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[1] Leaf area index is an important input for many climate and carbon models. The widely
used leaf area products derived from satellite-observed surface reflectances contain
substantial erratic fluctuations in time due to inadequate atmospheric corrections and
observational and retrieval uncertainties. These fluctuations are inconsistent with the
seasonal dynamics of leaf area, known to be gradual. Their use in process-based terrestrial
carbon models corrupts model behavior, making diagnosis of model performance
difficult. We propose a data assimilation approach that combines the satellite observations
of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo with a dynamical
leaf model. Its novelty is that the seasonal cycle of the directly retrieved leaf areas
is smooth and consistent with both observations and current understandings of processes
controlling leaf area dynamics. The approach optimizes the dynamical model
parameters such that the difference between the estimated surface reflectances based
on the modeled leaf area and those of satellite observations is minimized. We demonstrate
the usefulness and advantage of our new approach at multiple deciduous forest sites
in the United States.
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1. Introduction

[2] The leaf area index (LAI), defined as the one-sided
leaf area per unit ground surface area is a major land surface
parameter. Its seasonal dynamics has a strong influence on
the variation of mass and energy exchanges between the
surface and the atmosphere. The performance of land
surface models depend on how well the seasonal dynamics
of LAI is represented, either internally or using observations
as input. It is difficult to predict LAI internally in land
surface models because biological and environmental pro-
cesses affecting LAI are numerous and often not well
understood. For this reason, most land surface models
now use remote sensing products of LAI as input [Zeng et
al., 2002; Tian et al., 2004]. Satellite-observed spectral
surface reflectances are now routinely used to generate
LAI products [e.g., Myneni et al., 2002; Lotsch et al.,
2003], products that are now indispensable for study of
climate change and terrestrial responses.
[3] Satellite observations are affected by atmospheric

composition, clouds and aerosols, and other dynamic fac-

tors. Consequently, the LAI derived from satellite surface
reflectance observations often contain large, erratic fluctua-
tions while the actual temporal variation in LAI would be
more gradual and smooth. For land surface modeling and
particularly carbon cycle modeling, such erratic fluctuations
are not simply a noise issue; they lead to a series of
problems in predicted carbon budgets and energy fluxes.
For instance, when LAI increases, the carbon and nutrients
needed for this increased LAI must be accounted for to
maintain mass conservation and consistency among differ-
ent carbon and nutrient pools in the model. Growth and
maintenance respiration must also increase accordingly. An
LAI with large temporal discontinuities will shift growth
respiration unreasonably, and introduce problematical im-
balance between carbon and nutrients. Erratic fluctuations
in LAI products can also cause problems in their application
for studies in phenology. Therefore, a resolution of the issue
of erratic fluctuations would enhance the value of remote
sensing–based LAI products for climate change research.
[4] Efforts to reduce erratic fluctuations in satellite LAI

products have mostly focused on advancing the algorithm
of the retrieval process for surface radiative fluxes that are
used for LAI estimation [e.g., Bicheron and Leroy, 1999;
Yang et al., 2006; Deng et al., 2006], or using statistical
procedures to smooth erratic fluctuations after the LAI
products are generated [e.g., Chen et al., 2002; Roerink et
al., 2000; Chen et al., 2006]. While these approaches are
valuable, their effectiveness is ultimately limited by the
dynamics of the atmosphere and by the quality of upstream
data sets that enable the calculation of LAI. An alternative
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approach proposed here is to constrain the estimates of LAI
by combining our understanding of the dynamics of canopy
processes with MODIS observations of surface albedo
through data assimilation. Although MODIS LAI products
can be used for similar purposes, their errors resulted from
processing the MODIS reflectance data are bigger and more
difficult to quantify than those of the MODIS albedo
products. The proposed approach adds additional informa-
tion in the form of a priori ecological knowledge to enhance
the remote sensing algorithms. Furthermore, it applies to the
very process of LAI estimation, in contrast to a preprocess-
ing strategy [e.g., Deng et al., 2006] or a postprocessing
strategy [e.g., Chen et al., 2006].
[5] This article details our approach and tests it at

multiple sites.

2. Methods

2.1. Overall Strategy

[6] In current remote sensing, each set of measurement
inverted for leaf area is viewed as an independent estimate.
However, leaf areas at different times are inherently linked
through plant growth and developmental processes. As a
result, the LAI products as currently derived are contami-
nated by large errors in the upstream products of surface
reflectance and by uncertainties in the algorithm that infers
LAI from surface reflectance.
[7] A recently developed dynamic leaf model (DLM)

[Dickinson et al., 2008] makes it possible to use the
inherent, biological linkage in the temporal variations of
leaf area to improve the quality of remote sensing products
of LAI. This DLM uses a minimum number of vegetation-
specific parameters to describe the influences of environ-
mental variations on the temporal evolution of LAI and thus
is particularly suitable for large-scale applications. Our
strategy is straightforward: we optimize the parameters in
the DLM by minimizing the difference between satellite-
based surface albedos and the albedos calculated with a
canopy radiative transfer model that uses the temporal
dynamics of LAI predicted by the DLM. The process is
iterative and once the optimization process is completed, the
temporal dynamics of LAI are produced by the DLM with
the optimized set of parameters.

[8] In addition to satellite observations of surface albedos
and the DLM, our data assimilation system requires a third
component, that is, a canopy radiative transfer model to link
LAI with surface albedos. For this purpose, we use a two-
stream radiative transfer scheme [e.g., Dickinson, 1983;
Sellers et al., 1986; Pinty et al., 2006]. Such a two stream
model has been widely used in climate models, although
more complicated schemes are available [e.g., Schaaf et al.,
2002; Myneni et al., 2002; Knyazikhin et al., 1998a, 1998b]
that might be similarly used.
[9] A schematic overview of the proposed data assimila-

tion approach is illustrated in Figure 1. To evaluate the
performance of our approach, we also conduct a direct
inversion of the LAI using the canopy radiation model
alone, and compare the LAI seasonal cycle of the optimized
DLM simulations with that of the direct inversion, and the
MODIS products.

2.2. Dynamical Leaf Model

[10] The DLM [Dickinson et al., 2008] simulates the
seasonal leaf area dynamics on a daily time step. The most
important short-term drivers of natural canopy variability
are thermal and water stresses, and so only temperature and
soil moisture are included as forcing input to the model, and
for a cold weather deciduous forest, the temperature stress is
dominant. The DLM gives dynamics of leaf area (L) as

dL

dt
¼ �l L;a; Tð Þ � L; ð1Þ

where the term l is the inverse of the timescale over which
L grows (negative) or decays (positive), a is a vector of all
parameters, T is air temperature, which is the only
atmospheric forcing here. The term l is formulated as

l ¼ l0 1þ a 1� R xð Þ½ �f g � l0

�
R xð Þ L0

L

� �
1� e�cL
� ��

: ð2Þ

The two portions on the right are the stress and gain terms,
respectively. The parameter l0 is an inverse timescale
characterizing normal respiration losses balancing at steady
state normal growth. In the stress term, a expresses
enhanced loss from stress terms, R(x) is a smooth Heaviside

Figure 1. Schematic overview of the proposed data assimilation approach.
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‘‘ramp-up’’ function going from 0 at large negative x values
to 1 at large positive x values for which we assume that R(x) =
0.5(1 + \tanh (x)) = 1/(1 + exp (�2x)). The term x is the
temperature normalized to the range of temperatures over
which cold stress switches off, given as x = (T � Tmin)/DT.
The growth term describes the light-dependent physiology,
in which L0 is the maximum leaf area possible under light
limit, c is a parameter determining the dependence of L on
light attenenuation. In order to push L away from its
unstable equilibrium point L = 0, the value of L is limited to
no less than 0.1, representing a small ‘‘photosynthate’’
storage term in winter. The above formulation requires a
total of six parameters, Tmin, DT, l0, L0, a, c. In our study,
we found that the parameters a and c, inferred from data
fitting, have strong correlation. Therefore, we assumed c at
a fixed value of 1. Thus, only five parameters are adjusted
by the data assimilation, i.e., the adjustable vector a =
{Tmin, DT, l0, L0, a}.

2.3. Two-Stream Canopy Radiation Model

[11] The numerical code of the two-stream scheme for
computing the canopy radiations in this study follows that
for radiation fluxes associated with diffuse radiation in Pinty
et al. [2006]. The formulation details can be found in the
work of Pinty et al. [2006, equation (33), Appendix B]. The
radiation model uses a given LAI to compute the surface
albedo, defined as the ratio of upwelling to the spectrally
integrated downwelling radiant fluxes at the top of the
canopy. Its albedos for visible and near-infrared diffuse
radiations are compared with MODIS white-sky albedos.
Optical properties, including leaf reflectances, leaf trans-
mittances and soil reflectances for visible and near infrared
bands, are prescribed for each site. The leaf reflectance in
the near-infrared band is prescribed with values varying
with time because we found that a constant value cannot
explain the sharp decrease of MODIS albedos in the near-
infrared during later half of the growing season in contrast
to the smooth pattern of MODIS albedo in the visible band.
Zarco-Tejada et al. [2003] show how the leaf-level reflec-
tance in the near-infrared spectral region is strongly associ-
ated with leaf dry matter weight, water thickness, etc., and
older leaves with higher dry matter content have smaller
reflectance. Thus, we assume decreasing near-infrared leaf
reflectance values for the later half of the growing season.
Other optical parameters are assumed constant for simplic-
ity, although they may also vary with time. Their values for
a specific site are provided in the following sections.

2.4. Cost Function and Its Minimization

[12] The DLM and MODIS observations are combined
through the definition of the cost function. The minimiza-
tion of the cost function (J) results in the optimal parameter
values. The cost functions are based on a widely used least
square form, that is,

J að Þ ¼ 1

2
M að Þ � Oð ÞTC�1

o M að Þ � Oð Þ
h i

; ð3Þ

where a is the vector of adjustable parameters; O and M
contain the observations and their model-simulated counter-
parts respectively, Co the associated observational covar-
iance matrix. The proposed approach assimilates MODIS
band 1 and band 2 albedos from the linked DLM and

canopy radiation model over a whole year at once to obtain
the optimal values of the adjustable DLM parameters, i.e.,
{Tmin, DT, l0, L0, a}. Therefore, the observation vector O =
[r1(t1) r2(t1) r1(t2) r2(t2) . . . r1(tn) r2(tn)], where t1 . . . tn are
the nMODIS observational time points in the year, r1 and r2
are the MODIS albedos in visible band and near infrared
band respectively; and the M vector contains the modeled
albedos in both band at the same time points. With the
assumption of independence between observational points,
the 2n� 2nmatrix Co consists of s1(t1), s2(t1), s1(t2), s2(t2),
s2(t2), . . ., s1(tn), s2(tn) in the diagonal components, and
zeros in the nondiagonal components.
[13] Minimization of the cost function is done with a

gradient descent search algorithm, requiring both J(a) and
its gradient rJ(a) with respect to a. The exact evaluation
of this gradient can be achieved via the adjoint model of J
which is constructed using the automatic differentiation
software, TAPENADE [Hascoët and Pascual, 2004], and
is validated each time with a finite difference approach. The
gradient search followed the limited-memory quasi-Newton
method developed by Byrd et al. [1995] and Zhu et al.
[1997] for its treatment of bound-constraint conditions. The
whole data assimilation process of the new approach is
referred to as ‘‘dynamical inversion.’’
[14] For comparison purposes, we also conducted a

different type of LAI retrieval experiment from the MODIS
albedos: a direct retrieval that assumes LAI at different
times of a year as independent variables, and thus uses only
the canopy radiation model. It is referred to as ‘‘direct
inversion,’’ and is done independently at each observational
time. The cost function was minimized with respect to the
LAI only. The same minimization method and automatic
differentiation software as mentioned earlier were applied
for the direct inversion. The vector O at a specific time
contains two elements: the MODIS observation of visible
albedo and near infrared albedo at that point. M contains the
corresponding albedos from the canopy radiation model
computation. The measurement covariance matrix Co is
assumed diagonal, so that only the variances (s) have
nonzero values. Thus, the cost function for the direct
inversion is simplified to

J LAIð Þ ¼
X2
i¼1

1

2si

mri LAIð Þ � orið Þ2; ð4Þ

where the subscript 1 indicates the visible band and 2 the
near infrared band, mr and or are the modeled and observed
albedos, respectively. The seasonal cycle of the LAI is
constructed by repeating the minimization procedure on all
observational points collected over the course of a year.

3. Testing Data Sets and Construction of
Variances

[15] We tested the new approach described above for
observations from three U.S. MODIS validation sites: the
Harvard Forest Main Tower (Harvard Forest) in eastern
Massachusetts (42�320N, 72�100W), the Walker Branch
Watershed (Walker Branch) in central Tennessee
(35�570N, 84�170W), and the Allegheny National Forest
(Allegheny) located in northern Pennsylvania (41�520N,
78�550W). These sites have relatively uniformly surface
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coverage of deciduous broadleaf forest. Their MODIS pixel
values of land products for a 7 � 7 km area subsets in
ASCII format are archived at the ORNL DAAC data center
available through http://www.daac.ornl.gov. We used the
MODIS collection 4 16-day, 1-km surface product of
Bidirectional Reflectance Distribution Function (BRDF)/
Albedo Model parameters (MOD43B1) for the MODIS
bands 1 and 2 to compute the white-sky albedos in the
visible and near infrared band, respectively, for each pixel.
The mean and variance of the 49 pixel values at each time
point were taken as the site-level albedos and their obser-
vational errors, respectively (shown in Figure 4). The
testing time period is year 2004 for the three sites because
of overall good data availability. We also used the MODIS
collection 4 LAI product (MOD15A2) for comparison.
Their site level statistics were computed similarly from
pixel values as was done for the albedos.
[16] The site-specific 2004 daily air temperature forcing

time series were compiled either from on-site half-hourly
flux tower measurement (e.g., Harvard Forest and Walker
Branch) or from a nearby weather station hourly measure-
ment when on-site data are unavailable (e.g., Allegheny).
The forcing time series for Harvard Forest and Allegheny
used mean daily air temperature plus 1 standard deviation of
the 48 half-hourly or 24 hourly daily samples before day
140 of the year, mean daily values from day 140 to day 260,
and mean daily values minus 1 daily standard deviation
after day 260 as it is plausible that daily maximum temper-
atures are needed for leaf growth in spring and daily
minimum values for senescence or frost damage in the fall
[Dickinson et al., 2008]. Because the Walker Branch mea-
surement contains a significant amount of missing points
(i.e., a total of about 56 days), we used a second-order
Fourier curve to fit the valid data points and to create a
continuous time series. The fitting artificially smoothed the
day-to-day fluctuations of the observations but should have
little influence on the seasonal variations of the air temper-
ature. Figure 2 illustrates the actual air temperature meas-
urements and the daily time series used to force the DLM
for each site.

[17] The leaf and soil optical properties needed for the
canopy radiation model are generally based on the values of
broadleaf deciduous forest used in the NCAR Community
Land Model [Oleson et al., 2004], and are tuned recursively
for each specific site so that the simulated albedo results
after data assimilation best agree with the MODIS albedos.
Once these values are decided, they are used in both direct
and dynamical inversion experiments without further adjust-
ment. Table 1 lists the prescribed optical properties. The leaf
reflectance in near infrared shown is the value before day
180 of the year. After day 180, a decrease by 0.001 per day
for Walker Branch and Allegheny, and 0.0008 for Harvard
Forest is assumed to account for the assumed change of leaf
biological properties.
[18] The default values of the dynamical leaf model

parameters and their meaningful value ranges are listed in
Table 2. The default values were randomly selected from
their associated value ranges as they were also used as the
initial guess of the control variables for the dynamical
inversion for all sites. The value ranges of the DLM
parameters were according to the parameter analysis as
given by Dickinson et al. [2008].

4. Results

[19] Figure 3 shows the LAI seasonal cycle that results
from dynamical inversion versus direct inversion, and

Figure 2. Daily mean of air temperature observations (dashed lines) and the actual time series used
(solid lines) to force the dynamic leaf model (DLM) for each site. Harvard Forest and Allegheny use
mean daily temperature plus 1 standard deviation before day 140, mean minus 1 standard deviation after
day 260, and the mean values in between. Walker Branch uses a fitted second-order Fourier curve to
bridge the significant amount of missing points.

Table 1. Values of the Canopy Radiation Model Parameters Used

for Each Sitea

Parameters Harvard
Walker
Branch Allegheny

Leaf reflectance (vis) 0.06 0.08 0.06
Leaf transmittance (vis) 0.06 0.05 0.05
Soil reflectance (vis) 0.05 0.07 0.07
Leaf reflectance (nir) 0.5 0.5 0.5
Leaf transmittance (nir) 0.40 0.35 0.40
Soil reflectance (nir) 0.21 0.18 0.10

aAbbreviations are as follows: vis, visible band; nir, near-infrared band.
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compares them to that of the MODIS grid mean LAI at each
of the three sites. The gray areas about the MODIS LAIs
indicate the variance of the gridmeans. AtWalker Branch, we
also include the LAIs derived from field measured fractional
transmittance of PAR and litter basket collections at a
location within 1-mile distance and with the same vegeta-
tion coverage in the Oak Ridge Free-Air CO2 Enrichment
(FACE) experiment [Norby et al., 2003].
[20] LAI seasonal cycles from the two types of inversions

and from the MODIS derivation all capture the strong
seasonality of deciduous forests with very low values in
winter and large values in summer although the MODIS
LAIs commonly show a broader period of peak LAI values
than the dynamical and direct inversions do. Overall, the
dynamical inversion is able to provide a smooth seasonal
cycle of LAIs with reasonable values for each of the three
testing sites whether or not the forcing data have been
smoothed. In contrast, the seasonal cycles from the direct

inversion or that derived from MODIS observations contain
a significant amount of fluctuations throughout the growing
season. At Walker Branch, the dynamical inversion agrees
with the field measurement well in the first half of the
growing season, but show significantly lower values than
MODIS LAIs between day 100 and 120. The agreement
between the dynamical inversion and the MODIS LAIs is
good in the second half of growing season. If we exclude
the two high LAI value points in early growing season, the
overall agreement between the MODIS and the dynamical
inversion becomes much better, indicating that the high
values may have been overestimations. The high MODIS
LAI values in the early growing season at Harvard Forest
may also due in part to overestimation given that the field
phenology measurement shows that its LAI peaks on
average between day 160 and 200 across all forest species
(J. O’Keefe, unpublished data, 2004), while the MODIS
LAI peaks on about day 140, substantially earlier than the
field observations.
[21] Figure 4 compares the model simulated albedos

based on LAIs from either dynamical inversion or from
direct inversion, with the MODIS albedos. The albedo
seasonal cycles from both dynamical and direct inversions
agree well with that of the MODIS albedos in both the
visible band and the near infrared band at all three testing
sites except that the dynamical inversion is smoother and
the direct inversions tend to match the point-to-point fluc-
tuation of the MODIS albedos better, i.e., exactly what the
dynamical inversion formulated to avoid.
[22] The adjusted parameters (‘‘derived’’ in Table 2) via

the dynamical inversion reflect the optimization of the cost
function as defined in equation (3). Some of them have

Table 2. List of the Parameters Required by the Dynamic Leaf

Modela

Symbol Range
Default
Values

Harvard
Derived

Walker
Branch
Derived

Allegheny
Derived

Tmin (K) 273–283 278 280.4 282.6 277.4
DT (K) 2–8 5 6.49 7.9 3.16
l0 0.02–0.1 0.04 0.066 0.1 0.035
L0 2–8 5 8 8 6.308
a 2–12 9 5.0 12.0 12.0

aValue ranges and default values were predefined. The derived values are
from the dynamical inversion, as described in section 2.4.

Figure 3. Comparison of the leaf area index (LAI) seasonal cycle based on direct inversion (dashed
lines), dynamical inversion (solid lines), and Moderate-Resolution Imaging Spectrometer (MODIS) LAI
product (solid circles), respectively. Field-based LAI observations (open circles) from the Free-Air CO2

Enrichment experiment at a neighboring location [Norby et al., 2003] of the Walker Branch are also
shown for comparison. The shaded area depicts the standard deviations of the MODIS LAI computed
from variance of the 49 pixel-level values for each site.
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reached the boundary of their given value ranges (e.g.,
parameter L0 for Harvard and Walker Branch) indicating
they are largely constrained by the provided value ranges.
Evidently, reasonable predefined value ranges of the adjusted
model parameters are also essential for the optimization of
the model.

5. Discussion and Conclusions

[23] We have combined satellite-observed reflectances
with a dynamical leaf model in a statistically optimal
manner for the derivation of the LAI products that are
consistent with a representation of the intrinsic dynamics of
the vegetation. The results from three testing sites have
shown that the proposed approach is able to produce
reasonable LAI seasonal cycles without the erratic fluctua-
tions in time that are typical of directly retrieved satellite
LAI products.
[24] Direct inversion schemes that do not include any

correlation between observations at different times and so
may result in significantly sharp fluctuations in the obtained
LAI in contrast with the dynamical inversion (i.e., as shown
in Figure 3). Incorporation of a priori knowledge into the
definition of the cost function (e.g., through the varying of
the weighing matrix as was done by Pinty et al. [2007]) can

in theory reduce the amplitude of the erratic fluctuations.
However, without the constraint of a dynamical leaf model,
such treatments may be somewhat more arbitrary than is the
dynamical inversion presented in this article, and thus,
without further operations, may not provide LAI data
products with the necessary smoothness for climate and
carbon models.
[25] The implementation details shown in this article are

for relatively ideal landscape conditions, i.e., homogenous
closed-canopy vegetation cover, and dominant temperature-
driven seasonal leaf dynamics. Consideration of soil mois-
ture stress would also be necessary for tropical and semiarid
regions. More sophisticated vegetation dynamic models
need to be used to address the effects of other nonclimatic
factors on the leaf dynamics such as land use/land cover
change, logging, wildfire etc.. Its application for highly
heterogeneous landscapes such as those with mixed vege-
tation types or with significant amount of bare soils or snow
coverage would requires modification of the current statis-
tical estimation of site level MODIS albedo with its uncer-
tainty treating all the pixels with equal weight, i.e., different
weights should be applied to pixels with different vegetation
cover types. Realistic canopy 3-D radiation models with
enough simplicity for economical implementation in a
climate model would also be needed for heterogeneous

Figure 4. Same as Figure 3, but for comparisons of the surface albedos for diffuse radiation in the
visible band, i.e., MODIS band 1 (top) and near-infrared band, i.e., MODIS band 2 (bottom),
respectively. The white-sky surface albedos are derived from the MODIS collection 4 16-day, 1-km
surface product of Bidirectional Reflectance Distribution Function (BRDF)/Albedo Model parameters at
Harvard (left), Walker Branch (middle), and Allegheny (right). Each site has a 7 � 7 km patch or
49 pixels. The albedo values (circles) are the means of the pixel values, excluding missing points. The
shaded area indicates the standard deviation computed from the variance of the pixel values.
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landscapes because the two-stream approximation of the
canopy radiative transferring produce very large uncertain-
ties in such cases. However, the general concept of this
article would still apply under these conditions.
[26] The proposed data assimilation framework provides

a mathematical constraint for numerical models to achieve
optimal model-data agreement. Its successful applications
still relay largely on an understanding of the data and of the
physical properties of the models used. Such knowledge is
necessary for providing the physical constraints to the
modeling system. Therefore, targeted measurement of key
model properties such as sensitive model parameters should
be useful to the application of the proposed approaches.
[27] In conclusion, we proposed here a new approach to

advance the retrieval of LAI from satellite-observed surface
reflectances. The approach reduces the erratic temporal
fluctuations commonly present in LAI products. It provides
LAI products that are consistent with our understanding of
seasonal dynamics of LAI and should satisfy the require-
ment by climate and carbon models. Further improvement
can be achieved with enhanced understanding of the data to
be used and the physical properties of the dynamical model.
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