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ABSTRACT

A frequency–wavenumber power (P) spectrum was constructed using satellite-derived outgoing longwave

radiation (OLR) and brightness temperature for the tropical latitudes. Since the two datasets overlap for over

34 years with nonintersecting sources in error and compare relatively well with each other, it is possible to

diagnose trends in the tropical wave activity from the two datasets with confidence. The results suggest a

weakening trend in P characterized by high interannual variability for wave activity occurring in the low-

frequency part of the spectrum and a steady increase in P with relatively low interannual variability for wave

activity occurring in the high-frequency part of the spectrum. The results show the parts of the spectrum

representing the Madden–Julian oscillation and equatorial Rossby wave losing P and other parts of the

spectrum representing Kelvin waves, mixed Rossby–gravity waves, and tropical disturbance–like wave ac-

tivity gaining P. Similar results were obtained when trends in variance corresponding to the first principal

component were produced using spectrally filtered OLR data representative of atmospheric equatorial

waves. Spatial trends in the active phase of wave events and themean duration of events are also shown for the

different wave types. Linear trends in P for the entire spectrum and regional means in the spectrum corre-

sponding to the abovementioned five wave types with confidence intervals are also presented in the paper.

Finally, we demonstrate that El Niño–Southern Oscillation variability does not appear to control the overall

spatial patterns and trends observed in the P spectrum.

1. Introduction

Holton and Hakim (2013) elegantly stated the ne-

cessity to study the tropics separately from the mid-

latitudes given the complexity of dynamics making up

the tropical circulation. Unlike the midlatitudes that are

mostly dominated by Rossby wave dynamics, the trop-

ical latitudes house many different disturbances such as

equatorial Rossby waves (ERWs), Kelvin waves (KWs)

mixed Rossby–gravity (MRG) waves, the Madden–

Julian oscillation (MJO;Madden and Julian 1971, 1972),

and tropical depression-type (TD-type) disturbances.

Furthermore, the midlatitude dynamics are relatively

better understood and explained by using models such

as the quasi-geostrophic framework, but a similar par-

allel and concise dynamic–thermodynamic framework

to understand tropical dynamics does not exist yet. Since

these waves are strongly linked to the dynamics ob-

served in Earth’s atmosphere, understanding how these

waves may have changed and continue to change will

help us better understand atmospheric convection,

precipitation characteristics, and energy redistribution.

From the standpoint of climate change and variability, it

is also critical to improve our understanding and pre-

diction of the change of Earth’s climate system. For in-

stance, some studies have explored changes and long-

term trends in the intertropical convergence zone (ITCZ)

using observations and modeling experiments, and have

concluded that the ITCZ may be intensifying and nar-

rowing in a warming climate (e.g., Byrne and Schneider

2016). If this is true, the ITCZ may more readily break

down and result in an increased occurrence of trop-

ical disturbances (e.g., Raghavendra and Guinn 2016).

As an illustration, Fig. 1c shows the long-term changes

in deseasonalized outgoing longwave radiation (OLR)

anomalies from 1979 to 2016, where we observe an in-

tensification and shift in convection over the northern

tropical latitudes and vice versa. There is also a slight

preference for convection consistent with a La Niña–like
state in Figs. 1b and 1c since we have experienced an

increased occurrence of La Niña in recent years (e.g., Cai

et al. 2015).

While the behavior and anticipated changes of mid-

latitude waves are well captured and documented with

relatively high confidence using climate models (e.g.,
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Francis and Vavrus 2012, Sussman et al. 2019, manuscript

submitted to Geophys. Res. Lett.), a similar analysis is

difficult and therefore lacking over the tropics. In fact, very

few global climate models (GCMs) used in phase 5 of the

Coupled Model Intercomparison Project (CMIP5) were

able to simulate what metrics such as the frequency

f–wavenumber k power (P) spectrum (Wheeler and

Kiladis 1999, hereafter WK99) suggest is a realistic MJO

(Hung et al. 2013). Unfortunately, today’s weather and cli-

mate models (e.g., Hung et al. 2013; Schiraldi and Roundy

2017) struggle to accurately resolve these waves for many

reasons. These limitations seen in models may be attributed

to coarse resolution and poor parameterization of moist

processes, and the different and complex spatiotemporal

structures of waves observed near the equator that are often

ill-resolved byGCMs.Many studies have tried to understand

changes in the tropical ocean (e.g., Rose et al. 2014), land

surface (e.g., Zhou et al. 2014), and atmosphere (e.g., Hua

et al. 2016, 2018) using observations, reanalyses, and regional

or global models. These studies have proven imperative to

improving our understanding of the role of the tropical lati-

tudes in redistributing energy, momentum, and moisture

across the globe, and regulating Earth’s climate (e.g.,

Trenberth and Stepaniak 2004; Lewis 2006).

Since GCMs are generally unreliable to diagnose

tropical waves in both the historic runs and possible

future climate scenarios (Hung et al. 2013), long-term

observations and reanalysis datasets are the best sources

to capture possible effects of climate change and vari-

ability notwithstanding dataset uncertainties and caveats

(e.g., Santer et al. 2003). Considering the paramount

importance of the role of tropical waves and convection

on global weather and climate (e.g., Lin et al. 2006), un-

derstanding long-term changes in tropical wave activity

may provide valuable insight to better estimating the

impacts of climate change over tropical latitudes, and

global weather and climate patterns.

While numerous studies have investigated tropical

waves across different time scales (e.g., Roundy and

Frank 2004; Chen and Huang 2009; Huang and

Huang 2011; Hung et al. 2013), this paper is moti-

vated by incomplete understanding of climate vari-

ability and change in tropical wave activity, and for

the first time, sheds light on this glaring issue through

the analysis of two long-term satellite-based OLR and

brightness temperature (Tb) gridded datasets. The data-

sets were used to document changes and trends in the f–k

P spectrum over tropical latitudes (i.e., 158N–158S). The
paper is organized as follows. Sections 2 and 3 provide a

brief description of the datasets and methods used. Re-

sults pertaining to the long-term trends in the P spectrum

are presented in section 4.Major conclusions and possible

physical mechanisms are discussed in section 5.

2. Satellite data

Two different (i.e., geostationary and polar-orbiting)

satellite datasets were used in this study. The gridded

infrared (IR) channel Tb dataset (GridSat-B1; Knapp

2008; Knapp et al. 2011) was produced from geosta-

tionary satellite data for 1982–2016 (35 years) from

the International Satellite Cloud Climatology Project

FIG. 1. Global tropical convection (158N–158S) from 1979 to 2016 using NOAA’s daily interpolatedOLR dataset (Liebmann and Smith

1996). (a) Daily mean OLR, (b) the difference in OLR between 2008–16 and 1979–1987, and (c) linear trends in OLR obtained after

removing the seasonal cycle from the OLR dataset. The black dots indicate trends that are statistically significant (p value , 0.1).
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(ISCCP; Schiffer and Rossow 1983) and was remapped

on a 0.078-latitude equal-angle grid at a 3-h temporal

resolution. To meet the need for observational climate

studies, much effort has been done to reduce inter-

satellite differences by rigorous intersatellite calibration

and temporal normalization in the GridSat dataset

(Knapp et al. 2011). A view-zenith-angle correction

(Joyce et al. 2001) was also applied in producing this

dataset. Out of the three channels available in the

GridSat-B1 dataset (i.e., visible: 0.7mm; IR: 11.0mm;

and water vapor: 7.7mm), only the IR window channel

data was used, since the other channels did not satisfy

the ClimateDataRecord (CDR) program quality (NRC

2004). To speed up the mathematical operations and

statistical analysis, the 0.078 dataset was regridded and

upscaled to 0.988. The popular and relatively coarser-

resolution interpolated OLR dataset (Liebmann and

Smith 1996) by the National Oceanic and Atmospheric

Administration (NOAA) from 1979 to 2016 (38 years)

was also used in this study. The OLR dataset has a tem-

poral resolution of 1 day, a horizontal resolution of 2.58 3
2.58, and was produced using data obtained from polar-

orbiting satellites. Missing data in both datasets were

treated with the gap-filling algorithm developed by

Garcia (2010) and Wang et al. (2012) that works partic-

ularly well for satellite-derived datasets. In both datasets,

the lower thresholds can be used to detect clouds and

quantify cloud-top temperatures (Schmetz et al. 1997).

The negative OLR and Tb anomalies are often used as a

proxy to identify and detect tropical convection (e.g.,

Raghavendra et al. 2018). While the OLR dataset has

been used in numerous studies to understand convection

and dynamics in the tropics (e.g., WK99; Roundy 2018),

only few papers have performed similar analyses usingTb

data (e.g., Wang and Chen 2016; Wang and Li 2017).

Long-term satellite-derived datasets have beenwidely

used to detect and quantify climatic signals in many

studies, particularly over the vast and inadequately ob-

served tropical rain forests (e.g., the Congo; Zhou et al.

2014; Raghavendra et al. 2018; Jiang et al. 2018, manu-

script submitted to Nat. Climate Change), landmasses

such as the Sahara Desert (Wei et al. 2017) and Eurasia

(Li et al. 2017), and the oceans (e.g., Barton 1995).

However, despite large efforts made to minimize the

intersatellite differences in the long-term satellite data-

sets as mentioned previously, trends established using

these datasets are still prone to residual uncertainties

and are a topic of considerable debate in the climate

community (Santer et al. 2003). Often, the data record is

relatively short and limited to the life-span of a satellite

or scientific mission, and long-term records such as the

ones used in this paper were created from multiple sat-

ellites and thus may contain nonclimate biases and

uncertainties (e.g., instrument calibration errors due to

satellite drift/changeover). In our case, the OLR dataset

is constructed using NOAA-operated polar-orbiting

satellites (Liebmann and Smith 1996), and the Tb

dataset relies on geostationary satellites deployed by

multiple countries (Knapp et al. 2011). Since the two

datasets use different types of satellites/sensors and are

processed differently, they would be associated with

nonintersecting sources of error and uncertainties be-

tween them. Here we include both datasets to study

long-term changes and trends in tropical wave activity,

which can enhance the confidence in our findings and

may identify their differences (e.g., Raghavendra et al.

2018). Although there are only two datasets applied

here, they are constructed from numerous satellites.

While individual satellites may be associated with

systematic trends over short-term periods due to or-

bital decay and other factors, these would affect the

two datasets differently and would not likely produce

monotonic long-term trends over time.

3. Methods

After treating the OLR and Tb for missing data and

subsetting to include only the tropical latitudes (i.e.,

158N–158S), the refined datasets were deseasonalized to

prevent aliasing (WK99) using five pairs of harmonics to

the annual cycle X (Roundy 2017). The regression co-

efficients C are given by

C5 (XT 3X)21 3XT 3Y, (1)

where Y is the 3D (i.e., time, latitude, and longitude)

matrix containing OLR or Tb data. Using Eq. (1), the

seasonal cycle (X3C) was calculated and later sub-

tracted from Y to obtain the anomalies with respect to Y

(i.e., Yanom). Using techniques similar to WK99, the

symmetric (Ysymm) and antisymmetric (Yasym) compo-

nents of the dataset were then computed:

Y
symm

5
Y
anom(158N208)

1Y
anom(158S208)

2
, (2)

Y
asym

5
Y
anom(158N208)

2Y
anom(158S208)

2
. (3)

The Ysymm and Yasym were subjected to segmentation

using 200-day time windows that were detrended and

tapered to zero along the ends of the time dimension

using a cosine bell in order to prevent spectral leakage

(WK99). The 200-day windows were repeated along the

data array every 100 days. A 200-day window was cho-

sen to increase the number of f bins and resolve the time

scales of the motions of interest in this paper. The
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discrete Fourier transform (DFT) using a fast Fourier

transform (FFT; Frigo and Johnson 2005, 1998) was then

applied to each 200-day time window, and an FFT shift

was applied to rearrange the zero-f component to the

middle of the domain iteratively to obtain FFT(Ysymm)

and FFT(Yasym). Finally, the symmetric and antisym-

metric P was calculated by taking the complex conju-

gate {i.e., Psymm 5FFT(Ysymm)3 conj[FFT(Ysymm)] and

Pasym 5FFT(Yasym)3 conj[FFT(Yasym)]}. Similar toWK99,

the mean time–latitude P spectrum for the symmetric and

antisymmetric parts was obtained by dividing by the

smoothed mean background spectrum [i.e., (Psymm 1
Pasym)/2; see Fig. 2 for normalized P spectrum]. Note that

normalization by the background is not necessary for this

analysis and since the background is constant it does not

impact the trends.

To demonstrate whether the trends in wave activity

are consistent with trends in spectral variance corre-

sponding to each wave band, an empirical orthogonal

function (EOF) analysis (e.g., Kiladis et al. 2009) was

applied to the filtered daily OLR anomaly data from

1979 to 2016 for the five different wave bands. Trends in

signals projecting onto these patterns will correspond to

trends conforming to the target EOF modes themselves

instead of the background ‘‘noise.’’ This analysis was

performed by first spectrally filtering the daily long-term

OLR dataset to retain only those frequencies and

wavelengths representative of the target wave. The

spectral filters applied are similar to the spectral bands

illustrated in Fig. 2. A data matrix including the entire

time series of filtered OLR data on the full tropical grid

from 158N to 158S was created, and the eigenvectors of

the covariance matrix were computed. Only the leading

EOF (EOF-1), which explains the largest variance, was

retained. The filtered data were then projected onto

EOF-1 to obtain the time series corresponding to the

first principal component (PC-1). Variance was obtained

by squaring the PC-1 time series. A trend in variance was

obtained by using linear regression, with time as the

predictor of the squared PC-1 time series.

FIG. 2. The frequency–wavenumber power spectrum diagram normalized by the smoothed background spec-

trum, similar to the technique developed byWK99. The individual panels represent the (left) antisymmetric power

spectrum using the (a) OLR and (c) Tb datasets and (right) symmetric power spectrum using the (b) OLR and

(d) Tb datasets.

1664 JOURNAL OF CL IMATE VOLUME 32



Since P depends on multiple factors such as frequency

(how often an event occurs), period (how long an event

lasts), andwavelength of the disturbance, trends inP alone

do not necessarily reveal how a particular disturbance is

changing over time. The filtered OLR data were also used

to evaluate possible trends in anomaly characteristics in

the given bands. The technique used here is similar to ones

used in evaluating heat wave trends (e.g., Raghavendra

et al. 2019), where the frequency, intensity, and duration of

heat wave events are calculated based on a threshold

temperature. However, instead of using an arbitrary per-

centile threshold for filtered OLR representative of dif-

ferent equatorial waves, here we identify an event based

on the spectrally filtered negative OLR anomaly present

in the 38-yr time series for each grid point between 158N
and 158S. This technique helps identify the frequency of

occurrence, duration, and other measurements such as the

mean OLR anomaly during the active phase of the dis-

turbance (not shown since trends were mostly in-

significant) for signals in the different wave filter bands.

The influence of El Niño–Southern Oscillation

(ENSO) variability was accounted for by calculating the

difference in the mean P for those time windows cor-

responding to a particular ENSO state based on the

ERSST.v5 Niño-3.4 index (Huang et al. 2017), and the

Niño-3.4 index data were obtained from NOAA’s Cli-

mate Prediction Center (CPC; http://www.cpc.ncep.

noaa.gov/data/indices/). The threshold for El Niño
time windows was a mean Niño-3.4 index greater than

0.75, La Niña if the mean Niño-3.4 index was less

than 20.75, and ENSO neutral conditions if the mean

Niño-3.4 index was between 60.25.

Here we use three approaches to quantify the changes

in the spectral P obtained from the OLR and Tb datasets.

To quantify trends at the grid and regional mean levels,

least squares regression was used to estimate the linear

trend. The statistical significance (p value) of the linear

trend line was estimated by the two-tailed Student’s t test.

AMann–Kendall (MK) test was applied in some cases in

conjunction with a linear regression analysis to evaluate

whether the trends are significant. Uncertainties in trends

were captured by aMonte Carlo analysis. A two-sample t

test was applied to the two pairs of populations to

quantify if significant differences in P exist between the

beginning and end of the datasets. In this study, p value,
0.1 was adopted to be statistically significant.

4. Results

a. Changes in the mean spectrum

Using the techniques similar to WK99, Fig. 2 presents

the mean normalized antisymmetric and symmetric

parts of the P spectrum using both the OLR and Tb

datasets. Both datasets are remarkably similar to each

other and capture the peak in P corresponding to dif-

ferent types of wave activity observed in the tropical

latitudes. These features are consistent with similar works

published in the literature (e.g., Roundy 2018; WK99).

While the spectra obtained from the OLR and Tb data-

setsmay be similar, they are not identical given the nature

of the datasets. For instance, around k 5 14 the OLR

dataset shows a local increase inP (Figs. 2a,b), andWK99

attributes this inconsistency to the polar-orbiting satellite

making approximately 14 swaths around the globe per

day. By definition, the higher-resolution geostationary

satellites used to create the Tb dataset do not move rel-

ative to a fixed geographical location on Earth, and in-

stead uses multiple geostationary satellites to obtain a

merged global picture (Knapp et al. 2011). In comparison

to the OLR dataset, the Tb dataset produces a smoother

P spectrum with fewer spurious peaks (Figs. 2c,d).

In Fig. 3, we subtracted themean of the first 9 years from

the mean of the most recent 9 years of the P spectrum to

identify any systematic shifts in theP spectrum. The results

suggest a shift inPwhere themagnitude ofP has increased

in higher f signals [0.2–0.5 cycles per day (cpd), or a 2–5-

day period), and decreased in lower f signals (0.0–0.2 cpd,

or a.5-day period). To establish whether these trends are

stable and significant in time, a latitude-mean linear re-

gression analysis was applied to the P spectrum (Fig. 4).

Consistent with the results shown in Fig. 3, Fig. 4 shows

significant increases in P between 0.2 and 0.5 cpd. While

there are some patches of blue in Fig. 4 between 0.2 and

0.5 cpd indicative of a decreasing trend in P, these patches

are characterized by an insignificant (p value. 0.1) linear

trend. Between 0 and 0.2 cpd, we observed a mixture of

both positive and negative trends in P in Figs. 3 and 4.

Overall, over 29% of the trends in Fig. 4 were statistically

significant.

b. Trends in spectral power

Since the P spectrum captures many scales of motion

observed in the tropical latitudes, by dividing the f and

wavenumber P spectrum into different regions domi-

nated by a particular phenomenon (WK99; Straub and

Kiladis 2002; Roundy and Frank 2004, Kiladis et al.

2005, 2009), we may estimate how the characteristics of

signals in bands of the wavenumber f domain associated

with a given wave may have changed. In this study, we

analyzed trends in five different kinds of disturbances

observed in the tropical latitudes—that is, MJO, ER

waves, MRG waves, KWs, and TD-type disturbances

from both the OLR and Tb datasets (Fig. 5). The trends

in P for a given wave type closely follow the pre-

dominant trend for a given f since there is little vari-

ability across k for ;0.2 cpd or higher (Fig. 4). In
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general, lower f (0–0.2 cpd) is losing P, and higher f (0.2–

0.5 cpd) is gaining P. The MJO and ER wave suggest

decreasing trends inP, but only the symmetric part of the

P spectrum for the Tb dataset showed a statistically sig-

nificant decrease. The other three wave types that are

dominated by relatively higher f and are characterized by

localized regions of significant P increases below 0.2 cpd

mostly show statistically significant increasing trends inP.

As the spatial structure and trends obtained from the

OLR and Tb datasets compare well with each other

(Raghavendra et al. 2018), we were not surprised to

observe similar trends from the two datasets (Figs. 2–5).

Figure 6 provides confidence thresholds for the slope of

the curves in Fig. 5. Since the amplitude of the in-

terannual variability is relatively high when compared to

the net long-term change in P (i.e., low signal-to-noise

ratio), we observe a relatively large range of values

making up the 5%–95% confidence interval. Except for

the symmetric part of the MJO and ER waves for the

OLR dataset that coincidently have the highest p value

(least significant) linear trend in Fig. 5, the confidence

intervals concur with the net change in sign for the ob-

served trends in the P spectrum (Figs. 5 and 6). As ex-

pected from the results illustrated in Figs. 3 and 4, the

MJO and ERwaves have lost P, and KWs, MRGwaves,

and TD-type disturbances have gained P. The linear

trend analysis (Fig. 5) and confidence range (Fig. 6) also

support the above conclusion.

c. Trends in variance and trends in the leading modes
of variability

We have thus far shown time trends in spectral power

(Figs. 3–6). Furthermore, the spatial structure corre-

sponding to the trends in OLR variance (Fig. 7) appears

to be concentrated near regions characterized by a peak

in annualmean variance presented inKiladis et al. (2009).

FIG. 3. Observed shift in the loge(spectral power) calculated by taking the difference (top) between the mean

normalized power for 2008–16 and 1979–87 (for OLR dataset), and (bottom) between 2008–16 and 1982–90 (for Tb

dataset). The individual panels represent the (left) antisymmetric power spectrum using the (a) OLR and (c) Tb

datasets and (right) symmetric power spectrum using the (b) OLR and (d) Tb datasets. A two-sample t test applied

to the two pairs of populations proved that the power for 2008–16 is significantly different from the power for 1979–

87 at the 1% significance level.
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However, there is a possibility that trends in background

noisemay be strongly projecting onto the trends in spectral

power (Figs. 3–6), and thus making it unclear whether

wave signals are changing in a similar manner. To address

this concern, an EOF analysis was conducted to evaluate if

patterns in the data conforming to the structures of con-

vectively coupled waves change amplitude with time, via

assessment of trends in variance of the PC-1 time series.

The spatial structure of the leading EOF (EOF-1)

explains the maximum variance (Fig. 8), and the EOF-1

spatial pattern for MRG waves (Fig. 8d) closely re-

sembles the MRG wave pattern in Kiladis et al. (2009).

Since the amplitude of a leading EOFmode and preferred

structure pattern can change over time, we compared the

same analysis based on EOFs computed based on the first

(1979–93) and last (2002–16) 15-yr periods from the OLR

dataset and found negligible differences in the spatial

structure of the leading EOFs, and trends in variance

corresponding to PC-1 were not statistically distinguish-

able from the trends in PCs based on EOF patterns com-

puted from the entire dataset (Figs. 8 and 9). The trends in

variance corresponding to PC-1 for five different wave

types are shown in Fig. 9. In this figure, we observe large

interannual variability, a significant decrease in variance for

the MJO band, and a significant increase in variance for

KWs MRG waves, and TD-type disturbances. An in-

significant increasing trend is observed for ERWs. The

trends from Fig. 9 compare favorably with Figs. 5–7, and we

find mutually supporting evidence for four wave types (ex-

cept ERWs, where the trend lines are not statistically sig-

nificant). In summary, the analysis presented in Figs. 8 and 9

shows that signals that project onto the leading EOF mode

trend similarly to variance in the filter bands themselves,

proving that the waves themselves are part of the trend. So,

regardless of whether background noise is trending, the

wave signals are trending in the samedirection as variance in

the bands.

d. Spatial trends in wave activity

Although we now understand changes in the P spec-

trum for over 35 years and the trends in P associated

with five tropical wave types, this section is motivated by

our lack of physical insight into how individual wave

characteristics (i.e., trends in the number of events and

FIG. 4. Linear trends in the loge(spectral power) (31023) (top) from 1979 to 2016 for the OLR dataset and

(bottom) from 1982 to 2016 for the Tb dataset. The individual panels represent the (left) antisymmetric power

spectrum using the (a) OLR and (c) Tb datasets and (right) symmetric power spectrum using the (b) OLR and

(d) Tb datasets. The black dots indicate trends that are statistically significant (p value , 0.1).
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FIG. 5. Interannual variations in the regional (see Fig. 2 for domain) mean loge(spectral power) [anti-

symmetric part (red); symmetric part (blue)] corresponding to different wave types in the WK99

frequency–power spectrum diagram using the (a),(c),(e),(g),(i) OLR and (b),(d),(f),(h),(j)Tb datasets. The

slope and the p value (p-val) of the linear trend lines are shown in the legend in each panel.
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the duration of an event) corresponding to the five dif-

ferent spectral bands may have changed. Furthermore,

understanding spatial trends in wave activity and the

mean duration of the active period corresponding to a

given wave may help us better understand mechanisms

regulating tropical convection and precipitation. By

identifying the convective phase for different wave types

and calculating the occurrence and mean duration of an

event (Fig. 10), we find those wave bands characterized

by an increase in power at high f (e.g., KWs, MRG

waves, and TD-type disturbances) show a significant

upward trend in the mean number of events and are

accompanied by a decrease in the mean duration of an

event. There are fewer grid points showing significant

trends for the MJO and ERW spectral bands, but the

spatial distribution of trends in event occurrence and

duration (Figs. 10a,b and 10c,d) suggests a compensating

effect between frequency and duration resulting in a

tendency toward a homogeneous spatial field. To further

elaborate, considering theMJOband, for instance, there

is good agreement between observed trends (Fig. 10a)

and modeling efforts using GCMs (e.g., Jones and

Carvalho 2006; Arnold et al. 2015; Song and Seo 2016;

Adames et al. 2017) in the increased occurrence of MJO

events attributed to global warming.While it is generally

argued that MJO intensity will likely increase in a

warmer climate, both observations andmodeling studies

discuss considerable uncertainties with regard to in-

tensity and duration changes in the MJO. Furthermore,

there are nonnegligible biases in GCM realizations of

the mean background state of the tropical atmosphere.

Some of these issues include a cold bias for SSTs in

atmosphere–ocean coupled runs, the double ITCZ

problem (e.g., Lin 2007), and overestimated tropical OLR

variability (e.g., Arnold et al. 2015). Therefore, while

Figs. 5a and 5b suggests a negative trend in P corre-

sponding to the MJO, this does not imply a weakening

MJO, or a less frequently occurring MJO. However, the

reduction in P corresponding to the MJO does imply a

reduced variance in the MJO (Fig. 7a); therefore, either a

reduction of amplitude and/or a reduction of the longevity

of active periods must be occurring (Figs. 10a,b). Figures 3

and 4 suggests a shift in the MJO band toward higher

frequencies, but additional analysis beyond the scope of

this paper on how changes in the combination of the am-

plitude and/or longevity of active periods of equatorial

waves both on a regional and global scale may explain the

observed trends in P.

e. ENSO’s impact on the power spectrum

Variability in ENSO is known to strongly influence

tropical convection and is a key player in climate vari-

ability (e.g., WK99; Neale et al. 2008). Not surprisingly,

since tropical wave activity and convection are strongly

coupled, variability in ENSO could strongly influence

tropical waves and the trends in wave activity we ob-

served in Figs. 3–6. To better understand the impact of

ENSO on the f and k P spectrum, we constructed dif-

ference plots (Fig. 11) between the mean spectrum for a

given ENSO state and the total P spectrum (Fig. 2).

Changes in P associated with El Niño include enhanced

KW, an increase in higher f, a decrease in lower f for

eastward-propagating wave activity, and weaker TD-

type disturbance activity. La Niña shows the opposite

effects. No coherent patterns in wave activity were ob-

served for ENSO neutral state. While the six individual

panels are significantly different from each other both in

terms of structure and power, we are not convinced that

the structure of the P spectrum corresponding to dif-

ferent phases of ENSO could possibly produce the

trends in P shown in Figs. 3–6.

5. Conclusions and remarks

In this study, the f and k P spectrum for the tropical

latitudes (i.e., 158N–158S) was constructed using the

method outlined by WK99 for OLR data obtained from

polar-orbiting satellites (Liebmann and Smith 1996),

and Tb data obtained from geostationary satellites

(Knapp et al. 2011). Both datasets produced P spectra

FIG. 6. A Monte Carlo analysis carried out by randomly re-

arranging the data points for each interannual variability curve in

Fig. 5 1000 times without repetition in order to quantify un-

certainties in the slope [units: 31022loge(P) yr
21] of the linear

trend line shown in Fig. 5. The upper (95th percentile) and lower

(5th percentile) limits of the uncertainty are represented by the top

and bottom whiskers, respectively, and the slope values for the

symmetric (S) and antisymmetric (A) components from Fig. 5 are

represented using five symbols for each type of disturbance using

both the OLR and Tb datasets.
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that are similar to one another (Fig. 2). Since the fun-

damental goal of the paper was to identify changes in the

f and k P spectrum, we subtracted the P spectrum of the

first 9 years from that of the last 9 years to investigate

possible changes in theP spectrum (Fig. 3). This exercise

revealed a significant decrease in P from ;0 to 0.2 cpd,

and an increase in P from ;0.2 to 0.5 cpd. The signifi-

cance of the trend was also established via a linear re-

gression (Fig. 4). Since different parts of the f and k P

spectrum are associated with different waves observed

in the tropical latitudes (e.g., Kiladis et al. 2009), we

averaged theP corresponding to regions of the spectrum

known to be occupied by signals from particular wave

types and examined the trends.

Given the low signal-to-noise ratio observed with the

P trends in Fig. 5, and to quantify uncertainties in the

results, a Monte Carlo analysis was carried out (Fig. 6).

We found the bands of theMJO and the ER waves were

characterized by a decreasing trend in P, and the bands

of MRG waves, KWs, and TD-type disturbances were

characterized by increasing trends in P (Figs. 5 and 6).

From Figs. 3–5, we infer an increase in variability at

higher frequencies attributed to an increase in P and

vice versa. To further evaluate the validity of the

change in P reported thus far and to ensure the changes

in spectral power were linked to the waves and not the

background ‘‘noise,’’ we evaluated trends in band-

filtered daily OLR anomaly data from 1979 to 2016

for variance (Fig. 7), the structure of the leading EOF

pattern (Fig. 8), and trends in the variance corre-

sponding to the first principal component (PC-1). The

PC analysis shows that signals that project onto the

leading EOF mode trend similarly to variance in

the filter bands themselves and demonstrate that the

waves themselves are part of the trend. Therefore,

concurrence between the time trends in the variance

corresponding to PC-1 (Fig. 9) and spectral power

(Figs. 5 and 6) should bolster our confidence in the

results and help us draw the conclusion that the trends

in spectral power for each wave type are consequences

of changes in the wave characteristics, and not just

background noise.

FIG. 7. Trends inOLRvariance calculated by squaring the spectrally filteredOLRanomaly for (a) theMJO, (b) ERW, (c)KWs, (d)MRG,

and (e) TD from 1979 to 2016. The black dots indicate trends that are statistically significant (p value , 0.1).
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A possible relationship between changes in P and

changes in the frequency of occurrence and mean dura-

tion of wave events was also presented (Fig. 10). Results

suggests the it may be possible to attribute the increase in

power at high f (e.g., KWs, MRG waves, and TD-type

disturbances) to a significant increase in the occurrence of

high-frequency disturbances, accompanied by a decrease

in the mean duration of an event. The results of a de-

crease in power at low f (e.g., MJO and ERW) are diffi-

cult to explain given nonhomogeneous trends in themean

duration of the events. Finally, we demonstrate the in-

fluence of ENSO on the P spectrum (Fig. 11) and argue

that the trends in P documented in Figs. 3–5 are difficult

to explain from the standpoint of variability in ENSO.

Our future research endeavors include diagnosing

changes in the characteristics of tropical waves (e.g., f,

amplitude, and persistence), and identifying mechanisms

resulting in the observed change in the P spectrum. The

subset of our community that specialized in climate

variability and change has published a considerable

spectrum of works to better understand Earth’s atmo-

sphere and ocean dynamics across different spatio-

temporal scales. Therefore, there are many possible

future research avenues to understand mechanisms

linked to changes in tropical waves and the associated

f–wavenumber P spectrum presented in this paper

(Figs. 3–6). Some of these research avenues and possible

mechanisms thatmay explain changes and trends in tropical

wave activity include:

d The impacts of a narrowing ITCZ, changes in the

breakdown of the ITCZ, and expanding Hadley cell

(e.g., Byrne and Schneider 2016; Raghavendra and

Guinn 2016). Considerationmay also be given to changes

in the profile of ocean heat transport and associated

changes in the Hadley cell (Rencurrel and Rose 2018).
d An observed enhancement in the tropical Walker cell

circulation associated with an increased temperature

FIG. 8. The spatial structure corresponding to the leading EOF for (a) the MJO, (b) ERW, (c) KWs, (d) MRG, and (e) TD obtained by

first filtering the daily OLR anomaly data from 1979 to 2016 for the five different wave bands and then applying an EOF analysis. The

percentage variances explained by the leading EOF (ExpVar) are shown above each panel.
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contrast between regions within the tropical latitudes

(e.g., Kosaka and Xie 2013; Meng et al. 2012; Hua et al.

2016;Ma andZhou 2016; Zhang andKarnauskas 2017).
d Localized and nonlocalized convection/heating and

synoptic-scale disturbances within the tropical latitudes

(e.g., Lau and Lau 1992; Neale and Hoskins 2000;

Raghavendra and Guinn 2016; Raghavendra et al. 2018)

and associated Gill–Matsuno and tropical wave response

to steady tropical heating (e.g., Cook and Vizy 2016).
d Interannual variability in the strength and location of

the monsoon trough (Li 2006; Wu et al. 2015a,b),

variability in global tropical cyclone activity, and

associated changes and interactions in atmospheric

equatorial wave activity (Done et al. 2011).
d Extratropical influences, especially given recent stud-

ies highlighting Arctic amplification and changes in

the midlatitude Rossby wave train (e.g., Barnes and

Polvani 2015), can alter the eddy momentum fluxes

between the tropical and extratropical latitudes and

consequently impact the monsoon and the large-scale

tropical circulation (e.g., Schneider and Bordoni 2008;

Bordoni and Schneider 2010).
d Variability in teleconnections such as the Pacific de-

cadal oscillation and North Atlantic Oscillation may

also prove to be useful endeavors to better understand

convectively coupled equatorial wave activity.

Finally, current climate models are relatively poor in

capturing observed tropical precipitation characteristics

(e.g., Dai 2006) but may capture the dynamics of free

and convectively coupled tropical waves to varying de-

grees of accuracy (e.g., Hung et al. 2013). Understanding

the linkage between tropical waves and precipitation,

and using projected changes in tropical wave activity to

FIG. 9. Interannual variability of the variance corresponding to the first PC of the band-filtered daily OLR anomaly

data from 1979 to 2016 (blue line) for (a) theMJO, (b) ERW, (c)KWs, (d)MRG, and (e) TD. The slope and the p value

(p-val) of the linear trend lines (red line), and the result and p value from theMann–Kendall trend test are shown in the

legend in each panel. The spatial structure corresponding to the leading EOF for each wave is shown in Fig. 8.
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FIG. 10. The mean number and duration of events corresponding to (a),(b) the MJO, (c),(d) ERW, (e),(f) KWs, (g),(h) MRG, and

(i),(j) TD from 1979 to 2016 using daily filteredOLRanomaly data. Themean frequency and duration of events was calculated by applying

a spectral filter for different wave types and then using the negative OLR anomaly time series at each grid point to generate the necessary

statistics. A linear regression and t test was applied to determine regions showing significant (p , 0.1) increasing (black dot) and de-

creasing (white cross) trends.
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estimate precipitation change may be a worthwhile exer-

cise as well. A hierarchical modeling approach (e.g., Isca;

Vallis et al. 2018) ranging from idealized to fully coupled

GCMs may prove particularly useful in isolating mecha-

nisms linked to the observed and possible future changes

in the f –wavenumber P spectrum. From a climate change

and societal impact perspective, analyzing precipitation

changes linked to the observed and projected changes in

the dynamics of tropicalwave activitymay offer insights on

the water budget and availability over tropical latitudes.
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