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Abstract
Numerical modeling of urban climate is essential for understanding mechanisms of the urban heat island (UHI) phenomenon. 
However, models must first be evaluated to identify their limitations. Over India, the evaluation of the Weather Research 
and Forecasting (WRF) model is limited. Here, WRF was evaluated over Bengaluru, India diurnally during the dry and wet 
seasons. Simulations were performed for cases using no urban canopy model (No-UCM), the single-layer UCM (SLUCM), 
and the multi-layer UCM (MLUCM) with the Mellor-Yamada-Janjić and the Bougeault and Lacarrerè planetary boundary 
layer (PBL) schemes. The simulations were compared to land surface temperature (LST) observations from the Moderate 
Resolution Imaging Spectroradiometer for their biases in urban LST, non-urban LST, and UHI intensity. Absorbed shortwave 
radiation, net longwave radiation, sensible heat, and latent heat were investigated for their possible role in driving the LST 
biases since they are calculated differently depending on which UCM is used. Results show urban LST was more sensitive 
to UCM choice than PBL scheme and the use of an UCM reduced urban LST biases, leading to improved simulations of 
the UHI. Non-urban LST was insensitive to UCM and PBL choice. For the best case, urban LST was underestimated by 
less than 1 °C during the dry season day and night, and was overestimated by 1.88 °C and 0.08 °C in the wet season day 
and night. In general, the SLUCM had the least bias for urban LST and UHI intensity due to a near-zero latent heat flux in 
No-UCM, too much trapping of shortwave and longwave radiation by the MLUCM during daytime, and too much surface 
cooling at nighttime by the MLUCM. These results can inform future WRF studies that evaluate UHI mitigation strategies 
over Bengaluru on the best model physics to use.

Keywords Bengaluru · India · Planetary boundary layer (PBL) · Urban canopy model (UCM) · Urban heat island (UHI) · 
Weather Research and Forecasting (WRF)

Introduction

Urbanization impacts

More than half of the world’s population lives in urban 
areas, which continues to increase (Grimm et al. 2008). 
While increased urbanization fosters commerce and leisure 

opportunities, urbanization can potentially harm the envi-
ronment and those who live in and visit cities. For example, 
increased emissions due to manufacturing and vehicular 
traffic can degrade air quality (Ramachandran et al. 2012), 
which can increase the risk of respiratory illnesses (Filho 
et al. 2018). Additionally, urban sprawl and less natural veg-
etation can impact the ability of residents to enjoy nature and 
possibly impact well-being (Andersson 2006; van den Berg 
et al. 2015). Urbanization can also affect regional climate 
and local economy. For example, Kishtawal et al. (2010) 
showed an increase in the frequency of heavy precipitation 
episodes over Indian cities during the monsoon season due 
to urbanization, and such changes in monsoon rainfall could 
affect crop yield in India (Parthasarathy 1984).

One urbanization impact often studied is the urban heat 
island (UHI) phenomenon, which refers to the tendency of 
urban areas to be warmer than their non-urban surroundings 
(Oke 1982). The UHI phenomenon is of particular concern, 
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especially in a warming climate, due to an increased risk 
of heat exhaustion and higher energy demands for cooling 
(Filho et al. 2018). The UHI effect arises due to urban sur-
face properties. For example, decreased urban vegetation 
can reduce evapotranspiration and associated cooling, which 
leads to higher Bowen ratios. Consequentially, urban sur-
faces can warm faster and store more heat than non-urban 
surfaces during daytime, and retain that heat through a slow 
release at nighttime (Taha 1997). Decreased vegetation and 
more buildings can also increase surface roughness, which 
can decrease near-surface wind speed and result in less cool-
ing via surface heat fluxes and thermal advection (Garratt 
1994; Zhou et al. 2004).

Urbanization modeling

The UHI phenomenon has been studied using weather sta-
tion observations, satellite data, and numerical modeling 
across the globe (e.g., Zhou et al. 2004; Hung et al. 2005; 
Imran et al. 2018). Numerical modeling can be advanta-
geous since it can help scientists better understand UHI 
mechanisms and enable urban planners to test mitigation 
strategies. In order to develop optimal mitigation strategies, 
an in-depth understanding of the urban environment within 
a particular city is required (Lenhölzer and Van der Wulp 
2010). However, prior to testing any mitigation strategies 
using numerical simulations, models need to be evaluated 
against observations to identify their biases and limitations.

The Weather Research and Forecasting (WRF) model is 
often coupled to an urban canopy model (UCM) to study 
the urban environment (Chen et al. 2011). UCMs simu-
late the exchange of energy and momentum between the 
urban surface and the atmosphere (Morini et al. 2018). 
Three UCM options exist in WRF in addition to the default 
setup without an UCM (No-UCM). With No-UCM, urban 
surfaces are represented by a roughness length of 0.8 m, 
a fixed surface albedo of 0.15, a volumetric heat capacity 
of 3.0 MJ  m−3  K−1, and a thermal conductivity of 3.24 W 
 m−1  K−1 to represent heat storage in urban buildings and 
roads (Liu et al. 2006). The single-layer UCM (SLUCM), 
which was developed by Kusaka et al. (2001) and Kusaka 
and Kimura (2004), represents urban geometry by infinitely 
long street canyons. In the SLUCM, shortwave and longwave 
radiation in the street canyons can be shadowed, reflected, 
and trapped, and an exponential wind profile is prescribed 
to determine the wind speed in the canyon from the wind 
speed above the canyon (i.e., at the lowest model layer). 
The building effect parameterization (BEP) is a multi-layer 
UCM (MLUCM) developed by Martilli et al. (2002) that 
considers the three-dimensional nature of urban surfaces and 
the vertical distribution of sources and sinks of heat and 
momentum through the whole urban canopy and planetary 
boundary layer (PBL). The MLUCM scheme also includes 

the effects of vertical walls, horizontal streets, and roofs on 
momentum, turbulent kinetic energy, and potential tempera-
ture. As in the SLUCM, the shadowing, reflection, and trap-
ping of both shortwave and longwave radiation also occurs 
in the MLUCM. The final UCM option was developed by 
Salamanca and Martilli (2010) and is an extension of the 
BEP/MLUCM scheme through the coupling to a building 
energy model (BEM). The BEM considers the diffusion of 
heat through walls, roofs, and floors, radiation exchanged 
through windows, longwave radiation exchanged between 
indoor surfaces, and generation of heat due to occupants and 
equipment. Overall, the evaluation of UCMs is an ongoing 
area of research with differing and region-dependent conclu-
sions (e.g., Salamanca et al. 2011; Jandaghian and Beradi 
2020).

While there have been numerous urban modeling studies 
over North America, Europe, and East Asia (e.g., Hung et al. 
2005; Salamanca et al. 2011; Segura et al. 2021); Veena 
et al. (2020) remarked that such studies are limited over India 
compared to the number of observational studies investigat-
ing urbanization impacts. Most prior modeling studies over 
India have analyzed the impact of increased urbanization on 
monsoon rainfall (Shastri et al. 2015; Paul et al. 2018). A 
secondary theme in previous urban modeling studies over 
India is the impact of land cover change by either using WRF 
to demonstrate how increased urbanization has caused UHIs 
(Sati and Mohan 2018; Mohan et al. 2020; Kedia et al. 2021) 
or the sensitivity of WRF-simulated UHIs to different land 
cover datasets (Bhati and Mohan 2018; Patel et al. 2020). 
Of these previous studies over India, only Paul et al. (2018) 
evaluated WRF’s sensitivity to UCM choice by comparing 
cases using No-UCM, the SLUCM, and the MLUCM. They 
found that the MLUCM performed best in simulating eight 
extreme rainfall cases during summer over Mumbai. How-
ever, Paul et al. (2018) noted that to achieve robust results, 
more cases should be simulated and in different seasons. 
Additionally, Mumbai is located on the northwest coast of 
India at an elevation of 0.3 m. Therefore, the findings for 
Mumbai may not be valid for other Indian cities given that 
cities have different geographic features, climate, and urban 
surface characteristics. Additionally, different forcing data 
can be used to run WRF, which may contribute to different 
model performance. Paul et al. (2018) used ERA-Interim 
reanalysis of 0.75° × 0.75° resolution as forcing data. The 
newly available ERA5 reanalysis, which has higher spatial 
and temporal resolution, needs to be evaluated.

Paul et al. (2018) also tested the sensitivity of their 
WRF simulations to the PBL scheme, specifically the 
Mellor-Yamada-Janjić (MYJ; Janjić 2002) and the 
Bougeault and Lacarrerè (BouLac; Bougeault and Lacar-
rerè 1989) schemes, and found BouLac to perform bet-
ter. These schemes were chosen since the MLUCM can 
only be used with MYJ or BouLac (Ferrero et al. 2018). 
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Both MYJ and BouLac are one-and-a-half order prog-
nostic turbulent kinetic energy (TKE) schemes with local 
closure (Xie et al. 2012). Therefore, the turbulent fluxes 
are computed at each grid point using the mean values of 
atmospheric variables and/or their gradients at the given 
point. In the governing equations of these PBL schemes, 
the momentum, heat, and TKE coefficients are identical 
in BouLac, whereas they differ from each other in MYJ 
(Xie et al. 2012). Additionally, the BouLac scheme has 
a non-local counter gradient term for convective condi-
tions (Xie et al. 2012). While the MYJ scheme is more 
commonly used (Banks et al. 2015), the BouLac scheme 
was designed for use with the MLUCM (Martilli et al. 
2002). Therefore, both should be evaluated when using the 
MLUCM since the PBL plays an important role in urban 
climate (Garratt 1994).

Due to limited studies on the evaluation of WRF with 
different UCMs and PBL schemes in India, more research 
is needed to evaluate WRF’s ability to simulate UHIs. One 
particular city that is markedly different from Mumbai is 
Bengaluru, which is centrally located in southern India 
(city center: 12.97°N, 77.59°E) on the Deccan Plateau at 
an elevation of 900 m. Bengaluru is the third most popu-
lous city in India with a current population of ~ 13 million 
and was once known as the “Garden City” of India, but is 
now known as the “Silicon City” due to the increased pres-
ence of the information technology industry (Sudhira et al. 
2007). To our knowledge, only Ajilesh et al. (2019), Sahoo 
et al. (2020), and Rakesh et al. (2021) have used WRF over 
Bengaluru. These studies focused on WRF’s skill in simu-
lating extreme rainfall. Ajilesh et al. (2019) did not couple 
WRF to an UCM, Sahoo et al. (2020) coupled WRF to the 
SLUCM, and Rakesh et al. (2021) coupled WRF to the 
MLUCM. None of the studies evaluated their respective 
simulations with different UCMs. Therefore, it is unclear 
how WRF performs when coupled with different UCM and 
PBL schemes in simulating Bengaluru’s UHI.

The goal of this study is to perform an evaluation of 
WRF to determine which UCM (No-UCM, SLUCM, or 
MLUCM) and PBL scheme (MYJ or BouLac) performs 
best in capturing the observed UHI over Bengaluru. The 
BEP + BEM UCM will not be evaluated due to its high 
computation time, thus making it rarely used (Kwok and 
Ng 2021). WRF simulations were evaluated during the dry 
(December-January–February; DJF) and wet (August–Sep-
tember–October; ASO) seasons during daytime and night-
time. This seasonal comparison was chosen to be consist-
ent with recent empirical analyses on the characteristics 
and controls of the UHI in Bengaluru (Sussman et al. 
2019, 2021). Results will enable future studies to use the 
best performing UCM and PBL scheme combination to 
investigate mechanisms and test mitigation strategies of 
Bengaluru’s UHI.

Data and methods

WRF simulations

WRF v4.2.2 (Skamarock et al. 2019) was used to simulate 
surface skin temperature (TSK) in Bengaluru and its nearby 
non-urban surroundings. TSK is the surface radiative tem-
perature that WRF calculates from the surface energy bal-
ance. A schematic of the 12 simulations performed that vary 
by model physics and season is shown in Fig. 1. All simula-
tions began at 00 UTC on the first day listed for DJF and 
ASO in Fig. 1 and ran through the last day listed. The first 
24 h of all simulations was used as the spin-up period, which 
left 60 days for analysis. A 60-day simulation was analyzed 
so that variability within a season could be captured and to 
have enough daily samples to produce robust results without 
the increased computation time of simulating a full season. 
These simulations were performed for 2018 since it is most 
representative of current conditions and to be consistent with 
Sussman et al. (2019, 2021) who analyzed Bengaluru’s UHI 
for 2003–2018.

All simulations were performed over a single domain of 
150 km × 150 km with 1 km grid spacing focused on Ben-
galuru’s city center (Fig. 2). Each simulation used Moderate 
Resolution Imaging Spectroradiometer (MODIS) Aqua and 
Terra combined annual-mean land cover from Collection 
6 (MCD12Q2) for 2018 at 1 km resolution (Fig. 2). The 
use of annual-mean land cover should not impact seasonal 
simulations since Sussman et al. (2019) showed that urban 
land cover in Bengaluru increased at a rate of approximately 
1% per year from 2003 to 2018. Therefore, the intra-annual 
changes in urban land cover are small. The MODIS land 
cover dataset defines land cover type according to the clas-
sifications developed by the International Geosphere-Bio-
sphere Programme (IGBP). The IGBP defines urban and 

16 Dec 2017–14 Feb 2018 16 Aug 2018–15 Oct 2018

MYJ BouLac MYJ BouLac

1. No-UCM
2. SLUCM
3. MLUCM

Dry Season (DJF) Wet Season (ASO)

4. No-UCM
5. SLUCM
6. MLUCM

7. No-UCM
8. SLUCM
9. MLUCM

10. No-UCM
11. SLUCM
12. MLUCM

Fig. 1  Schematic summarizing the 12 simulations performed in this 
study that vary by season, i.e., December-January–February (DJF) 
and August–September-October (ASO), planetary boundary layer 
scheme, i.e., Mellor-Yamada-Janjić (MYJ) and Bougeault and Lacar-
rerè (BouLac) and urban canopy model (UCM), i.e., No-UCM, sin-
gle-layer UCM (SLUCM), and multi-layer UCM (MLUCM)
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built-up land as grids that have at least 30% of its surface 
area being impervious (Belward et al. 1999). To be consist-
ent with Sussman et al. 2019, non-urban area was considered 
to be cropland since it is the dominant land cover type in the 
surroundings of Bengaluru (Fig. 2). The IGBP defines grids 
as cropland if at least 60% of the area is cultivated cropland 
(Belward et al. 1999).

All simulations were forced by hourly, 0.25° ERA5 
reanalysis data (Hersbach et al. 2020) and ran with a 6 s 
timestep. To ensure the WRF-simulated fields follow the 
large-scale variations in the forcing data in the free tropo-
sphere, spectral nudging was used (Liu et al. 2017). Each 
simulation had 42 vertical levels with the top at 50 hPa and 
11 levels below 2 km to better resolve the PBL. The physical 
parameterizations used for all simulations included Dudhia 
shortwave radiation (Dudhia 1989), the rapid radiative trans-
fer model (RRTM) for longwave radiation (Mlawer et al. 
1997), Thompson microphysics (Thompson et al. 2008), the 
Eta similarity scheme for the surface layer (Janjić 1994), and 

the Noah Land Surface model (Chen and Dudhia 2001). No 
cumulus parameterization was used due to the convective-
permitting grid spacing (Liu et al. 2017). The prescribed 
default values of aerosol concentrations for WRF were used 
in all simulations.

MODIS LST data

To evaluate WRF performance, the TSK output from each 
simulation was compared to MODIS land surface (skin) tem-
perature (LST) data as done in Sohrabinia et al. (2012); Xia 
et al. (2017); Kedia et al. (2021), and others. MODIS LST 
is the radiometric temperature derived from surface emis-
sion, i.e., with emissivity correction, and is closely related to 
land surface radiative properties (Zhou et al. 2012). There-
fore, TSK from WRF is comparable to MODIS LST and any 
differences can be attributed to differences in the method 
used for estimation, i.e., MODIS LST measurements are 
based on optical remote sensing instruments and WRF TSK 

Fig. 2  The 150 km × 150 km domain with 1 km grid spacing used for all WRF simulations. The background shows the 2018 mean MODIS land 
cover type on the 1 km WRF domain. The black dashed square represents the 50 km × 50 km area used for all analysis
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estimates are based on numerical calculations and assump-
tions (Kedia et al. 2021). MODIS LST was chosen in order 
to be consistent with Sussman et al. (2019) that character-
ized the UHI over Bengaluru using MODIS. Daily LST data 
was obtained from Collection 6 of the MODIS instruments 
Terra (MOD11A1) and Aqua (MYD11A1) at 1 km resolu-
tion for the DJF and ASO time periods (Wan 2013). The 
Sun synchronous orbital characteristics of Terra and Aqua 
have a daytime equatorial crossing time of approximately 
10:30 and 13:30 local solar time and a nighttime equatorial 
crossing time of approximately 22:30 and 01:30 local solar 
time. To be consistent with Sussman et al. (2019, 2021), 
the LST data from Terra and Aqua were averaged to cre-
ate daytime and nighttime means. In order to compare the 
WRF simulations to approximately the same diurnal timing 
as the MODIS observations, the TSK output from WRF was 
averaged for daytime using the 05:00 and 08:00 UTC output 
(i.e., 10:30 and 13:30 Indian Standard Time or IST) and 
for nighttime using the 17:00 and 20:00 UTC output (22:30 
and 01:30 IST). All evaluation analyses were carried out 
over the central 50 km × 50 km region of the WRF domain 
(Fig. 2), which is the same area analyzed in Sussman et al. 
(2019, 2021).

MODIS daily data can suffer from gaps in coverage due 
to its temporal sampling of imaging the entire Earth every 
1–2 days. Additionally, MODIS LST data can be missing in 
cloudy conditions, which can occur often during the wet sea-
son in Bengaluru. Therefore, it is necessary to confirm that 
dates with MODIS data available are also cloud-free in the 
WRF simulations since the best estimates of LST by MODIS 
are retrieved under clear-sky conditions (Xia et al. 2017). 
For each date with MODIS data available, the cloudiness 
of the WRF simulations was determined. The WRF output 
of cloud fraction was averaged for 10:30 and 13:30 IST for 
daytime and 22:30 and 01:30 IST for nighttime for each 
simulation at each vertical level. If the cloud fraction for any 
vertical level exceeded 0.05 for 15% or more of the 50 km × 
50 km region, that date was classified as cloudy (Ackerman 
et al. 2008). The number of clear-sky days in WRF that were 
used in the evaluation are shown in Table 1. As expected, 
DJF has more dates that can be used compared to ASO since 
DJF is characterized by mostly dry conditions. Despite the 
lower number of samples in ASO, more cases can still be 
evaluated compared to Paul et al. (2018). These results were 

consistent for all simulations regardless of which UCM or 
PBL scheme was used.

Analysis

The LST bias was computed as the WRF minus MODIS 
LST difference for each grid in the 50 km × 50 km area for 
the clear-sky days in each simulation. The temporal cor-
relation coefficient between LST from each simulation and 
MODIS was also computed at each grid. Significance of 
the correlation was evaluated using the two-tailed Student’s 
t-test with a p-value ≤ 0.10 to be considered significant. The 
mean urban LST, non-urban LST, and UHI intensity biases 
were computed for each simulation. The urban component 
was computed similarly to Sussman et al. (2019) by match-
ing the urban land cover grids to the LST data, which were 
both of 1 km resolution, and classifying that as urban LST. 
The same was done for non-urban LST, but using the crop-
land grids. Here, these calculations were slightly modified to 
have the urban and non-urban LST be in their “purest” form. 
If an urban grid was 2 km or less away from a cropland, 
grassland, or water grid, it was excluded from the urban LST 
calculation in an effort to reduce possible contamination of 
cooler LST from vegetated and water areas. Similarly, if a 
non-urban grid was 2 km or less away from an urban, grass-
land, or water grid, it was excluded from the non-urban LST 
calculation. Similar to Sussman et al. (2019) and other previ-
ous studies, the surface UHI intensity was calculated as the 
mean urban LST minus the mean non-urban LST.

To investigate potential reasons for the LST biases, tem-
poral correlations between WRF LST and WRF surface 
absorbed shortwave (SW) radiation, surface net longwave 
(LW) radiation (i.e., downward minus upward LW radia-
tion), and the surface sensible (SH) and latent (LH) heat 
fluxes over the clear-sky days were computed at each grid. 
No correlations were computed for absorbed SW radiation 
and the LH flux at nighttime since the mean values are zero. 
These variables were chosen since they have a high likeli-
hood of influencing LST as they comprise the surface energy 
budget (Zhou et al. 2012) and are computed differently in 
WRF depending on UCM choice; therefore, their differences 
may be responsible for the LST biases. When using No-
UCM, the radiative, LH and SH fluxes over all land cover 
types are calculated by the Noah Land Surface model (Chen 
et al. 2011). When WRF is coupled to an UCM, these vari-
ables are still calculated by the Noah Land Surface model 
over non-urban grids, but by the UCM over urban grids. 
When using an UCM, the urban fraction parameter exists, 
which represents the sub-grid fraction of an urban grid that 
is impervious (Chen et al. 2011). Default urban fraction val-
ues are 0.95, 0.90, and 0.50 for industrial/commercial, high-
intensity residential, and low-intensity residential develop-
ment. Since urban fraction does not exist in No-UCM, the 

Table 1  The number of days used for all evaluation analyses for each 
season and time of day based on the common clear-sky MODIS and 
WRF dates

DJF 
Daytime

ASO 
Daytime

DJF 
Nighttime

ASO
Nighttime

Number of 
Days

43 13 37 12
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urban grids are seen by WRF as 100% impervious urban 
land cover with no natural vegetation. For the SLUCM and 
MLUCM simulations, an urban fraction of 0.90 was used for 
all urban grids, which was chosen since Bengaluru has urban 
greenness values ranging between 0.05 and 0.25 for DJF and 
ASO according to the MODIS enhanced vegetation index 
dataset (Sussman et al. 2019). Therefore, Bengaluru’s sur-
face is not completely urban and does have a small amount 
of natural vegetation. Due to these model differences, the LH 
flux should be lower for the No-UCM cases compared to the 
SLUCM and MLUCM cases. Additionally, as mentioned in 
Sect. “Urbanization modeling”, the SLUCM and MLUCM 
can shadow, trap, and reflect shortwave and longwave radi-
ation in the urban canopy. None of these processes occur 
when using No-UCM. Therefore, differences in surface 
radiation may exist due to these different parameterizations.

Results

WRF simulation biases

The mean MODIS LST and WRF biases during DJF daytime 
are shown in Fig. 3. Consistent with Sussman et al. (2019), 
the MODIS data has a weak UHI. Sussman et al. (2021) 
determined that the increased concentration of aerosols over 
Bengaluru was high enough to make the UHI nearly neutral 
during DJF daytime by their ability to absorb solar radiation 
and limit surface warming. Figure 3 shows that the SLUCM 
has the least urban LST bias of ± 2 °C when used with either 
PBL scheme. The No-UCM and MLUCM simulations both 
overestimate urban LST by 1–7 °C with either PBL scheme, 
with the overestimation about 1 °C for urban areas that had 
a high LST in the MODIS data. The non-urban LST bias 
appears consistent across all simulations with most of the 
area exhibiting an underestimation of 1–3 °C except for the 
southern portion of the region where some overestimation 
occurs. For each simulation, all significant temporal cor-
relations with MODIS LST are positive. Correlations > 0.4 
typically are located in areas with low mean bias, thus these 
are areas with high WRF skill.

Figure 4 shows the MODIS mean LST and WRF biases 
for ASO daytime. Similar to DJF daytime, the SLUCM has 
the least urban LST bias, regardless of PBL scheme, and 
the non-urban LST biases are similar across all simulations. 
Additionally, the high urban LST in MODIS is simulated 
well by the SLUCM with a bias below 1 °C. In contrast to 
DJF daytime, WRF overestimates LST over nearly the entire 
region in ASO daytime. WRF overestimates urban LST by 
1–5 °C using the SLUCM and up to 10 °C using No-UCM or 
the MLUCM, regardless of PBL scheme. Furthermore, the 
temporal correlations with MODIS are smaller in magnitude 

and negative compared to DJF daytime, indicating that WRF 
shows less skill in ASO daytime. The No-UCM simulations 
have fewer significant temporal correlations compared to the 
SLUCM and MLUCM.

The MODIS mean LST and WRF biases for DJF night-
time are shown in Fig. 5. Regardless of PBL scheme, the 
SLUCM has the least urban bias of ± 2 °C and No-UCM has 
urban biases of 1–6 °C, which is similar to DJF daytime. The 
MLUCM shows negative urban bias, which is more negative 
when used with MYJ compared to BouLac. The LST bias 
over the non-urban areas are mainly negative and of smaller 
magnitude compared to DJF daytime. Positive temporal cor-
relations exist in all cases and are highest over areas with 
small mean bias.

The results for ASO nighttime are shown in Fig.  6. 
Similar to ASO daytime, the urban LST bias is positive 
for No-UCM and the SLUCM, but slightly negative for the 
MLUCM. Similar to DJF nighttime, the MLUCM urban LST 
bias is more negative when used with MYJ. The smallest 
urban biases occur for the MLUCM of ± 2 °C. Therefore, the 
MLUCM shows the least urban LST bias in ASO nighttime, 
whereas in DJF daytime and nighttime and ASO daytime, 
the SLUCM exhibited the least urban bias. The non-urban 
LST biases, which are similar across the simulations, are 
smaller than in ASO daytime, but are still mostly positive. 
Additionally, some of the significant temporal correlations 
are positive, which is different from ASO daytime.

Table 2 shows the mean urban LST, non-urban LST, and 
UHI intensity bias for all simulations based on the land 
covers in their “purest” form. For non-urban LST, the bias 
is only PBL dependent and the differences are marginal. 
Across all simulations, WRF underestimates non-urban LST 
by approximately 1 °C in DJF daytime and nighttime. This 
underestimation is slightly larger for MYJ than BouLac. In 
contrast, WRF overestimates non-urban LST in ASO day-
time by ~ 4 °C and nighttime by ~ 1 °C. The overestimation 
is larger for BouLac than MYJ. In general, for both DJF and 
ASO, the magnitude of the non-urban LST bias is larger 
during daytime than nighttime. Unlike 2-m air temperature, 
LST has higher sensitivity to radiation (Kwok and Ng 2021). 
Therefore, daytime LST may have increased variability com-
pared to nighttime due to the combined influences of solar 
and terrestrial radiation and latent and sensible heat fluxes 
(Dai et al. 1999).

For urban LST, the mean bias varies more with UCM 
choice than PBL scheme (Table  2). For DJF daytime, 
the SLUCM has the smallest mean bias with BouLac  
( − 0.73 °C), which is slightly larger with MYJ ( − 0.99 °C). 
Using No-UCM or the MLUCM produced approximately 
the same bias with MYJ (2.13 °C and 2.03 °C). In contrast, 
when BouLac was used, using No-UCM produced smaller 
bias than the MLUCM (2.43 °C versus 2.74 °C). Similar 
to DJF daytime, the SLUCM has the smallest mean bias 
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Fig. 3  a The daytime mean land surface temperature (LST, in °C) 
averaged over clear-sky days from 17 December 2017–14 February 
2018 (DJF) from the MODIS data for the 50 km × 50 km region sur-
rounding the Bengaluru city center. The black contour outlines the 
urban boundaries. b LST biases relative to MODIS LST (shading, in 
°C) for DJF daytime using No-UCM with MYJ. Gray contours indi-

cate the value of the temporal correlation at each grid point between 
the simulation LST and MODIS LST and are plotted only when sig-
nificant at the 10% level. c Same as b, but for No-UCM with BouLac. 
d–e Same as b–c, but for the SLUCM. f–g Same as b–c, but for the 
MLUCM
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Fig. 4  Same as Fig. 3, but for ASO daytime (i.e., 17 August 2018–15 October 2018)
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Fig. 5  Same as Fig. 3, but for DJF nighttime
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Fig. 6  Same as Fig. 3, but for ASO nighttime
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with BouLac ( − 0.27 °C), which is slightly larger with MYJ 
( − 0.44 °C) in DJF nighttime. In contrast to DJF daytime, 
the mean urban LST bias is negative in DJF nighttime with 
the MLUCM for both MYJ ( − 3.64 °C) and BouLac ( − 
2.01 °C). Similar mean biases result when using No-UCM 
with MYJ (1.21 °C) or BouLac (1.35 °C) for DJF night-
time. For ASO daytime, the SLUCM has the smallest urban 
LST bias with MYJ (1.88 °C), which is slightly larger with 
BouLac (2.29 °C). The large positive bias for the MLUCM 
was slightly less with MYJ (4.43 °C) than with BouLac 
(5.44 °C). Similarly, the positive bias for No-UCM was 
smaller with MYJ (5.46 °C) than with BouLac (6.07 °C) 
in ASO daytime. For ASO nighttime, the MLUCM has the 
smallest mean bias with BouLac (0.08 °C), which becomes 
slightly negative ( − 0.93 °C) with MYJ. The bias produced 
with the SLUCM was positive and about the same for MYJ 
(2.61 °C) and BouLac (2.72 °C). Similarly, the bias pro-
duced with No-UCM was about the same for MYJ (3.67 °C) 
and BouLac (3.74 °C). Similar to the non-urban LST biases, 
the urban LST bias is generally larger in daytime than at 
nighttime.

Since the biases in non-urban LST are approximately 
the same and insensitive to UCM and PBL scheme, it is 
expected that the same physics combination that produced 
the smallest bias for urban LST would also produce the 
smallest bias for UHI intensity. This is true for DJF day-
time and nighttime, but not for ASO daytime and nighttime 
(Table 2). For ASO daytime, the smallest UHI intensity bias 
of 0.66 °C occurred for the MLUCM with MYJ, rather than 
the SLUCM with MYJ that produced the smallest urban LST 
bias. This discrepancy results from the urban and non-urban 
biases being similar to each other when using the MLUCM 
with MYJ, even though the individual biases are higher for 
both urban and non-urban LST when using the SLUCM with 
MYJ. For ASO nighttime, the lowest bias for UHI intensity 
of 1.15 °C occurred for the SLUCM with BouLac, rather 
than the MLUCM with BouLac that had the smallest urban 
LST bias. Again, this discrepancy results from the urban and 
non-urban biases being similar to each other when using the 
SLUCM with BouLac, even though the urban and non-urban 
biases are both larger than the MLUCM with BouLac case. 
Thus, the UHI intensity bias depends on the bias difference 
between the urban and non-urban biases, rather than the 
urban LST bias alone.

Potential contributing factors to LST biases

Figures 7, 8, 9, 10 show the mean simulated LST, surface 
absorbed SW radiation, net surface LW radiation, and the 
surface SH and LH fluxes for each UCM with BouLac for 
each season and time of day. Also shown are the grids that 
have a significant temporal correlation coefficient between 
the variable shown and LST of magnitude 0.50 or greater, Ta
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Fig. 7  a–c The mean daytime land surface temperature (LST, in °C) 
averaged over clear-sky days from 17 December 2017–14 February 
2018 (DJF) using a No-UCM, b the SLUCM, and c the MLUCM 
with BouLac over Bengaluru. d–f Same as a–c, but for DJF daytime 
absorbed shortwave (SW) radiation at the surface (positive down-
ward, in  Wm−2). g–i Same as a–c, but for DJF daytime net surface 
longwave (LW) radiation (negative upward,  Wm−2). j–l Same as a–c, 
but for DJF daytime surface sensible heat flux (positive upward, in 

 Wm−2. (m–o) Same as a–c, but for DJF daytime surface latent heat 
flux (positive upward, in  Wm−2). Stippling indicates that the temporal 
correlation between LST and the variable shown is > 0.50 and signifi-
cant at the 10% level. A cross indicates that the temporal correlation 
between LST and the variable shown is < –0.50 and significant at the 
10% level. The mean value for each variable, mean correlation (R) 
with LST, and associated mean p-value averaged over the city are 
shown in each panel
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thus indicating a strong relationship. This analysis was done 
only over the main area of Bengaluru since Figs. 3, 4, 5, 6 
showed non-urban LST to be insensitive to physics choice, 
which is attributable to the Noah Land Surface model calcu-
lating the radiative and surface fluxes in each case. The mean 
values of each variable over the city and the mean correla-
tion with LST and associated p-value are shown. Only the 
results for the BouLac PBL scheme are presented since the 
simulated LST over Bengaluru has little sensitivity to PBL 
scheme and three of the four season and time of day cases 
showed BouLac to perform best (Table 2).

For DJF daytime (Fig. 7), the mean LST is highest for 
the MLUCM (34.14 °C), followed by No-UCM (33.91 °C) 
and the SLUCM (30.82 °C), which matches the urban LST 
biases (Table 2). These LST differences are consistent with 
absorbed SW radiation (Fig. 7d–f), which is highest for the 
MLUCM (717.41  Wm−2), slightly less for No-UCM (717.35 
 Wm−2), and smallest for the SLUCM (701.98  Wm−2). The 
DJF daytime LST is strongly correlated with absorbed SW 
radiation in each case over most of Bengaluru with a mean 
correlation of 0.53 in the SLUCM and MLUCM and 0.50 
for No-UCM. These results suggest that the DJF daytime 
LST bias is likely partly caused by the amount of absorbed 
SW radiation. Since the SLUCM and MLUCM can both 
trap SW radiation, it seems that the MLUCM traps more, 
given that the surface albedo is similar for both UCMs 
(mean albedo of 0.167 in SLUCM and 0.165 in MLUCM). 
Thus, a higher absorbed SW radiation and LST occur in the 
MLUCM compared to the SLUCM. No-UCM has a high 
absorbed SW radiation since the urban surfaces are seen as 
entirely impervious, which allows for more absorption since 
the urban surface has a lower albedo of 0.15 compared to the 
SLUCM and MLUCM. Net LW radiation illustrates whether 
the ground is cooling or warming by thermal radiation. For 
net LW radiation in DJF daytime (Fig. 7g–i), all UCMs 
have a negative mean value. Even though there is ground 
cooling through thermal emission, the mean net radiation 
(i.e., absorbed SW plus net LW) values are positive for each 
UCM, which is expected during daytime. The negative net 
LW radiation values indicate there is less downward LW 
radiation than upward, which is typical of cloud-free condi-
tions, and therefore, the net LW radiation value is mainly 
indicative of the upward LW flux. The mean magnitudes 
are consistent with LST, i.e., the highest is for the MLUCM 
(–163.92  Wm−2), followed by No-UCM (–156.26  Wm−2) 
and SLUCM (–154.98  Wm−2), which is a consequence of 
the Stefan-Boltzmann Law. Additionally, since the SLUCM 
and MLUCM can both trap LW radiation, it is possible that 
the MLUCM traps more, which leads to a higher LST and 
more upward LW radiation to be emitted in MLUCM. How-
ever, for all UCMs, none of the grids meet the criteria; there-
fore, net LW radiation is unlikely a driver of the LST bias. 
The surface SH flux mainly depends on the gradient between 

LST and near-surface air temperature. During daytime when 
solar heating dominates, the ground warms more than the 
lower atmosphere which causes an upward (i.e., positive) 
SH flux and high LST. Figure 7j–l shows a positive SH flux 
for all UCMs since there is no temperature inversion for 
any of the UCMs (not shown). The mean magnitudes are 
consistent with LST, i.e., the MLUCM is highest (375.35 
 Wm−2), followed by No-UCM (306.31  Wm−2) and SLUCM 
(232.11  Wm−2). However, the SH flux has no grids meeting 
the criteria; therefore, the SH flux is unlikely a driver of 
the LST bias in DJF daytime. The LH flux is influenced by 
vegetation density, the amount of evapotranspiration, and 
absorbed SW radiation. The MLUCM shows the largest LH 
mean of 37.72  Wm−2 since it has the highest absorbed SW 
radiation and each urban grid has 10% of its area as pervi-
ous (Fig. 7o). The SLUCM has a slightly lower LH mean of 
36.49  Wm−2 (Fig. 7n). Despite the lower SW radiation in the 
SLUCM compared to the MLUCM, the SLUCM also has the 
urban fraction parameter, thus causing a slightly lower LH 
flux. For No-UCM (Fig. 7m), the LH flux mean is near-zero 
(0.09  Wm−2), which is a consequence of having no pervi-
ous material over the urban grids. All of Bengaluru’s grids 
meet the criteria in the SLUCM and MLUCM. Despite no 
grids meeting the criteria in No-UCM, which is mainly due 
to little temporal variation in it’s the LH flux, the low LH 
indicates limited evaporative cooling of the surface, which 
contributes to the high LST bias.

Figure 8 shows that in ASO daytime, the mean LST is 
highest for No-UCM (39.30 °C), followed by the MLUCM 
(38.63 °C) and SLUCM (35.60 °C), which matches the 
urban LST biases (Table 2). The absorbed SW radiation 
(Fig. 8d–f) does not show a systematic pattern difference 
among the cases, but the mean values match with LST 
with the highest for No-UCM (778.70  Wm−2), followed 
by MLUCM (771.80  Wm−2) and SLUCM (769.15  Wm−2). 
Less urban grids meet the criteria for absorbed SW radia-
tion compared to DJF daytime. Therefore, absorbed SW 
radiation likely plays a smaller role in driving the LST 
bias in ASO daytime compared to DJF daytime. For net 
LW radiation (Fig. 8g–i), the mean values are similar for 
No-UCM (–141.17  Wm−2) and the MLUCM (–141.99 
 Wm−2), and are slightly lower for the SLUCM (–134.16 
 Wm−2). Therefore, No-UCM and the MLUCM have more 
longwave cooling than the SLUCM. Since No-UCM and 
the MLUCM have a higher LST than the SLUCM, the 
upward LW flux is higher for those cases (not shown). 
As with DJF daytime, it is possible the MLUCM is trap-
ping more LW radiation than the SLUCM, leading to a 
higher LST. The MLUCM has grids meeting the criteria 
throughout most of Bengaluru, and numerous grids meet 
the criteria in No-UCM and SLUCM. Therefore, net LW 
radiation likely plays a role in determining the LST bias in 
ASO daytime. For the SH flux (Fig. 8j–l), the mean value 
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Fig. 8  Same as Fig. 7, but for ASO daytime (i.e., 17 August 2018–15 October 2018). Stippling and crosses are in red for (k) and (m) for visualization purposes only
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is highest for the MLUCM (450.43  Wm−2), followed by 
No-UCM (385.80  Wm−2) and SLUCM (298.65  Wm−2). 
The high SH mean in the MLUCM is likely a result of 
LW trapping causing the surface to be much warmer than 
the near-surface, whereas in SLUCM, the LST and near-
surface air temperature are similar (not shown), which 
allows for a smaller SH flux. Therefore, the SH flux is 
a consequence of LW radiation influencing LST, rather 
than the flux being a driver of the bias. For the LH flux 
(Fig. 8m–o), the results are similar to DJF daytime except 
that a few grids meet the criteria in No-UCM, less grids 
meet the criteria in the SLUCM and MLUCM, and the 
correlation is stronger in the SLUCM (mean R = –0.64) 

compared to the MLUCM (mean R = –0.33), whereas the 
correlation was the same for the SLUCM and MLUCM in 
DJF daytime (mean R = –0.69). Therefore, the LH flux also 
plays a role in the LST bias for ASO daytime.

For DJF nighttime (Fig. 9), the mean LST is highest for 
No-UCM (too warm), followed by the SLUCM, and the 
MLUCM (too cold). The net LW radiation (Fig. 9d–f) is 
highest for the SLUCM (–91.10  Wm−2), followed by No-
UCM (–88.57  Wm−2) and the MLUCM (–77.50  Wm−2). 
Most of Bengaluru has grids meeting the criteria for net 
LW in the SLUCM and MLUCM, but only a few in No-
UCM. During DJF daytime, it was found that the MLUCM 
likely traps more LW radiation than the SLUCM, causing 

Fig. 9  a–c The mean nighttime land surface temperature (LST, in °C) 
averaged over clear-sky days from 17 December 2017–14 February 
2018 (DJF) using a No-UCM, b the SLUCM, and c the MLUCM 
with BouLac over Bengaluru. d–f Same as a–c, but for DJF nighttime 
net surface longwave (LW) radiation (negative upward, in  Wm−2). g–i 
Same as a–c, but for DJF nighttime surface sensible heat flux (posi-

tive upward, in  Wm−2). Stippling indicates that the temporal correla-
tion between LST and the variable of interest is > 0.50 and significant 
at the 10% level. The mean value for each variable, mean correlation 
(R) with LST, and associated mean p-value averaged over the city are 
shown in each panel
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a higher LST bias for the MLUCM and a higher magni-
tude net LW flux (i.e., more upward LW radiation). As a 
consequence of large LW cooling during DJF daytime, the 
LST and net LW radiation are lower in MLUCM than in 
No-UCM and the SLUCM during nighttime. Since the net 
LW radiation was similar during DJF daytime for No-UCM 
and the SLUCM, the values continue to be similar during 
DJF nighttime. Therefore, net LW radiation seems to play 
a major role in determining the LST bias during DJF night-
time. During nighttime, the SH flux is often weaker than 
during daytime as heat stored during the day is released, 
which often warms the lower atmosphere and decreases 
LST. For SH (Fig. 9g–i), the mean is highest for No-UCM 
(22.17  Wm−2), followed by the SLUCM (0.59  Wm−2) and 
MLUCM (–35.01  Wm−2), which matches the ordering of the 
LST means. The negative SH flux in the MLUCM is indica-
tive of a temperature inversion (not shown). This could be 

an effect of how the MLUCM handles LW radiation. Since 
the MLUCM trapped a high amount of LW radiation during 
DJF daytime, which led to a high magnitude net LW radia-
tion (i.e., upward LW flux), this warmed the lower levels and 
cooled the surface at nighttime. Only the SLUCM has grids 
meeting the criteria for SH, in which the criteria is met for 
the entire city. Similar to daytime, the SH flux value appears 
to be a consequence of LW radiation rather than a cause of 
the LST bias.

The mean LST for ASO nighttime (Fig. 10a–c) is high-
est is for No-UCM (24.02 °C), followed by the SLUCM 
(23.00 °C) and the MLUCM (20.50 °C), which matches 
the urban LST biases (Table  2). For net LW radiation 
(Fig. 10d–f), the results are similar to DJF nighttime with the 
highest mean for the SLUCM (–62.07  Wm−2), followed by 
No-UCM (–60.71  Wm−2) and the MLUCM (–44.20  Wm−2). 
However, more grids meet the criteria in No-UCM compared 

Fig. 10  Same as Fig. 9, but for ASO nighttime (i.e., 17 August 2018–15 October 2018)
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to DJF nighttime. Therefore, again it is likely that since the 
MLUCM traps a high amount of LW radiation during the 
day causing more thermal emission, the net LW radiative 
flux and LST are lower compared to the other UCMs at 
nighttime. However, unlike DJF nighttime, the MLUCM has 
the lowest urban LST bias in ASO nighttime (Table 2), indi-
cating the processes are most accurate for the MLUCM. For 
SH (Fig. 10g–i), the results are again similar to DJF night-
time with the highest mean for No-UCM (32.82  Wm−2), fol-
lowed by the SLUCM (16.40  Wm−2) and MLUCM (–25.24 
 Wm−2). In contrast to DJF nighttime, the respective mean 
values are all higher, most of the city in No-UCM and the 
SLUCM has grids meeting the criteria, and a few grids in 
the MLUCM meet the criteria now. Again, the negative SH 
flux in the MLUCM corresponds to a temperature inversion 
(not shown), which is likely due to high LW radiation emis-
sion during the day which warms the lower levels more than 
the surface. Similar to the other cases, the SH flux seems to 
be an effect of LW radiation and LST rather than a cause of 
the LST bias.

The above results suggest that the MLUCM may trap too 
much SW and LW radiation during daytime, which may con-
tribute to its large positive daytime LST biases. The large 
trapping of LW radiation by the MLUCM during daytime 
leads to a high upward LW flux during daytime, which 
causes a cool nighttime LST, a low net LW flux magnitude 
at nighttime, and a negative SH flux at nighttime due to a 
warmer lower atmosphere compared to the surface. These 
consequences in MLUCM may partially be due to better 
interaction between the urban canopy and PBL compared to 
the other UCMs. Additionally, due to no pervious area over 
the urban surface in No-UCM, the daytime LH flux is near-
zero in both DJF and ASO, which contributes to the high 
daytime LST bias in No-UCM. The SLUCM and MLUCM 
produce similar LH values since they both have the urban 
fraction parameter. Overall, the SLUCM has the least urban 
LST bias during daytime in both seasons due to a higher 
LH flux compared to No-UCM and less absorbed SW radia-
tion and trapping of LW radiation compared to MLUCM. 
In DJF nighttime, the SLUCM has the least urban LST bias 
since the LST in the MLUCM cooled too much due to high 
thermal emission during the daytime. In ASO nighttime, the 
MLUCM has the lowest urban LST, indicating that the LW 
radiation processes are fairly accurate in this case.

Conclusions

In this study, WRF simulations over Bengaluru, India were 
performed to test the model’s ability in simulating LST 
in comparison with MODIS data. This study evaluated 
WRF with No-UCM, and the coupling to the SLUCM and 
MLUCM with the MYJ and BouLac PBL schemes. The 

differences in model physics were used to help explain the 
resulting LST biases. The evaluation was done separately for 
daytime and nighttime during the dry (DJF) and wet (ASO) 
seasons.

Results show that coupling WRF to an UCM reduced 
the simulated urban LST bias, which led to improved simu-
lations of the UHI. This is consistent with previous stud-
ies (e.g., Bhati and Mohan 2018). For the best case, urban 
LST was underestimated by less than 1 °C during DJF day-
time and nighttime, and was overestimated by 1.88 °C and 
0.08 °C in ASO daytime and nighttime, which are suggestive 
of valid model results due to the low biases (Table 2). Urban 
LST and UHI intensity were found to not be strongly sensi-
tive to PBL scheme. Non-urban LST was mainly insensitive 
to both UCM and PBL choice. The two cases that were sen-
sitive to PBL choice occurred when WRF was coupled to 
the MLUCM during nighttime for both seasons, in which the 
urban LST bias was more positive with BouLac than MYJ 
(Table 2). In general, urban LST and UHI intensity were 
found to be simulated best using the SLUCM. This suggests 
that the more computationally expensive MLUCM often 
does not need to be used. Furthermore, the BEP + BEM, 
which was not evaluated here, likely is not necessary unless 
sophisticated UHI mitigation strategies are being tested.

Since WRF’s performance was mainly influenced by 
UCM choice, the UCM differences in how radiative and 
surface fluxes are calculated were used to explain the LST 
biases. During daytime, No-UCM had a near-zero LH flux 
since the urban surfaces have no pervious area, which led to 
a high LST bias for both seasons. Additionally, the MLUCM 
traps too much SW radiation and the No-UCM absorbs too 
much SW radiation due to a lower albedo, both leading to 
higher LST biases compared to the SLUCM. During night-
time, the LST in MLUCM cools due to high LW emission 
during the day, which warms the lower atmosphere and 
causes a temperature inversion and lower LST. This process 
results in a negative LST bias for MLUCM in DJF night-
time (–2.01 °C), but only a small bias for ASO nighttime 
(0.08 °C), indicating that this process is accurate in ASO.

Future studies can evaluate other WRF modeling sensitiv-
ities, such as the inclusion of an urban morphology dataset. 
These data can classify urban land cover into several catego-
ries based on degree of urbanization. Occasionally, cities 
have been able to accurately map their urban geometry and 
can provide these data for numerical modeling. However, 
these data can be hard to obtain and typically are unavail-
able in developing countries (Kwok and Ng 2021). Some 
studies have used databases that relied on machine learning 
techniques to classify urban land cover into multiple cat-
egories, such as the National Land Cover Database (NLCD; 
Homer et al. 2015) for the United States and the Coordina-
tion of Information on the Environment (CORINE) Land 
Cover inventory (Büttner et al. 2004) for Europe. A recent 
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initiative is the World Urban Database and Access Portal 
Tools (WUDAPT; Ching et al. 2018) that works to provide 
a standardized database on urban morphology using an open 
source procedure. Urban morphology datasets are difficult to 
obtain for many Indian cities. To our knowledge, only Bhati 
and Mohan (2018) has incorporated an urban morphol-
ogy dataset. Bhati and Mohan (2018) evaluated WRF with 
urban morphology and WRF with land cover datasets from 
MODIS and the United States Geological Survey (USGS) 
using homogeneous urban land cover over New Delhi, in 
which they found improvements in the simulation of near-
surface temperature using urban morphology. No urban mor-
phology dataset was used in this study so that it could be 
understood how well WRF performs when urban land cover 
is considered to be homogeneous and using default WRF 
parameters. While WRF exhibited decent skill in simulat-
ing LST, using an urban morphology dataset would likely 
improve results since the urban fraction parameter could be 
better tuned for each urban grid.

Other sensitivities that could be explored are the use of 
WRF-Chem and testing of other PBL schemes with the 
SLUCM. WRF-Chem allows for the simultaneous integra-
tion of the emission, transport, mixing, and chemical trans-
formation of trace gases and aerosols with meteorology. 
Inclusion of the impact of prognostic aerosols may improve 
the simulations since anthropogenic aerosols could play 
a role in impacting urban LST. WRF-Chem was not used 
here since it was found that aerosol optical depth (AOD) 
has a low importance in determining urban LST for Ben-
galuru (Sussman et al. 2021). Since the number of PBL 
schemes that can be used with the MLUCM is limited, but 
the SLUCM performed best, it may be worthwhile to test 
the SLUCM with the other available PBL schemes since the 
PBL is crucial in urban climate (Garratt 1994).

Overall, the simulations shown here present the first 
UCM evaluation for India in terms of LST using WRF’s 
default options, and thus give a baseline understanding. 
Future studies should systematically investigate how other 
WRF options may improve biases compared to these simula-
tions. Thoroughly evaluating each of these sensitivities will 
help to ensure that studies investigating mechanisms and 
mitigation strategies of UHIs use the best possible and most 
efficient WRF setup available.
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