figure S1) (available online at
stacks.iop.org/ERL/15/0940b8/mmedia). Burned
area reaches the maximum in December north of
the equator and in August south of the equator.
A fire year was defined as five months before and
six months after the peak fire month (Archibald et al
2009). The annual total burned area was calculated as
three months before and four months after the peak
fire month to include more than 90% of total burned
area (van der Werf et al 2008). Then, the linear trend
of annual burned area was estimated using ordinary
least squares regression. A two-tailed Student’s t-test
was applied to assess whether the trend was statistic-
ally significant.

Next, the changes in burned area by land cover
were examined. The annual MODIS land cover
product (MCD12C1, 2001–2018) (Friedl and Sulla-
Menashe 2015) at 0.05◦ resolution was used to
identify the land cover type of each pixel in the
study domain. There are 17 total land cover types
classified based on the International Geosphere–
Biosphere Programme (IGBP) classification scheme
(supplementary table S1). Seven major land cover
types including evergreen broadleaf forest, decidu-
ous broadleaf forest, mixed forest, woody savanna,
savanna, grassland, and croplands (including crop-
lands with natural vegetation mosaics) cover up to
97% terrestrial area of the study region (supplement-
ary table S1 and figure S2), and about 96% burned
area has occurred in these seven land cover types.
The land cover type for each burning pixel was first
assigned using the MCD12C1 and then the total
burned area for each of the seven land cover types
was spatially aggregated. Thus, the burned area in the
study region was divided into seven sub-regions by
land cover.

2.3. Connected-component labeling
A 3D (latitude, longitude, time) connected-
component labeling (CCL) algorithm was adopted
to identify individual fires (Archibald and Roy 2009,
Hernandez et al 2015, He et al 2017). It labels an indi-
vidual fire based on the following rules. First, a fire ID

is given to the first burned pixel when all pixels begin
as unclassified. Then, pixels neighboring this labeled
pixel including diagonals (eight possible neighbors)
are identified. If any of these pixels are recorded as
burned within 8 days of the date when the central
pixel burns, they are labeled with the same fire ID.
(Archibald and Roy 2009). The CCL algorithm was
repeated until all burned pixels were allocated with
an individual fire ID. Eight days was used as a cut-off
given the temporal duration window of the original
MODIS data (Giglio et al 2018). Fire events were
categorized into six different types: <100 ha (1 km2,
small fire), 100–500 ha, 500–1000 ha, 1000–10 000 ha,
10 000–50 000 ha and >50 000 ha (Archibald and Roy
2009). Due to the limited spatial resolution of the
MODIS product, fires smaller than 25 ha were not
considered in this study. Linear trends and their stat-
istical significance in fire frequency and size were
calculated in the same manner as the annual burned
area detailed in section 2.2.

2.4. Random forest regressionmodel
A random forest regression model was applied to
study drivers of burned area variations in three
land cover types (savannas, grasslands, and evergreen
forest) that showed strong interannual variations and
trends in burned area (see more in section 3.3). A
single regression tree is a hierarchical classifier that
predicts class membership by recursively partition-
ing data into more homogeneous subsets without
assumptions concerning the statistical distribution of
the data. However, a single output tree is sensitive
to small differences in input datasets (Aldersley et al
2011). As a bootstrapping procedure, random forest
grows a bunch of regression trees to improve the pre-
dictive ability of a single regression tree and reduce
overfitting. Details regarding the spatially resolved
data used in the model and the random forest sets are
described next.

Nine variables were included in the concep-
tual model as predictors based on previous studies
(table 1). Annual precipitation (P) and DSL were cal-
culated by the three-hourly TRMM (3B42) precipit-
ation product (Huffman et al 2007). Annual precip-
itation was calculated starting 12 months before the
peak fire month up to and including the peak fire
month (total 13 months) (van der Werf et al 2008).
Daily rainfall estimates during a fire year within each
grid were ranked and summed in descending order
until at least 98% of annual rainfall was reached. The
remaining number of days was the length of the dry
season for that pixel (Guan et al 2018). The 98%
threshold was chosen to consider highly varied rain-
fall seasonality over different ecological regions in
Central Africa (Jiang et al 2019). Fuel availability was
quantified by the biweekly MODIS Terra normalized
difference vegetation index (NDVI) product at 0.05◦

resolution (MOD13C1, 2000-present) (Didan 2015).
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Table 1. Datasets of variables used as predictors in the random forest model.

Variables Time Spatial resolution Temporal resolution Dataset

precipitation (P)
dry season length (DSL)

1998–present 0.25◦ 3-hourly TRMM 3B42

NDVI 2000–present 0.05◦ biweekly MOD13C1
tree cover 2003–2017 250 m yearly MOD44B
surface wind speed 1980–present 0.625◦ × 0.5◦ monthly MERRA-2
surface air temperature 1980–present 0.625◦ × 0.5◦ monthly MERRA-2
surface specific humidity 1980–present 0.625◦ × 0.5◦ monthly MERRA-2
number of thunderstorm events 1982–2016 0.07◦ 3-hourly GridSat-B1
cropland extent 2001–2018 0.05◦ yearly MCD12C1

AhighNDVI value indicates sufficient biomass favor-
ing burning. The annual 250 m MODIS tree cover
product (MOD44B, 2003–2017) (Dimiceli et al 2015)
was applied as well. Large tree cover is adverse for
grass growth and thus reduces the accumulation of
biomass supporting burning (Laris 2011).

Climate conditions, including surfacewind speed,
surface air temperature and specific humidity, from
the monthly Modern-Era Retrospective Analysis for
Research and Applications, v.2 (MERRA-2, 1980–
present) at 0.625◦ × 0.5◦ resolution were used
(Gelaro et al 2017). Monthly mean weather vari-
ables during the fire season were calculated. Light-
ning strikes are a prominent ignition source (Alders-
ley et al 2011). It was indirectly measured by monthly
thunderstorm frequency using the three-hour grid-
ded infrared (IR) channel brightness temperature
(Tb) dataset at 0.07◦ resolution (GridSat-B1, 1982–
2016; Knapp et al 2011).Tb ranging between−40 and
−70 ◦Cwas used to quantify thunderstorm activity in
tropical latitudes (Raghavendra et al 2018). Since total
climatological lightning flash rates correspond well to
changes in the number of storms (Williams et al 2000,
Cecil 2015), thunderstorm event records provide reli-
able information about lightning strikes.

Human activities affect fuel load and continuity
as well as ignition frequencies (Archibald et al 2009).
However, anthropogenic factors were limited to cro-
pland extent in this study due to the lack of con-
tinuous records for road nets and population dens-
ity. Cropland extent variations in different land cover
types were calculated from the MODIS land cover
product to quantify the impacts of agricultural expan-
sion on fires. For easier comparison, all datasets used
in this study were remapped on a 0.25◦ grid box using
nearest-neighbor resampling.

Gridswith significant (p<0.1) burned area trends
were classified into low (< 30th percentile) and high
(> 70th percentile) burned area to conduct the ran-
dom forest analysis. There are fewer fires in the rain-
forest, so we extended the definition of high burned
area (> 65th percentile) to enlarge the training data
size. First, all datasets, including burned area, were
randomly partitioned into training (90% of total
data) and test (10% of total data) datasets in the ran-
dom forest model. Then, 1000 trees were grown to

guaranteemodel stabilization. Each tree used a differ-
ent random bootstrap subset of predictor and burned
area variables (about 66% of the training sets). For
split conditions at each node, one third of the total
number of predictor variables (i.e. three out of nine
variables) were recommended based on the estim-
ate of the Gini impurity (Breiman and Cutler 2003).
No further splitting was performed when nodes had
fewer than five cases (Breiman 2001). The accuracy
of the random forest regression was assessed by two
methods (Breiman 2001, Mayr et al 2018). One is
the out-of-bag score, which calculates the squared
correlation coefficient between the burned area pre-
dicted by the model trained by the 66% training
sets and observations from the rest of the training
sets (33%). The other method calculates the Pearson
correlation coefficient between the burned area pre-
dicted by the test datasets and themodel and observed
burned area. The results provide relative contribu-
tions of individual physical variables and their critical
values favoring or suppressing fire activities.

3. Results

3.1. Trends of annual burned area
Annual mean burned area is shown in figures 1(a)–
(b). There is a high level of burned area over northern
Central Africa (including the Central African Repub-
lic and southern Sudan) and southern Central Africa
(including Angola and southern Democratic Repub-
lic of Congo) but less burning over the wet Congo
rainforest in general. The maximum annual mean
burned area reaches 96% within in a single grid box
in northern Central Africa estimated by both burned
area products.

Figures 1(c)–(d) display the spatial patterns of
burned area trends from MODIS (2003–2017) and
GFED4s (2003–2016). In northern and northwestern
Central Africa, there is a significant negative trend
(p < 0.05) in burned area, with a maximum decreas-
ing rate of about 2% yr−1. A mild, decreasing trend
exists in southern Central Africa and parts of the
Ethiopian highlands in the east. A significant increase
in burned area occurs in the southwestern and north-
western edges of the Congo rainforest as well, which
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Figure 1. Spatial patterns of annual mean burned area from (a) MODIS and (b) GFED4s, and linear trends of annual mean
burned area for the period 2003–2016/17 from (c) MODIS and (d) GFED4s. The dashed line delineates the boundary of the
Congolese rainforest. Grid boxes with black dots have a significant trend at P < 0.05. Regionally aggregated interannual variations
(solid line) and linear trends (dashed line) of annual mean burned area: (e) north and (f) south of the equator estimated from the
MODIS and GFED4s. The linear trend and its significance level P are shown.

highlights the increasing risk of wildfire leakage into
the rainforest.

Figures 1(e)–(f) show the interannual vari-
ations in burned area spatially averaged over north-
ern and southern Central Africa. Though the
GFED4s data detected more annual burned area
than the MODIS data, both products observed
similar interannual changes in burned area. The
annual burned area has decreased dramatically by
1.8–2.5 Mha (104 km2) yr−1 (P = 0.00) in the
north, particularly over tropical savannas and grass-
lands. Burned area decreased at a lower rate by 0.7–
0.9 Mha yr−1 (p < 0.1) in the south.

3.2. Changes in fire frequency and size
The histograms of fire frequency are shown in
figure 2(a). Small fires (<100 ha) contribute to 66%
and 64% of total fire numbers north and south of

the equator, respectively. Mega fires (>1000 ha) only
count for about 5% in the north and 4% in the south.
The annual fire frequency has decreased in the north
at a rate of 2000 yr−1 (about 0.75% yr−1), while it
has varied little in the south (figures 2(b)–(c)). The
significant decline in fire frequency in the north was
mainly attributed to dramatic decreases in large fires
(>100 ha). Fires larger than 500 ha have decreased at
a rate of about 1.5% per year, and small fires have
also slightly decreased at a rate of about 0.5% (figure
2(d)). Though there was no significant trend in fire
frequency in the south, decreases also occurred with
large fires larger than 1000 ha (figure 2(e)).

Next, changes in fire size were studied. In gen-
eral, small fires contribute to 7.6% and 10% of
total burned area in the north and south, respect-
ively. Though large fires only count for about 30%
of total fire events, they contribute up to about
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Figure 2. Histogram and variations of fire frequency over Central Africa estimated by the MODIS product for the period
2003–2017. (a) Histogram of fire frequency for different fire categories. Interannual variations and linear trends of total fire
frequency (b) north and (c) south of the equator. Interannual variations and linear trends of standardized fire frequency in
different categories (d) north and (e) south of the equator. Linear trends and significance levels are shown.

90% of the total burned area (figure 3(a)). Signi-
ficant decreases in the mean size of different fire
categories have occurred in the north, particularly
for mega fires larger than 50 000 ha for which size
decreased by 1.6% yr−1 (figure 3(b)). Small fires have
slightly decreased by about 0.2% yr−1. Mild, but non-
significant, decreasing trends in large fire size have
happened in the south as well (figure 3(c)).

3.3. Dependence of burned area changes on land
cover types
Most fires happened over savannas (about 53%) and
grasslands (about 30%), particularly in the north (fig-
ure 4(a)). A small percentage of burned area occurred
over forested regions (about 10%) in the south (fig-
ure 4(a)). The long-term trends in annual burned
area within savanna and grassland ecosystems are
shown in figures 4(b)–(c). Burned area has decreased
significantly by 1.41–1.77 Mha yr−1 (p < 0.01) for
the period 2003–2017 in the north and decreased by
0.48–0.83Mha yr−1 in the south. Decreases in burned
area in savannas and grasslands substantially con-
tributed to the total decline in burned area in Cent-
ral Africa (70%–80% in the north, 69%–89% in the
south). Though only about 4% burned area occurred
in croplands, burned area decreased significantly by
0.31–0.53 Mha yr−1 (p < 0.01) in croplands north of
the equator.

Figures 4(d)–(e) show the interannual variations
in burned area in forested regions. Annual burned
area slightly decreased by 0.07–0.08 Mha yr−1 in the
north. Conversely, it increased significantly by 0.13–
0.15 Mha yr−1 (p < 0.05) in the south. The increased

burned area in forested regions was mainly attributed
to increased burned area over mixed forests. In par-
ticular, burned area increased in the rainforest edges
by 0.012 Mha yr−1 (p = 0.15) (about 1.14% yr−1)
according to the MODIS product. To disentangle
drivers of burned area changes in savannas, grass-
lands and rainforest edges, the random forest regres-
sion was applied next.

4. Possible drivers of burned area changes

First, all potential variables affecting burned areawere
assessed by calculating the climatologicalmean values
for the period 2003–2017 over savannas and grass-
lands, and rainforest edges (supplementary table S2).
Savannas and grasslands, withmore burnings and sig-
nificantly decreasing burned area trends, are char-
acterized by higher precipitation, shorter DSL and
higher 2-m temperature during the fire season. The
southern edge of the Congo rainforest, with a posit-
ive burned area trend, is characterized by a lower pre-
cipitation amount and longer DSL. Distributions of
burned area grids in savannas and grasslands show
that the decreasing burned area in savannas and grass-
lands may be attributed to a decrease in the occur-
rence of high burned area and an increase in the
occurrence of low burned area (supplementary fig-
ures S3(a)–(b)). These results are consistent with the
decreasing trends in the frequency and size of large
fires. The increasing burned area over the southern
Congolese rainforest edges may be attributed to an
increase in the occurrence of high burned area (sup-
plementary figure S3(c)).
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Figure 3.Histogram and variations of fire size over Central Africa estimated by the MODIS product for the period 2003–2017. (a)
Histogram of contributions from different fire categories to total burned area. Interannual variations and linear trends of
standardized mean fire size in different categories (b) north and (c) south of the equator. Linear trends and significance levels are
shown.

Figure 4. Histogram and variations of burned area in different land cover types over Central Africa estimated by the MODIS and
GFED4s for the period 2003–2017. (a) Histogram of burned area for different land cover types. Interannual variations (solid line)
and linear trends (dashed line) of burned area in savannas and grasslands (b) north and (c) south of the equator. Interannual
variations and linear trends of burned area in forested regions (d) north and (e) south of the equator. Linear trends and
significance levels are shown.
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Figure 5. Relationships between annual burned area fromMODIS and NDVI, dry season length (DSL), and precipitation amount
over savannas and grasslands in the northern hemisphere for the period 2003–2017. (a) NDVI versus precipitation amount and
DSL against burned area. Small circles shaded in blue represent low burned area. Large circles shaded in red represent high
burned area. Probability density functions (PDFs) of (b) NDVI, (c) DSL, and (d) precipitation amount for high (red) and low
(blue) burned area. The critical values are marked. Comparisons of (e) NDVI, (f) DSL and (g) precipitation between 2003–2008
(red) and 2012–2017 (blue). PDFs are calculated by kernel density estimation (KDE) to demonstrate the distribution of the
variable. ‘ba_p30’ and ‘ba_p70’ refer to burned area lower than the 30th percentile and higher than the 70th percentile of all
burning grids, respectively.

According to the random forest analysis, NDVI
ranks as the most important variable and is followed
by DSL and precipitation in northern savannas and
grasslands (supplementary table S3). Grids with a
higher NDVI value, shorter DSL and higher precipit-
ation amount are favorable for high burned area (fig-
ures 5(a)–(d)). The random forest model character-
ized the training dataset well, with high out-of-bag
correlation (Ro = 0.91), and predicted burned area
using the test datasets with a high Pearson correla-
tion coefficient (Rp = 0.81, p = 0.00). Comparisons
between the composites of the three most important
variables between 2003–2008 and 2012–2017 indic-
ate that the decrease in the number of grids with
high burned area is attributed to decreasing NDVI
values and precipitation amount and increasing DSL
(figures 5(e)–(g)). Positive correlation was observed
between precipitation and NDVI (R= 0.83, p= 0.0),
and negative correlation existed between DSL and
NDVI (R=−0.87, p= 0.0). These results are consist-
ent with previous studies indicating that lower mois-
ture availability in arid or semi-arid ecosystems can
decrease fuel build-up and burned area in the fol-
lowing years over longer time scales (van der Werf
et al 2008, Archibald et al 2010, Bistinas et al 2014,
Lehmann et al 2014).

The random forest model worked well for savan-
nas and grasslands in the south with Ro = 0.88
and Rp = 0.74 (p = 0.00). NDVI, DSL and sur-
face specific humidity are the three most import-
ant variables influencing fires. Similarly, a higher
NDVI value and shorter DSL favor high burned area
(figures 6(a)–(d)). Depending on the scenario, both
positive and negative specific humidity anomalies
can favor burning. Low humidity dries out plants,
increasing the flammability of fuel. High humidity
favors plant growth, increasing the amount of fuel.
The mild decreasing trend in high burned area was
mainly attributed to a decreased NDVI, longer dry
season and slightly drier conditions (figures 6(e)–
(g)). Longer DSL suppresses the accumulation of
fuel, as seen by the negative correlation (R = −0.57,
p= 0.0) between DSL and NDVI.

The random forest model was applied to the
southern Congolese rainforest edge as well. Precip-
itation amount, surface wind speed and temper-
ature significantly affect burned area (Ro = 0.83
and Rp = 0.63). Precipitation around 1585 mm,
10-m wind speed around 5.5 m s−1 and temperat-
ure around 295.3 K during the fire season facilit-
ate fire activities (figures 7(a)–(d)). The increasing
high burned area at the southern edge of the Congo
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Figure 6. Relationships between annual burned area from MODIS and NDVI, DSL, and specific humidity over savannas and
grasslands in southern hemisphere for the period 2003–2017. (a) NDVI versus DSL and specific humidity against burned area.
Small circles shaded in blue represent low burned area. Large circles shaded in red represent high burned area. Probability density
functions of (b) NDVI, (c) DSL and (d) specific humidity for high (red) and low (blue) burned area. The critical thresholds are
marked. Comparisons of (e) NDVI, (f) DSL, and (g) specific humidity between 2003–2008 (red) and 2012–2017 (blue). ‘PDF’,
‘ba_p30’ and ‘ba_p70’ are defined as in figure 5.

Figure 7. Relationships between annual burned area from MODIS and precipitation amount, wind speed and temperature in the
southern rainforest edges for the period 2003–2017. (a) Precipitation amount versus wind speed and temperature against burned
area. Small circles shaded in blue represent low burned area. Large circles shaded in red represent high burned area. Probability
density functions of (b) precipitation amount, (c) wind speed and (d) temperature for high (red) and low (blue) burned area. The
critical thresholds are marked. Comparisons of (e) precipitation amount, (f) wind speed and (g) temperature between 2003–2008
(red) and 2012–2017 (blue). ‘PDF’ and ‘ba_p30’ are defined as in figure 5. ‘ba_p65’ refers to burned area higher than the 65th
percentile of all burning grids.
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rainforest is attributed to reduced precipitation and
increased temperature (figures 7(e)–(g)).

5. Discussions and conclusions

Using advanced satellite observations, we found that
burned area has decreased by 2.7–3.2 Mha yr−1 since
the early 2000s in Central Africa. While previous ana-
lyses documented downward trends in the north but
upward trends in the south (Andela et al 2017), our
results indicate that burned area has declined in both
northern and southern Central Africa. Both fire fre-
quency and size have declined, particularly for large
fires (>100 ha) in the north. In addition, the decrease
in fire frequency slightly outweighs the decrease in fire
size.

Most of the burned area and decreased burned
area trends occur in the savannas and grasslands. The
highest levels of fire activities observed in the savanna
ecosystems are characterized by intermediate levels of
precipitation and distinct wet and dry seasons favor-
ing fuel build-up and dry-out (van der Werf et al
2008, Andela and van der Werf 2014). Most of the
fire emissions originate from the savanna ecosystems
and exert strong effects on atmospheric carbon diox-
ide and methane concentrations, which are crucial
climate drivers (van der Werf et al 2010). Decreases
in the frequency of large fires and burned area in
tropical savannas and grasslands may support global
warming mitigation by acting as a carbon sink but
would run counter to conservation objectives in fire-
dependent ecosystems. Increasing burned area in for-
ested areas was observed in the south, including the
edge of the southern Congolese rainforest. The local
intact rainforest has become increasingly fragmen-
ted since 2001 (Potapov et al 2017). Forest edges are
often juxtaposed with frequently burned pastures and
degraded by selective deforestation (Cochrane and
Laurance 2002). Increased burningmay initiate a pos-
itive loop, which augments the rainforest fragment-
ation and affects its carbon storage (Cochrane et al
1999, Nepstad et al 1999).

We used the MODIS and GFED4s burned area
products in this study. Boosted by better fire map-
ping algorithms, both burned area products have
been improved to detect small fires. The MODIS
product also provided information about changes
in different categories of fires. Nevertheless, smaller
fires <25 ha were not included due to the constraint
of image spatial resolution. Poor measurements of
these small fires would introduce large uncertainties
when studying fire variations in regions such as cro-
plands where smaller fires are relatively important
(van der Werf et al 2017, Giglio et al 2018). These
sub-grid small fires are likely to increase total burned
area and carbon emissions by 35% globally (Rander-
son et al 2012). Though it is impossible to quantify

the contribution of these smaller fires to total burned
area and fire events, our results for fires between 25
and 100 ha in Central Africa suggest that this con-
tribution is non-negligible to fire events but may be
minor to total burned area. In addition, the diurnal
cycle of individual fires cannot be documented by the
fire products due to the constraint of image temporal
resolution. Though the overall burned area trends
were comparable from both theMODIS and GFED4s
products, knowing more details about sub-grid fires
and individual fire evolutions would facilitate our
understanding of burned area changes and their phys-
ical mechanisms.

Our random forest analysis analytically revealed
that the decreasing trend of burned area in savannas
and grasslands was mainly attributed to changes in
precipitation activities and vegetation fuel. A posit-
ive correlation between precipitation and NDVI and
a negative correlation between DSL and NDVI indic-
ate that moisture availability is crucial for fuel build-
up in these semi-arid ecosystems. The decreased high
burned area was mainly attributed to longer DSL,
decreased precipitation and suppressed fuel build-
up. Decreased precipitation and increased temperat-
ure were responsible for increased burned area at the
southern rainforest edge. Increased agricultural activ-
ities were considered as the primary drivers of declin-
ing fire activities in the tropics and subtropics (Malhi
et al 2008, Andela et al 2017). The machine learning
method highlights the impacts of vegetation fuel and
weather factors on local wildfire variability under the
changing climate. To better examine anthropogenic
effects on fires, additional continuous records of pop-
ulation density, road density, and grazing intensity
are required. Detailed vegetation–fire interaction and
explicit physical mechanisms need further study via
advanced land model simulations and causality ana-
lysis.
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