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[1] This paper compares by land cover type seasonal and spatial variations of
MODIS leaf area index (LAI) and fraction of photosynthetically active radiation
(0.4–0.7 mm) absorbed by vegetation (FPAR) from 2.5 years with those from the
Common Land Model (CLM) and investigates possible reasons for notable
differences. The FPAR value is mainly determined by LAI in MODIS and both LAI
and stem area index (SAI) in CLM. On average, the model underestimates FPAR in
the Southern Hemisphere and overestimates FPAR over most areas in the Northern
Hemisphere compared to MODIS observations during all seasons except northern
middle latitude summer. Such overestimation is most significant in winter over
northern high latitudes. The MODIS LAI is generally consistent with the model
during the snow-free periods but may be underestimated in the presence of snow,
especially for evergreen trees. The positive FPAR bias is mainly attributed to CLM
SAI of deciduous canopy and higher LAI than MODIS for evergreen canopy as well.
The negative FPAR bias results from several factors, including differences in LAI
and soil albedo between CLM and MODIS or limitations of the geometric optics
scheme used in the model. Therefore the MODIS algorithm needs to better represent
the winter LAI retrievals, while the model needs to better quantify LAI and SAI.
Since stems will not have the same single-scattering albedo as green leaves, it may
be inappropriate for the model to treat LAI and SAI the same in the FPAR and
albedo parameterizations. If so, the role of SAI in these parameterizations needs
reformulation. INDEX TERMS: 1620 Global Change: Climate dynamics (3309); 1640 Global

Change: Remote sensing; 3307 Meteorology and Atmospheric Dynamics: Boundary layer processes;

3322 Meteorology and Atmospheric Dynamics: Land/atmosphere interactions; KEYWORDS: LAI, FPAR,

MODIS, Common Land Model
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1. Introduction

[2] The land component of climate models represents
many processes that control exchanges of energy, momen-
tum and materials between soil, vegetation and the atmo-
sphere, and has long been recognized as important for
weather forecasting and climate change [e.g., Dickinson,
1983; Bonan, 1996, 1998; Sellers et al., 1997]. The leaf area

index (LAI) and fraction of photosynthetically active radi-
ation (0.4–0.7 mm) absorbed by vegetation (FPAR) are
identified as two key parameters in the land surface models
and are related to albedo, fractional vegetation, and rough-
ness length [Dickinson et al., 1993; Chen and Cihlar, 1996;
Bonan, 1996, 1998; Sellers et al., 1997;Myneni et al., 2002;
Zeng et al., 2002]. LAI is defined as the one sided green leaf
area per unit ground area for broadleaf canopies or the
projected needleleaf area for coniferous canopies. Models
require LAI as input and compute FPAR from LAI and
vegetation albedo to obtain transpiration. The model values
of LAI and FPAR have not previously had reliable obser-
vations to be checked against.
[3] Good descriptions of the climatological LAI and

FPAR require data over a long period of time and from
every region of the terrestrial surface. Satellite remote
sensing products can best provide such global fields on a
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regular basis and thus help modelers improve descriptions
of land-atmosphere interactions [Henderson-Sellers and
Wilson, 1983; Buermann et al., 2001; Zeng et al., 2002].
The launch of TERRA with Moderate Resolution Imaging
Spectroradiometer (MODIS) onboard began a new era, by
providing for the first time high-quality LAI and FPAR
products from MODIS-measured canopy reflectance data
[Knyazikhin et al., 1998a, 1998b; Myneni et al., 2002].
[4] Comparison between model-generated and satellite-

derived fields reveals discrepancies that suggest possible
improvements to both. This study compares the seasonal
and spatial variations of MODIS LAI and FPAR, as
observed in 2000, 2001 and 2003, with those from the
Common Land Model (CLM). It investigates possible
reasons for major differences and provides guidance toward
improving the model’s LAI description and FPAR param-
eterization. Section 2 describes how LAI and FPAR are
computed from CLM and MODIS. Section 3 analyzes
seasonal and spatial variations of MODIS LAI and FPAR.
Section 4 compares LAI and FPAR between MODIS and
CLM, followed by discussion in section 5 and conclusions
in section 6.

2. LAI and FPAR From MODIS and CLM

2.1. MODIS LAI and FPAR

[5] The MODIS LAI-FPAR algorithm is based on three-
dimensional radiative transfer theory [Myneni et al., 2002],
and developed for inversion using a look-up table (LUT)
approach [Knyazikhin et al., 1998a, 1998b; Privette et al.,
2002]. The algorithm employs a 1 km land cover map of six
major biomes produced from MODIS. The structural char-
acters among these biomes, such as the horizontal (homo-
geneous vs. heterogeneous) and vertical (single- vs.
multistory) dimensions, canopy height, leaf type, soil
brightness and climate (precipitation and temperature), are
used to define unique model configurations, including some
fixed parameter values appropriate for the biome character-
istics [Myneni et al., 1997; Privette et al., 2002]. LUTs are
then generated for each biome by running the model for
various combinations of LAI and soil type. The algorithm
ingests atmospherically corrected bidirectional reflectance
factors, their uncertainties and corresponding sun-view
geometries. It compares the observed reflectances to com-
parable values evaluated from model-based entries stored in
LUTs and derives the distribution of all possible solutions,
i.e., LAI and FPAR distribution functions. The standard
archived product is the mean of the distribution functions
[Knyazikhin et al., 1998a; Myneni et al., 2002]. When this
method fails to identify a solution, a back-up method based
on relations between the normalized difference vegetation
index (NDVI) and LAI and FPAR [Myneni et al., 1997;
Knyazikhin et al., 1998a] is used.
[6] The current MODIS 1-km LAI-FPAR product is

retrieved from the reflectances of two bands (648 and
858 nm) and on an 8-day compositing period. The product
also includes extensive quality control (QC) information
regarding cloud and data processing conditions. During
each 8-day period, the highest-quality LAI and FPAR are
selected (R. B. Myneni et al., MODIS LAI/FPAR product
user’s guide, 2003, available at ftp://crsa.bu.edu/pub/
rmyneni/myneniproducts/MODIS/readme.txt). These data

are further composited over 4 (or 3) consecutive 8-day
periods to produce monthly data (Myneni et al., 2003,
ftp://crsa.bu.edu/pub/rmyneni/myneniproducts/MODIS/
readme.txt). This study uses two and half years of MODIS
LAI and FPAR products (MOD15A2, Collection 4) in
2000, 2001, and January through June in 2003. To mini-
mize cloud contamination, the 2.5-year data are further
composited to produce a climatology of monthly LAI and
FPAR with the best quality, which is used to compare with
CLM values.

2.2. CLM LAI and FPAR

2.2.1. CLM
[7] The CLM is a recently developed state-of-the-art land

surface model, described in detail by Zeng et al. [2002] and
Dai et al. [2003]. It has one vegetation layer, 10 unevenly
spaced vertical soil layers, and up to 5 snow layers. In this
version, every surface grid (2.8� � 2.8�) is subdivided into
up to 5 tiles, each tile containing a single land cover type.
Zeng et al. [2002] used 16 land cover types based on the
IGBP land cover classification and defined a special class
type 18 (purely bare soil). Surface input data required for
each grid include the central location, soil color type, sand
and clay fraction, land cover type and its fraction for each
tile. Each vegetation type is assigned a set of time-invariant
parameters: optical properties (canopy albedo), morpholog-
ical properties (canopy roughness, canopy zero plane dis-
placement, inverse square root of leaf dimension, root
fraction), and physiological properties. Time-variant param-
eters include LAI and stem area index (SAI).
2.2.2. LAI and SAI
[8] The monthly LAI climatology used in CLM was

derived from the advanced very high resolution radiometers
(AVHRR) 8-km NDVI data set from July 1981 to June 1991
[Zeng et al., 2002]. Within each 10�-latitude zone, an annual
cycle of LAI for each IGBP land cover type was specified.
Since satellite-derived LAIs are defined with respect to unit
ground area, they were then divided by the fraction of
vegetation [Zeng et al., 2000] to produce green LAI with
respect to vegetated area only (denoted as LAI) as an input
data set for the mosaic treatment of subgrid vegetation
variation in the model. Since snow and cloud significantly
affect satellite-derived LAI, winter LAI values were adjusted
by

LAI ¼ maxðLAI; cLAI;maxÞ; ð1Þ

for evergreen needleleaf forests (c = 0.7) and evergreen
broadleaf forests (c = 0.8). LAI,max is the maximum monthly
LAI [Zeng et al., 2002].
[9] Stems and dead leaves are represented by the SAI but

its values are poorly known. Zeng et al. [2002] assigned a
SAI value that increases from its minimum value in winter
to its maximum value in fall for each land cover type and
with respect to vegetated areas (denoted as SAI) of each 10�-
latitude zone. The SAI value for deciduous broadleaf forests
is about 1.0 for most months over most of the latitudinal
zones, but increases north of 30�N during and after
September, typically adding as much as 2 at its peak in
October or November to represent dead leaves.
[10] For each tile, LAI and SAI are combined together as

leaf and stem area index (denoted as LSAI) to calculate
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vegetation albedo and FPAR in CLM. Note LSAI = LAI +
SAI.
2.2.3. FPAR
[11] This paper determines FPAR at each vegetation tile

in CLM by

FPARv ¼
Ib þ Id

S
#
v;b þ S

#
v;d

; ð2Þ

where Ib (Id) is the direct (diffuse) solar radiation absorbed
by canopy in the visible band (VIS, <0.7 mm), Sv,b

# (Sv,d
# ) is

the direct (diffuse) incident solar radiation at the top of the
canopy in VIS, the subscripts v refer to vegetation, and

Ib ¼ ð1� av;bÞS#v;b � 1� expð�kbLSAI Þ½ 	; ð3aÞ

Id ¼ ð1� av;dÞS#v;d � 1� expð�kdLSAI Þ½ 	: ð3bÞ

Variables av,b and av,d, are the direct and diffuse vegetation
albedos, kb (kb =

GðmÞ
m

ffiffiffiffiffiffiffiffiffiffiffiffi
1� w

p
) and kd (kd ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� w

p
) are the

PAR extinction coefficient respectively for the direct and
diffuse beam solar radiation (time-mean radiation-weighted
value); G(m) is the cosine of the angle between the leaf
normal and the direction of solar beam and is set as 0.5 in
the model; m is cosine of solar zenith angle (SZA); w is the
leaf-scattering coefficient (single-scattering albedo) for PAR
and is set to 0.15 (Y. Dai et al., The Common Land Model:
Documentation and user’s guide, 2001, available at http://
climate.eas.gatech.edu/dai/clmdoc.pdf).
[12] Vegetation albedos in equation (3) are calculated

from a geometric optics scheme, which combines canopy
and its underlying surface albedos,

av;b ¼ ac 1� exp �wbLSAI
mac

� �� �
þ ag exp � 1þ 0:5

m

� �
LSAI

� �
;

ð4aÞ

av;d ¼ ac 1� exp � 2wbLSAI
ac

� �� �
þ ag expð�2LSAI Þ; ð4bÞ

where ac is canopy albedo, ag is the underlying surface
albedo, and the subscripts, b and d refer to direct and diffuse
beam, respectively. The product wb is the upward scattered
fraction (CLM sets b = 0.5). This scheme assumes that
vegetation albedo approaches that of the underlying surface,
ag, when LSAI goes to zero and approaches a prescribed
canopy albedo value, ac, when LSAI goes to its maximum
value. The prescribed canopy albedos for each land cover
type were inferred initially from the biosphere-atmosphere
transfer scheme (BATS) [Dickinson et al., 1993] and then
adjusted on the basis of AVHRR-derived albedo data [Zeng
et al., 2002].
[13] The underlying bare soil albedo varies with soil color

and moisture [Dickinson et al., 1993]:

ag ¼ asat þmin asat;max 0:01ð11� 40qÞ; 0½ 	f g; ð5Þ

where asat is saturated soil albedo, q is the ratio of surface
soil water volumetric content over its saturated value. CLM

uses prescribed asat for 8 soil color types globally from dark
to light.
[14] Albedos for the snow covered part of vegetation and

underlying surface are re-calculated based on snow albedo.
The latter depends on SZA and snow age, and how the latter
decreases with time due to growth of snow grain size and
accumulation of dirt and soot [Wiscombe and Warren, 1980;
Dickinson et al., 1993].

2.3. Factors Determining FPAR in CLM

[15] The primary factor determining FPAR in CLM is
the LSAI and canopy albedo. However, it also depends to
some extent on SZA and the ratio of direct to total
incident solar radiation (FDIR). The MODIS data stream
currently does not provide this ratio and the TOA
reflectances are converted to surface reflectances assum-
ing the later sees only a direct beam solar flux. Thus the
MODIS algorithm assumes FPAR only for direct beam.
The dependence of FPAR on SZA and diffuse radiation
can be minimized by sampling the CLM output at local
10:30 am. The CLM FPAR also is decreased a small
amount by its dependence on underlying soil albedo
when LSAI is small according to equation (3), because
of its dependence on av,b and av,d. This contribution is
small and appears to be an artifact of equation (3) making
use of av,b and av,d when use of only the canopy term
would be more plausible. We estimate that FPAR should
actually be increased by at most a few percent because of
canopy absorption of solar radiation reflected by the soil.
Such dependency on soil albedo is small compared to
other contributions to FPAR and will be discussed in
section 5.
[16] Because CLM and MODIS have been shown to be in

good agreement with regard to canopy albedo [Zhou et al.,
2003], their FPARs are expected to differ primarily due to
differences in LSAI as now addressed. Figure 1 illustrates
how a FPAR bias will be given by a LSAI bias for evergreen
broadleaf forests with four LSAI values, 0.5, 2.0, 4.0 and 6.0.
The parameters used include: (1) canopy albedo, 0.04,
(2) FDIR, 1.0, and (3) SZA, 0, 20, 40, 60, and 80.
Evidently, an overestimation of 1 in LSAI results in an
overestimation of 0.25, 0.1, 0.05 and 0.02 in FPAR for
LSAI = 0.5, 2.0, 4.0 and 6.0, respectively, when SZA is 0.
For the same LSAI bias, the smaller the LSAI value the larger
the FPAR bias; and the FPAR bias is more sensitive to a
negative LSAI bias than to a positive bias.
[17] Figure 2 shows how the FPAR-LSAI relationship

depends on SZA for evergreen broadleaf forests and open
shrublands when FDIR is 1.0 (direct beam only). Evidently,
FPAR increases nonlinearly with LSAI, with the largest rate
for the smaller LSAI. For a given LSAI, FPAR increases as
SZA increases, indicating that a more efficient photo-
synthesis occurs during the morning and afternoon than
at noontime due to the longer path of sunlight traveling
within the canopy at larger SZA. The FPAR value of
evergreen broadleaf forests is larger than that of open
shrublands, resulting from differences in their prescribed
canopy albedos, 0.04 for the former versus 0.14 for the
latter.
[18] FPAR also depends on FDIR. Figure 3 illustrates that

this dependence is (1) strongest for an LSAI from 0.5 to 1.5
and relatively small for an LSAI greater than 4 and (2) largest
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for a SZA that is near overhead or near the horizon and
smallest for SZA near 60�.

3. Seasonal and Spatial Variations in
MODIS LAI and FPAR

[19] Global distributions of MODIS LAI and FPAR for
March and July, corresponding to winter and summer,

are shown in Figure 4 at the model resolution. Late
winter (March) is chosen to stay away from mid-winter
(January) at which time there is much more snow and
too little sun to provide much energy either for the land
surface or for remote sensing in high latitudes. The LAI
and FPAR values peak during local summer (wet
season). The two hemispheres clearly show opposite
seasonality.

Figure 2. FPAR-LSAI relationship simulated from equation (2) at SZA = 0, 20, 40, 60, and 80 for
evergreen broadleaf forests and open shrublands when FDIR is 1.0.

Figure 1. FPAR bias versus LSAI bias relationship simulated from equation (2) for evergreen broadleaf
forests with four LSAI values, 0.5, 2, 4, and 6, at SZA = 0, 20, 40, 60, and 80. Canopy albedo is set as 0.04
and the ratio of direct to total incident solar radiation (FDIR) is set as 1.0.
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[20] To analyze LAI and FPAR latitudinal variations, we
used the MODIS IGBP land cover classification map
[Friedl et al., 2002] to spatially aggregate all 1 km MODIS
pixels into 10� latitudinal bands. In each band, monthly
mean LAI and FPAR are calculated for each land cover
type. Here we only show results for 5 typical vegetation
types (Figure 5): evergreen needleleaf forests (class 1),
evergreen broadleaf forests (class 2), deciduous needleleaf
forests (class 3), deciduous broadleaf forests (class 4), and
savannas (class 9). These classes are then divided into
group 1 (classes 1, 3 and 4) and group 2 (classes 2 and 9).
[21] The LAI (FPAR) values for group 1 increase dra-

matically from winter to summer and maximize around 4.5
(0.9). For each class, large differences between latitudinal
bands are seen in all seasons except summer. The winter
LAI and FPAR values for class 1 are surprisingly low in
high latitudes (55�N–65�N) as discussed in sections 4.2
and 5.
[22] The classes of group 2 are mainly located at tropical

regions (25�S–25�N). The seasonality of savannas differs
between the two hemispheres. The Northern Hemisphere
(NH) and Southern Hemisphere (SH) LAI peak around
March and September, respectively. Unlike savannas, ever-
green broadleaf forests in 15�S–5�N display an indistinct
seasonal cycle with phase of precipitation.
[23] Seasonal variations of FPAR follow those of LAI for

all classes. FPAR varies little for LAI>3 but more for LAI<3
among latitudinal bands. The FPAR is nearly linear with

LAI variation for low LAI values but varies little for high
LAI values, as illustrated in Figure 2.

4. Comparison of LAI and FPAR Between
MODIS and CLM

[24] We performed an 11-year simulation of CLM cou-
pled with the NCAR CCM3, a spectral atmospheric model
with resolution at about 2.8� x 2.8� and 18 vertical levels
[Kiehl et al., 1998], with climatological sea surface temper-
atures (SSTs). The FPAR values from the last year were
used to compare with MODIS observations while the first
10-year run was used as a spinup. The prescribed LAI in
CLM varies monthly but keeps constant with years. To
make the comparison more precise, FPAR at local time
10:30am was sampled each day from CLM and the mean
value was chosen over each month.
[25] Because LAI, SAI, and FPAR in CLM are defined

with respect to vegetated area only, we converted them into
values per unit ground area (denoted as LAI and SAI in this
paper) for comparison with those of MODIS. Note MODIS
FPAR is calculated based on only LAI while CLM treats
both LAI and SAI the same and uses LSAI (LSAI = LAI +
SAI) to calculate FPAR.

4.1. Spatial Patterns of Difference at Global Scale

[26] Global distributions of differences between CLM
LSAI and FPAR and MODIS LAI and FPAR in March

Figure 3. FPAR-FDIR relationship at SZA = 0, 20, 40, 60, and 80 for (a) LSAI = 0.5 and (b) LSAI = 4.5
and FPAR difference in (c) FPARFDIR=0.0-FPARFDIR=1.0 and (d) FPARFDIR=0.7-FPARFDIR=1.0 as a
function of LSAI at SZA = 0, 20, 40, 60, and 80, simulated from equation (2).
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and July are shown in Figure 6. For simplicity, the model
LSAI is also referred to as LAI in this section. On an
average, CLM values are consistent with those of MODIS
in spatial distribution and in rough agreement with the
magnitude. Here we mainly focus on notable differences
in LAI and FPAR.
[27] In March, CLM values are lower by about 0.5–1.5

for LAI and 0.05–0.25 for FPAR than is observed over most
areas in the SH except southwest Australia. Over most
regions in the NH, CLM gives higher values than MODIS,
especially at high latitudes where the differences can reach 2
for LAI and 0.5 for FPAR. A relatively large difference
occurs in 5�N–15�N over the African continent, where
savannas and woody savannas are located. Over southeast
Asia and western Europe, where croplands or vegetation
mosaics were classified by both CLM and MODIS, CLM
values are slightly lower than observations. In July, the LAI
and FPAR differences remain similar in the spatial pattern
globally as those in March but with a much smaller magni-
tude over most regions except a small negative bias over
areas in central USA, boreal Eurasia, and southeast Asia.
[28] To better illustrate spatial and seasonal variations of

the LAI and FPAR differences globally, we calculated their
monthly means within each 5.6� latitudinal zone (Figure 7).
The difference remains negative throughout the whole year

in the SH, with a magnitude slightly larger during local
summer than winter. In the NH, the positive discrepancy
gradually changes to the negative in 15�–45�N and
becomes smaller beyond 45�N from winter to summer.
[29] The positive FPAR bias generally corresponds to the

positive LAI bias and vice versa, especially over northern
high latitudes where the largest bias is observed, indicating
that the former can be mainly explained by the latter, as
shown in Figure 1. For areas where the LAI bias is not
significant, other variables could also contribute to the
FPAR bias. For example, the negative FPAR difference is
much larger in the spatial pattern than the LAI difference
over some areas in northern middle latitudes. Possible
reasons are discussed in section 5.

4.2. Seasonal Variation at Regional Scale

[30] We chose 6 land cover types to examine seasonal
variations of LAI and FPAR in CLM and MODIS. For each
land cover, a group of model grids, defined by the same
dominant land cover type in both CLM and MODIS, is
selected and averaged based on their geographical locations.
4.2.1. Deciduous Needleleaf Forests
[31] The region in Siberia (50�–65�N, 100�–140�E) was

chosen because deciduous needleleaf forests are without
leaves during winter (Figure 8). CLM shows significant
higher FPAR values in winter than those from MODIS but
comparable values in summer. Since CLM and MODIS
have a consistent LAI seasonal cycle, the nearly constant
SAI of about 1 in CLM should be mainly responsible for the
FPAR bias. Such SAI could lead to the observed signifi-
cantly higher FPAR in winter as shown in Figure 1.
Therefore, for deciduous trees the winter FPAR bias mainly
results from the model SAI. Figure 9 shows seasonal
variations of CLM LAI and SAI (with respect to vegetated
area) in 50�–59�N for four deciduous vegetation types.
Evidently, SAI is always higher than LAI during winter. This
explains why CLM has much higher LSAI and FPAR than
MODIS in middle and high latitudes during NH winter.
[32] SAI is an important canopy property in land surface

models. The presence of SAI during winter could decrease
snow albedo through its absorption and consequent reduc-
tion in openings exposed to sun and increase in shadow.
MODIS does not provide SAI values; therefore we could
not evaluate their accuracy in the model. CLM treats LAI
and SAI the same in calculating FPAR, which makes the
contribution of SAI to FPAR much larger than that of LAI
in winter. However, branches and dead leaves should have
very limited or no photosynthesis. Comparison of albedo
between MODIS and CLM [Zhou et al., 2003] also suggests
that CLM significantly underestimates winter albedo in the
presence of snow in high latitudes due to its high LSAI.
4.2.2. Evergreen Needleleaf Forests
[33] The region in North America (40�–60�N, 130�–

60�W) is chosen (Figure 10). Like Figure 8, CLM gives
higher FPAR in winter, mainly due to the model SAI. The
higher winter LAI in CLM may also contribute. Contrary to
reality for evergreen trees, MODIS LAI approaches zero in
winter, suggesting that MODIS may give too small winter
LAI due to snow effects (more discussion in section 5).
4.2.3. Open Shrublands
[34] We selected two regions (Figure 11), one in high

latitude (55�–70�N, 170�W–170�E) and the other in low

Figure 4. Spatial pattern of MODIS LAI in (a) March and
(b) July and MODIS FPAR in (c) March and (d) July. Areas
in black denote no data.
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latitude (20�–50�N, 130�–95�W) North America. Like
Figures 8 and 10, the high-latitude shrubs have a higher
winter CLM FPAR, mainly due to the SAI and slightly
higher LAI in CLM. Although the difference between CLM
LSAI and MODIS LAI remains the same (about 1.0) in
Figures 8, 10, and 11 during summer, their FPAR differ-
ences vary as explained by Figure 1. We find that most of
grids with the largest positive LAI and FPAR differences in
Figure 6 belong to open shrublands, the major land cover
type above 55�N. For low-latitude shrubs, MODIS and
CLM show a small LAI difference, less than 0.1, with a
SAI of about 0.45 as the major contribution to the FPAR
bias. Surprisingly, CLM gives lower FPAR than MODIS in
summer, although its LSAI is higher by 0.3 than the
MODIS LAI, contrary to the simulations in Figure 1. This

can be attributed to neglect of interactions between vegeta-
tion and the underlying soil in the scheme used in CLM
(more discussion in section 5).
4.2.4. Croplands
[35] A region in southeast China (15�–40�N, 100�–

120�E) is selected (Figure 12).The CLM LSAI is compara-
ble with MODIS LAI from January to June but shows some
small variations after June, resulting in a similar variation in
FPAR. More than 50% of the grids whose CLM LSAI and
FPAR are both smaller than MODIS in the NH are crops.
4.2.5. Savannas
[36] Savannas, defined as land with forest canopy cover

between 10–30% and with herbaceous and other understory
systems, are mostly located in tropical and subtropical
regions. Here (Figure 13) we selected north Africa (5�–

Figure 5. Seasonal variations of MODIS LAI and FPAR over several 10�-latitude bands for evergreen
needleleaf forests, deciduous needleleaf forests, deciduous broadleaf forests, evergreen broadleaf forests,
and savannas. Some data are not available during high-latitude winter months.
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15�N, 0�–40�E) and south Africa (25�–18�S, 20�–35�E).
CLM and MODIS show lower values during the dry season
(winter) than the wet season (summer) in both regions, with
a more distinct seasonality in MODIS. The model over-
estimates FPAR values due to its SAI during the dry season,
while it underestimates LSAI and FPAR during the wet
season. Similar results are also observed for woody savanna
in Africa.
4.2.6. Evergreen Broadleaf Forests
[37] Two regions are showed (Figure 14). In central

Africa (10�S–0�, 10�–30�E), observations are higher than
those from the model. A double-peak seasonality observed
in the MODIS data is consistent with local precipitation,
indicating a plausible seasonal response of LAI and FPAR
to precipitation. In the Amazon (10�S–0�, 70�–50�W),
CLM LSAI is also smaller than the MODIS LAI. They
differ by as much as 1.3 from September to December, with
the smallest difference in May. The FPAR difference is very
small during the whole year. MODIS has a much better
seasonal cycle than CLM, but improvements are still needed
when compared with the seasonal cycle of local precipita-
tion. The ecological expectation is that LAI should remain
constant with their values of dry season or peak during
the wet season. Possibly, the extensive clouds during the

wet season might partially contaminate the satellite data,
although improvements have been made in Collection 4
data. In addition, the MODIS LAI is much higher than the
model LAI. Possibly, the low value of CLM LAI results
from quality problems with the AVHRR data related with
satellite changeover/drift or its lack of explicit atmospheric
corrections.

5. Discussion

[38] The values of FPAR are mainly determined by LAI
in MODIS and by LSAI in CLM. In the Northern
Hemisphere winter, the model gives LSAI and FPAR
values significantly higher than MODIS observations,
mainly due to the model SAI. However, MODIS may
give too small LAI and FPAR in the presence of snow
during the winter season. As we mentioned in section 2.1,
the MODIS LAI and FPAR are derived either from the
main algorithm or the NDVI-based back-up algorithm.
Since snow is not included in either the current back-
ground reflectance properties of the main algorithm’s
LUTs or the back-up algorithm, the main algorithm
generally fails over snow covered pixels and the LAI
values are generated with low confidence by the back-up
algorithm, especially for northern high-latitude needleleaf
forests (W. Yang et al., Analysis of MODIS LAI and
FPAR collections 1 and 3 data set time series from July
2000 to December 2002, submitted to Remote Sensing of
Environment, 2003).
[39] Although this paper has attempted to exclude snow

covered pixels from our data processing, some may still
contain a small fraction of snow or be contaminated by
adjacent snow covered pixels. The current MODIS data
uses normalized snow difference indices [Hall et al., 2002]
to assess the presence of snow when a threshold value is
exceeded. This method, for example, may label dense
vegetation partially covered or underlain by snow as snow
free. The presence of snow will influence both the NDVI-
LAI relationship and single-scattering albedo and thus
degrade the accuracy of LAI-FPAR retrievals in the MODIS
algorithm.
[40] To better discuss this issue, we simulate the NDVI-

LAI relationship (Figure 15) under snow-free and snow-
present conditions at SZA = 70� in CLM. For simplicity,
here the CLM rather than the MODIS algorithm is used.
NDVI values are calculated from the two broadband albe-
dos. We assume that snow albedo is 0.7 in VIS and 0.4 in
the near-infrared band (0.7–5.0 mm), and that snow depth
(SD) is allowed to vary from 0.1 to 1.1 m, which results in
the fraction of snow covered soil (vegetation) ranging from
50% to 91% (1% to 9.9%). Without snow, CLM NDVI is
less than 0.3 for LAI = 0, and it would be reasonable to
assume that a pixel is bare soil (LAI = 0) if its NDVI is less
than 0.1, as assumed in the MODIS algorithm. When snow
is present, LAI could be as high as 0.55 when NDVI is as
low as about 0.1. Snow significantly decreases the satellite
measured NDVI in high latitudes from October to April
when it covers most of the area. Since there are no LUTs for
snow covered surface reflectances, the MODIS algorithm
may use snow-free LUTs to retrieve LAI in the presence of
snow and therefore underestimate LAI (assigning zero for
pixels with NDVI less than 0.1).

Figure 6. Spatial pattern of differences (CLM-MODIS) in
(a) March LAI, (b) July LAI, (c) March FPAR, and (d) July
FPAR. Areas in black denote no data.

D01103 TIAN ET AL.: MODIS AND MODEL LAI AND FPAR

8 of 14

D01103



[41] In addition, snow and ice frozen on leaves may also
significantly alter the leaf single-scattering albedo and thus
increase variations of vegetation reflectance (Y. Knyazikhin,
personal communication). For a given biome type, MODIS
assumes that variations in the single-scattering albedo do
not exceed 10%. This assumption may not be met under
winter conditions. Improvement of winter LAI retrievals
from optical remote sensing requires accurate specification
of the single-scattering albedo, which should be a weighted
sum of leaf and ice albedos. For this, additional information

about the presence of ice, its amount and optical properties
are needed.
[42] This paper highlights the importance about how to

better represent the effects of nongreen canopy surfaces
such as stems and dead leaves through SAI in the model.
Comparisons between CLM and MODIS albedo [Zhou et
al., 2003] also find large discrepancies for late winter
conditions due to the presence of SAI in CLM. CLM treats
LAI and SAI the same in FPAR and albedo parameter-
izations, making the contribution of SAI to albedo and

Figure 7. Spatiotemporal variations of differences (CLM-MODIS) in LAI and FPAR. Areas in white
denote no data available during high-latitude winter months.

Figure 8. Seasonal variations of CLM LSAI, LAI, and FPAR, MODIS LAI and FPAR, and their
differences (DLAI = LSAICLM-LAIMODIS; DFPAR = FPARCLM-FPARMODIS) for deciduous needleleaf
forests in Siberia (50�–65�N, 100�–140�E). Some data are not available during high-latitude winter
months.
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FPAR much larger than that of LAI in winter. In addition,
single-scattering albedo is different between stems and
green leaves. Therefore the role of SAI in FPAR and albedo
parameterizations needs reformulation. How to use MODIS
surface reflectances to estimate SAI is another interesting
question.
[43] A related issue is the different conceptualization of

FPAR in MODIS and CLM. The MODIS algorithm for

LAI and FPAR determines a FPAR only from the contri-
bution of green leaves, while the model assumes FPAR
should also include that absorbed by stems. Alternatively,
in support of estimates of transpiration and carbon assim-
ilation, it may be better to include, as observed, only the
green leaf contribution. Since nongreen surfaces exist in
canopies, their role needs clarification both in model
treatments and in the context of the MODIS data. These

Figure 9. Seasonal variations of LAI and LSAI used in CLM (with respect to vegetated area) in 50�–
59�N for four deciduous vegetation types: deciduous needleleaf forests, deciduous broadleaf forests, open
shrublands, and grasslands.

Figure 10. Same as Figure 8 but for evergreen needleleaf forests in North America (40�–60�N, 130�–
60�W).
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surfaces contribute to the absorption and reflection of solar
radiation, and since they have larger reflectances at 858
than 648 nm, in principle they contribute to the greenness
signal. However, this difference should be quite smaller
for a bare canopy than a green one. Green leaves tend to
cover or shade nongreen surfaces; therefore the nongreen
surface contributions to estimates of FPAR may be neg-
ligible as assumed up to now by the MODIS algorithm.
However, as demonstrated in our studies, these surfaces
can make major contributions to a climate model’s land
surface absorption of solar radiation in the absence of
leaves and thus must be understood to achieve better land
models.
[44] For short vegetation with bright underlying surface

such as shrubs, grasses, and crops, the negative FPAR
difference that is accompanied by the positive LAI differ-
ence (Figure 6) could be partially attributed to neglect of

interactions between vegetation and the underlying soil in
the scheme (equation (4)) used in CLM. Such neglect
could result in a negative FPAR bias as observed in
northern middle latitude arid and semiarid regions
(Figure 6). To estimate such effect, we calculate FPAR
using both CLM scheme and the MODIS algorithm by
allowing the canopy underlying soil albedo changing from
0 to 0.23 (Figure 16). Evidently, FPAR is significantly
underestimated by the model scheme compared with the
MODIS algorithm, which is assumed to be correct. Such
underestimation is especially significant for dry soil
around LAI = 1.1. For example, of the 100 grids, whose
CLM LSAI is 10% higher and FPAR is 10% lower than
MODIS data, 92 are classified as short vegetation types
with bright underlying surface. Their mean LSAI is 1.19,
and their FPAR difference between CLM and MODIS is
about �0.08, consistent with Figure 16.

Figure 11. Same as Figure 8 but for open shrublands in high latitude (55�–70�N, 170�W–170�E) and
low latitude (20�–50�N, 130�–95�W).

Figure 12. Same as Figure 8 but for croplands in China (15�–40�N, 100�–120�E).
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Figure 13. Same as Figure 8 but for savanna in North Africa (5�–15�N, 0�–40�E) and South Africa
(25�–18�S, 20�–35�E).

Figure 14. Same as Figure 8 but for evergreen broadleaf forests in Africa (10�S–0�, 10�–30�E) and
Amazon (10�S–0�, 70�–50�W).
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[45] FDIR is a very important variable in calculating
FPAR and hence net primary productivity [Chameides et
al., 1999; Roderick et al., 2001; Cohan et al., 2002].
Changes in atmospheric conditions such as aerosols and
clouds affect FDIR and thus FPAR. MODIS assumes that
the incident solar radiation, hence FPAR, is all from direct
beam. This assumption, together with limitations of atmo-
spheric corrections used in MODIS data, may produce
some uncertainties in the MODIS FPAR associated with
changes in FDIR. In the model an inadequate characteriza-
tion of aerosols, i.e., the aerosols are assumed to be
globally homogeneous and purely scattering, may also
introduce uncertainties to FPAR. Limited global aerosol
observational data obscures the assessment of the relative
contributions to FPAR from FDIR versus LAI. Therefore
variations of FPAR from changes in FDIR in the model and
MODIS are not addressed further. With the development of
global AERONET and the forthcoming information about
FDIR from Multiangle Imaging SpectroRadiometer (MISR)
on board TERRA, this issue should be more readily
investigated.
[46] Part of the LAI-FPAR bias could be also related to

differences or uncertainties in specification of soil albedo
and vegetation parameters such as fractional vegetation
cover, which is used to produce model LAI, in MODIS
and CLM. Interannual variations of LAI and FPAR may
also contribute since only 2.5 years of MODIS data were
used while 10 years of AVHRR data were used in CLM. In
addition, differences in soil moisture between model and
reality could account for some observed differences. The
quantification of these effects, however, is still a challenge
due to limited observations. However, MODIS is believed
to be more reliable due to more spectral bands and higher
quality than AVHRR.

6. Conclusions

[47] This paper comparesMODISLAI andFPAR retrievals
in 2000, 2001, and 2002 with those from the Common
Land Model (CLM) [Zeng et al., 2002; Dai et al., 2003].
Their seasonal and spatial variations are compared and the
differences between the model and MODIS are investigated.

The FPAR value is mainly determined by LAI in MODIS
and by leaf and stem area index (LSAI) in CLM.
[48] On average, the model underestimates FPAR in the

Southern Hemisphere and overestimates FPAR over most
areas in the Northern Hemisphere than MODIS observa-
tions during all seasons except northern middle latitude
summer. Such overestimation is significant in winter over
northern high latitudes. The MODIS LAI is generally
consistent with the model during the snow-free periods
but may be underestimated in the presence of snow,
especially for evergreen trees. The positive FPAR bias is
mainly attributed to CLM stem area index (SAI) of decid-
uous canopy and higher LAI than MODIS for evergreen
canopy as well. The negative FPAR bias results from
several factors including differences in LAI and soil albedo
between CLM and MODIS or limitations of the geometric
optics scheme used in the model.
[49] Therefore the MODIS algorithm needs to better

represent the winter LAI retrievals and constrain with
the surface observations as much as possible while the
model needs to better quantify LAI and SAI. Since stems
will not have the same single-scattering albedo as green

Figure 15. Simulated NDVI-LAI relationship under snow-free and snow-present conditions at SZA =
70� in CLM. Snow albedo is set as 0.7 in visible and 0.4 in near-infrared and snow depth (SD) varies
from 0.1 to 1.1 m.

Figure 16. FPAR differences (FPARag=0.0-FPARag=0.23)
simulated from equation (2) and the MODIS FPAR
algorithm with the canopy underlying soil albedo changing
from 0 to 0.23 at SZA = 30. Note FPARag=0.0 is assumed to
be equal in both CLM and MODIS.
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leaves, it may be inappropriate for the model to treat LAI
and SAI the same in its FPAR and albedo parameter-
izations, and the role of SAI in these parameterizations
needs reformulation.
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