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mixing at nighttime should play a dominant role by trans-
ferring more heat from the atmosphere to the near-surface 
to warm the Tmin. Further analyses using the high resolu-
tion CFMIP2 output also support the CMIP5 results about 
the connections of the biases between the simulated turbu-
lent mixing and the temperature diurnal cycle. The large 
inter-model variations of the simulated temperature diurnal 
cycle primarily appear over the arid and semi-arid regions 
and boreal arctic regions where the model differences in the 
PBL turbulence mixing could make equally significant con-
tributions to the inter-model variations of DTR, Tmax and 
Tmin compared to the model differences in surface radiative 
processes. These results highlight the importance and need 
for accurate descriptions of the PBL processes with respect 
to the turbulent mixing in order to improve the temperature 
diurnal cycle simulations in climate models.

Keywords  Climate modelling · Diurnal temperature 
range · Planetary boundary layer · Turbulent vertical 
mixing

1  Introduction

The land surface air temperature (LSAT) has a characteris-
tic diurnal cycle, which represents the most basic forms of 
climate patterns. It oscillates with the diurnal variation of 
solar radiation and other drivers between a minimum (Tmin) 
before sunrise and a maximum (Tmax) in the afternoon (e.g. 
Betts and Barr 1996), which thus generates an evident 
diurnal temperature range (DTR, DTR  =  Tmax  −  Tmin). 
Tmax, Tmin and DTR have been routinely considered as 
key meteorological variables in quantifying weather and 
climate change (IPCC 2007; Lobell et  al. 2007). Realisti-
cally simulating the diurnal cycle of temperature and other 

Abstract  This study examines the effects of modeled plan-
etary boundary layer (PBL) mixing on the simulated tem-
perature diurnal cycle climatology over land in 20 CMIP5 
models with AMIP simulations. When compared with 
observations, the magnitude of diurnal temperature range 
(DTR) is systematically underestimated over almost all 
land areas due to a widespread warm bias of daily mini-
mum temperature (Tmin) and mostly a cold bias of daily 
maximum temperature (Tmax). Analyses of the CMIP5 
multi-model ensemble means suggest that the biases of 
the simulated PBL mixing could very likely contribute to 
the temperature biases. For the regions with the cold bias 
in Tmax, the daytime PBL mixing is generally underesti-
mated. The consequent more dry air entrainment from the 
free atmosphere could help maintain the surface humidity 
gradient, and thus produce more surface evaporation and 
potentially lower the Tmax. The opposite situation holds true 
for the regions with the warm bias of Tmax. This mechanism 
could be particularly applicable to the regions with moder-
ate and wet climate conditions where surface evaporation 
depends more on the surface humidity gradient, but less 
on the available soil moisture. For the widespread warm 
bias of Tmin, the widely-recognized overestimated PBL 
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near-surface variables [e.g. evaporative fraction (EF), sur-
face wind] are of great importance in weather and climate 
models as diurnal evolutions of these variables are tightly 
related to many hydrologic, biogeochemical and ecological 
processes (e.g. Zhang and Zheng 2004; Yi et al. 2010; Gen-
tine et al. 2011; Shao et al. 2011; Hua et al. 2013, 2014).

The diurnal cycle of LSAT is primarily maintained by 
daytime solar heating and nighttime radiative cooling, 
along with the partitioning of net surface radiation between 
latent and sensible heat flux. Many factors related to these 
processes can determine the magnitude of DTR such as 
cloud cover, precipitation, land surface properties con-
trolled by vegetation and soil moisture (SM), and radia-
tive forcings due to increased greenhouse gases (GHGs) 
and aerosols (Gallo et al. 1996; Collatz et al. 2000; Bonan 
2001; IPCC 2007; Zhou et  al. 2009a, b, 2010). They all 
affect DTR through altering the land surface energy and 
hydrological balances. For example, increasing cloud cover 
greatly reduces Tmax, and thus DTR, by reducing surface 
solar insolation, while it has a relatively small influence on 
Tmin because its nighttime greenhouse warming effect tends 
to offset its daytime cooling effect on afternoon tempera-
tures (Dai et al. 1999; Lobell et al. 2007; Zhou et al. 2008). 
Increasing SM limits the rise of Tmax and Tmin asymmetri-
cally, and thus reduces DTR by lowering the Bowen ratio, 
increasing soil heat capacity (Dai et al. 1999; Zhang et al. 
2009), and changing soil properties such as soil albedo and 
emissivity (Zhou et al. 2007, 2008).

The diurnal cycle of LSAT is also tightly connected to 
the extent of turbulent mixing in the atmosphere, which is 
described by the depth of planetary boundary layer (PBL) 
(Dirmeyer et  al. 2013; Davy and Esau 2014a, b). As the 
lowest part of the atmosphere, the PBL necessarily impacts 
the diurnal evolution of near-surface thermodynamic vari-
ables through turbulent exchanges of momentum, heat and 
moisture, which are controlled by the nature of underly-
ing land surface and its coupling with the PBL (Zhou et al. 
2008, 2010; Pithan et al. 2015). One of the major interac-
tive mechanisms that determine the magnitude of DTR 
could be derived from the effects of the diurnal evolution 
of PBL depth. During the daytime, the strong upward 
PBL mixing is buoyancy driven. The simultaneous dry air 
entrainment from the free atmosphere to the PBL can mod-
ify the humidity within the PBL and thus in turn regulate 
surface heat fluxes and temperatures (Van Heerwaarden 
et al. 2009; Svensson et al. 2011). In general, the air humid-
ity decreases more rapidly with height at lower atmosphere. 
Thus, a relatively weaker turbulent mixing with a shallower 
convective PBL experiences a larger vertical humidity gra-
dient at the top of PBL, leading to more dry air entrain-
ment that reduces the PBL moisture content (Dirmeyer 
et al. 2013). As a result, the humidity gradient at the bottom 
of the well-mixed PBL is more effectively maintained, and 

the surface latent heat flux is thus enhanced to adequately 
replenish the PBL moisture content, which eventually 
moistens the PBL and potentially reduces Tmax (Dirmeyer 
et  al. 2013). The opposite situation is true for a stronger 
turbulent mixing within a deeper convective PBL. During 
the nighttime, the land surface radiative cooling makes the 
LSAT drop to the minimum, along with a stably-stratified 
PBL. In this case, the turbulent mixing with the warm air 
above is not buoyancy-driven, but by wind shear and also 
modulated by surface roughness (Lindvall and Svensson 
2015). A stronger downgradient turbulent diffusion is asso-
ciated with a deeper PBL and a larger downward sensible 
heat flux, which makes the nighttime temperature decline 
slower. Hence Tmin could potentially be increased by more 
heat transport from the above atmosphere, and vice versa 
(Holtslag et  al. 2013; Lindvall et  al. 2013; Bosveld et  al. 
2014). The close connections of Tmax and Tmin to the PBL 
depth indicate a tight dependence of DTR on the diurnal 
evolution of PBL mixing, which strongly suggests, together 
with other related effects, that the PBL mixing is not just 
a response to the temperature diurnal cycle as indicated in 
previous studies (e.g. Svensson et al. 2011; Bosveld et al. 
2014; Lindvall and Svensson 2015), but could also be a 
feedback to the cycle through continuous interactions with 
the land surface (Holtslag et al. 2013).

In numerical models, any biases or deficiencies on pro-
cesses related to the land surface energy budget (e.g. the 
PBL turbulent mixing) could manifest themselves as biases 
in the temperature diurnal cycle (Svensson and Lindvall 
2015). In fact, the turbulent mixing in the PBL remains 
unresolved in all weather and climate models (Holtslag 
et al. 2013). Any set of equations that can be derived from 
first principles of physics to describe the PBL turbulence 
contains more unknowns than equations and thus cannot be 
solved, namely known as the turbulence closure problem. 
Thus, the PBL mixing associated with the vertical turbulent 
fluxes has to be parameterized for a given profile of tem-
perature, moisture and wind (Holtslag et  al. 2013; Pithan 
et al. 2015). The diurnal cycle of LSAT has been shown to 
be very sensitive to PBL parameterizations in mesoscale 
models (e.g. Zhang and Zheng 2004; Steeneveld et  al. 
2008; Kleczek et  al. 2014). Shin and Hong (2011) com-
pared five PBL schemes in the weather research and fore-
casting (WRF) model, and found that the non-local scheme 
with the entrainment flux proportional to the surface flux 
was more favorable in simulating temperatures and PBL 
structure under convective conditions. Sandu et al. (2013) 
examined the sensitivity of the European Centre for 
Medium-Range Weather Forecasts (ECMWF) model to the 
formulation of turbulent diffusion under stable conditions, 
and found that a reduced diffusive turbulent scheme could 
substantially change the global patterns of large-scale flow 
and LSAT. The global atmospheric boundary layer studies 
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(GABLS) model inter-comparisons have particularly iso-
lated the PBL scheme’s performance from other physical 
processes in clear-sky conditions, and showed that current 
turbulence parameterizations had great difficulties in rep-
resenting real PBL mixings and the diurnal cycle of near-
surface variables compared to in situ observations (Cuxart 
et al. 2006; Holtslag et al. 2013), with too little turbulence 
and a shallower PBL during the convective daytime and 
too much turbulence and a deeper PBL during the stably-
stratified nighttime (Cuxart et  al. 2006; Esau and Ziltink-
evich 2010; Svensson et al. 2011; Holtslag et al. 2013). The 
percentile bias of the modeled PBL depth throughout the 
whole diurnal cycle could vary from 50 to 100  % (Sven-
sson et al. 2011; Holtslag et al. 2013; Bosveld et al. 2014).

Modelers always hold different standpoints on the com-
plexity of atmospheric turbulence and vertical mixing, and 
hence conduct different implementations of PBL schemes 
in practice (Svensson et  al. 2011; Holtslag et  al. 2013; 
Bosveld et al. 2014; Svensson and Lindvall 2015). Conse-
quently the capabilities in simulating turbulent mixing and 
other PBL processes vary substantially among models and 
such uncertainties could lead to striking inter-model varia-
tions of the temperature diurnal cycle under some particu-
lar conditions (IPCC 2007, 2013; Holtslag et al. 2013). For 
example, Holtslag et al. (2013) and Svensson and Lindvall 
(2015) evaluated the diurnal cycle of LSAT in the state-of-
the-art climate models participating in the Coupled Model 
Intercomparison Project phase 5 (CMIP5), and showed that 
the relatively larger inter-model variations appeared in the 
afternoon and early morning when Tmax and Tmin occurred, 
corresponding respectively to the dominantly strong con-
vective and stable conditions that could differ notably 
among CMIP5 models. Sterk et  al. (2013) presented a 
nonlinear behavior regarding the effects of the different 
degrees of the simulated turbulent mixing on LSAT in the 
Arctic stable PBL. Viterbo et al. (1999) and Holtslag et al. 
(2013) found that, even implementing slightly different sta-
bility functions for the PBL scheme of the ECMWF model 
in stable conditions, the LSAT still exhibited large differ-
ences even with unchanged forcing conditions. This sug-
gests a strong sensitivity of LSAT to PBL schemes which 
could in practice differ substantially. GABLS2 examined 
the performances of 30 single column models with differ-
ent PBL schemes, which produced various results in the 
strength of capping inversion, entrainment and the diurnal 
cycle of turbulent kinetic energy and PBL depth, although 
a prescribed surface temperature was used (Svensson et al. 
2011; Holtslag et  al. 2013). Hu et  al. (2010) also com-
pared three different PBL schemes in the WRF model, 
and pointed out that their differences concentrated on the 
vertical mixing strength and the entrainment of air from 
above the PBL. These uncertainties and difficulties in mod-
eling the turbulent mixing and other PBL processes could 

definitely contribute to the inter-model differences of the 
diurnal cycle of LSAT.

The diurnal cycle of LSAT has been examined in global 
climate models (GCMs) as useful diagnostic indices for 
model evaluations and climate projections (Kharin et  al. 
2007; Wild 2009). The majority of previous studies have 
mainly focused on the variability or long-term trends of 
Tmax, Tmin and DTR (e.g. IPCC 2007, 2013), while there 
are relatively few studies on analyzing their climatological 
biases and inter-model variations. The CMIP3 and CMIP5 
models have shown to be capable of simulating general 
spatial patterns of climatological DTR as well as Tmax and 
Tmin, and qualitatively capturing their basic statistical rela-
tionships with various controlling factors (Zhou et al. 2007, 
2008, 2009b, 2010; Dirmeyer et al. 2013; IPCC 2007, 2013; 
Lindvall and Svensson 2015). However, the modeled DTR 
was much weaker than observations in many regions by as 
much as 50 %, meaning that the simulated LSAT did not 
change enough between daytime and nighttime although 
the diurnal mean value matched observations much better 
(IPCC 2007; Cattiaux et al. 2013; Sillmann et al. 2013). In 
addition, most of the regions with large DTR biases also 
exhibited large inter-model variations (Holtslag et al. 2013; 
Lindvall et al. 2013; Svensson and Lindvall 2015).

The present paper focuses mostly on the global scale 
effects of the simulated PBL climatology on the diurnal 
cycle of LSAT in GCMs, while local and synoptic scale 
analyses on selected cases with mesoscale models have 
been performed in previous studies. Here we propose 
two hypotheses to explain the biases and uncertainties of 
the temperature diurnal cycle over land in CMIP5 mod-
els. First, the deficiencies of the modeled PBL mixing in 
CMIP5 models are at least partially responsible for the 
DTR biases over most of continental areas. To be specific, 
at daytime, CMIP5 models probably underestimate the 
PBL mixing over the regions with underestimated Tmax, 
and thus overestimate dry air entrainment and surface latent 
heat, leading to a cold bias. The opposite situation could 
apply to the regions with overestimated Tmax. At nighttime, 
the models likely overestimate the PBL mixing and the 
downward heat transfer from the atmosphere to the ground, 
leading to a warm bias of Tmin, or vice versa. Second, the 
model uncertainties in PBL schemes with respect to turbu-
lence mixing could make a significant contribution to the 
large inter-model variations of DTR over the regions with 
extreme diurnal PBL conditions (i.e., strong convective and 
stably-stratified conditions). This may be the case given the 
strong dependence of DTR simulations on the PBL mixing 
and distinct performances among PBL schemes in extreme 
PBL conditions whose turbulent mixing is poorly modeled. 
We will test these two hypotheses by comparing the CMIP5 
metrics related to the PBL mixing with observations and 
reanalysis. As generating the global scale PBL climatology 
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from observations are extremely difficult (Lewis and 
Karoly 2013; Davy and Esau 2014b), we establish the 
global pseudo-observations for several key PBL variables 
from the ECMWF Interim (ERA-Interim) reanalysis.

Unlike most previous studies based on the fully-cou-
pled models that cannot reproduce observed sea surface 
temperatures (SST) variations (e.g. Hoerling et  al. 2010), 
we select 20 CMIP5 models with Atmospheric Model 
Intercomparison Project (AMIP) runs forced by observed 
SST and sea ice to minimize SST-related uncertainties in 
simulating the LSAT. Given the limits of availability and 
accuracy of the CMIP5 output and observations/reanaly-
sis, we concentrate mainly on the multi-model ensemble 
mean biases and inter-model variations of the climatol-
ogy in DTR, Tmax and Tmin, and their connections with the 
PBL depth and other relevant metrics representing the PBL 
mixing and land–atmosphere interactions. We further take 
advantage of the model output in experiments from the sec-
ond phase of the Cloud Feedback Model Intercomparison 
Project (CFMIP2), which provide data with more vertical 
levels and can be used to validate the CMIP5 results. This 
work focuses more on the possible causality rather than 

the formal detection-attribution framework, but the results 
could provide useful information and potential guidance on 
improving the modelling of the diurnal cycle of LSAT.

2 � Data and methodology

2.1 � CMIP5‑AMIP and CFMIP2‑AMIP simulations

Table  1 lists the 20 CMIP5 models with AMIP simula-
tions analyzed in this study, along with the model centers 
and resolutions of atmospheric components. The model 
selection is mainly made based on the availability of data 
and the output frequency, which must be fully retriev-
able from the Program for Climate Model Diagnosis and 
Intercomparison (PCMDI) data server. In general, differ-
ent versions of models from same centers produce differ-
ent results due to their updated atmospheric and/or land 
components, thus more than one version of the models 
such as ACCESS series are used here. However, for those 
models sharing similar atmospheric and land components, 
only one model with the smallest global mean DTR bias is 

Table 1   List of CMIP5 models analyzed and their horizontal and vertical resolutions

a  Model resolution is characterized by the size of a horizontal grid on which output is available from the model’s atmospheric component and by 
the number of vertical levels. Spectral models are also characterized by their spectral truncations in parenthesis

Model Institute Atm. resolutiona

ACCESS1.0 Commonwealth Scientific and Industrial Research Organization and Bureau  
of Meteorology, Australia

192 × 145, L38

ACCESS1.3 Commonwealth Scientific and Industrial Research Organization and Bureau  
of Meteorology, Australia

192 × 145, L38

BNU-ESM College of Global Change and Earth System Science, Beijing Normal University, China 128 × 64 (T42), L26

CanAM4 Canadian Climate Centre for Modelling and Analysis, Canada 128 × 64 (T42), L35

CCSM4 National Centre for Atmospheric Research, USA 288 × 192, L26

CESM1-CAM5 National Centre for Atmospheric Research, USA 288 × 192, L30

CMCC-CM Centro Euro-Mediterraneo per i Cambiamenti, Italy 480 × 240 (T159), L31

CNRM-CM5 Centre National de Recherches Meteorologiques and Centre Europeen de Recherches  
et de Formation Avancee en Calcul Scientifique, France

256 × 128 (T127), L31

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organization and the Queensland  
Climate Change Centre of Excellence, Australia

192 × 96 (T63), L18

EC-EARTH European Earth System Model, Europe 320 × 160 (T159), L62

FGOALS-s2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, China 128 × 108, L26

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, USA 144 × 90, L48

GFDL-HIRAM-C360 NOAA Geophysical Fluid Dynamics Laboratory, USA 1152 × 720, L32

GISS-E2-R NASA Goddard Institute for Space Studies, USA 144 × 90, L40

HadGEM2-A Met Office Hadley Centre, UK 192 × 144, L38

INM-CM4 Institute for Numerical Mathematics, Russia 180 × 120, L21

MIROC5 Atmosphere and Ocean Research Institute, The University of Tokyo, National Institute for 
Environmental Studies, Japan Agency for Marine-Earth Science and Technology, Japan

256 × 128 (T85), L40

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 192 × 96 (T63), L47

MRI-AGCM3.2S Meteorological Research Institute, Japan 1920 × 960, L64

MRI-CGCM3 Meteorological Research Institute, Japan 320 × 160, L48
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selected to enhance sampling independence. For instance, 
CCSM4, GFDL-HIRAM-C360, MPI-ESM-LR and MRI-
AGCM3.2S are selected in our analysis, while the corre-
sponding similar models NorESM1-M, GFDL-HIRAM-
C180, MPI-ESM-MR and MRI-AGCM3.2H are not used. 
For each model, only the first ensemble member denoted as 
“r1i1p1” (typically the first realization, initialization, and 
set of perturbed physics for each model) is chosen. Due to 
the huge volume of high temporal resolution data, we limit 
our analyses to monthly mean model output over a 30-year 
period (1979–2008), except the surface sensible heat flux 
which is stored as the three-hourly average to approximate 
the degrees of PBL mixing within a diurnal cycle. All vari-
ables are spatially remapped onto a 1° × 1° grid box using 
the local area-conservative binning method. As GCMs are 
diagnosed to perform badly over steep orography no mat-
ter which parameterizations are implemented (IPCC 2007, 
2013; Lindvall and Svensson 2015), the regions with an 
altitude >2 km are filtered out. We choose this 2-km thresh-
old because it is assumed as the characteristic height for 
mountainous regions being exposed to the free atmosphere, 
and the global mean bias of DTR is insensitive to a 20 % 
variation in this threshold following the sensitivity test of 
Davy and Esau (2014a, b). In total, 14,466 grid boxes over 
land are considered in this study.

For some of the models (CanAM4, CNRM-CM5, 
HadGEM2-A, MPI-ESM-LR and MRI-CGCM3), the 
AMIP simulations for the CFMIP2 experiments are avail-
able. As the coarse vertical resolution of CMIP5 output 
prevents us from directly estimating the PBL depth, we 
use the CFMIP2 data with more model levels. Note that 
the CFMIP2 archive provides the quantities needed for 
PBL depth estimation only in the diurnal means. In addi-
tion, the CFMIP2 experiments also supply high-frequency 
(three-hourly) model output for certain locations. One of 
these locations, the Atmospheric Radiation Measurement 
Program Southern Great Plains (ARM-SGP) site, located in 
Lamont, Oklahoma (36.68°N, 97.58°W), has high-resolu-
tion observations and thus is chosen to validate the mod-
eled entire diurnal cycle of LSAT and PBL depth.

2.2 � Observations, satellite and reanalysis data

We use the global gridded surface air temperatures (Tmax, 
Tmin, and DTR) from the historical monthly dataset “CRU 
TS3.23” produced by the Climate Research Unit to evalu-
ate the simulated temperatures in CMIP5 models. This 
dataset is calculated on a high-resolution (0.5° × 0.5°) grid 
from over 4000 weather stations worldwide covering the 
period 1901–2014 (Mitchel and Jones 2005). To maintain 
the spatiotemporal consistency with the CMIP5 output, we 
extract the temperature time series over the period 1979–
2008 from the original dataset and interpolate it to 1° × 1° 

resolution as the models are remapped. The data over Ant-
arctica and Greenland have large uncertainties due to the 
limited availability of metrological stations (Wang and 
Zeng 2013), and thus are excluded from our analyses. In 
addition, the CRU cloud cover data is similarly processed 
to examine the cloud effects on the modeled temperature 
biases.

The CFMIP2-simulated diurnal cycles of the LSAT and 
PBL mixing at the ARM-SGP site are compared against 
the corresponding observations—the ARM Best Estimate 
dataset (ARMBE). The ARMBE product provides a range 
of measured atmospheric and land surface variables for the 
period 1994–2012 (Xie et  al. 2010). Although the period 
covered by the data is shorter than that of the CFMIP2, the 
differences in climatology due to the different temporal 
coverage are significantly smaller than the regional-scale 
model biases. To be consistent with the temporal resolution 
of the model output, we average the ARMBE from hourly 
to three-hourly data.

We use the Clouds and Earth’s Radiant Energy Sys-
tem (CERES) energy balanced and filled (EBAF) surface 
products of downward shortwave and longwave radiation 
from 2000 to 2008 to evaluate the CMIP5-modeled surface 
radiation. The CERES-EBAF data is of high quality and 
has proved better than most reanalysis products (e.g. Wang 
and Dickinson 2013; Rutan et al. 2014; Zhang et al. 2016). 
The global gridded observations of precipitation from the 
Global Precipitation Climatology Project (GPCP) Version 
2.2 dataset for the period 1979–2008 are also used to assess 
the modeled climatological precipitation bias.

The ERA-Interim reanalysis provides 1° × 1° grid data 
for various land surface variables and atmospheric vertical 
profiles covering the period 1979–2008, which could be 
used for global comparison with the simulated PBL mix-
ing in CMIP5/CFMIP2 models. The climatological diurnal 
means are analyzed for all the variables, except the surface 
sensible heat flux and the PBL depth whose three-hourly 
synoptic monthly means are used. For the CMIP5 mod-
els, the simulated PBL mixing is indirectly evaluated by 
analyzing its several proxies (see next section for more 
details). The vertical profiles of atmospheric temperature 
and humidity, near-surface air temperature and dew point 
temperature, and surface turbulent heat fluxes from ERA-
Interim are used to calculate these proxies as the pseudo-
truth. The ERA-Interim vertical profiles and near-surface 
temperatures have been assimilated with various observa-
tions, and proven to be of high quality (e.g. Simmons et al. 
2010; Dee et  al. 2011; Decker et  al. 2012; Engeln and 
Teixeira 2013). Although not assimilated, the surface tur-
bulent heat fluxes had the fairly accurate monthly averaged 
diurnal cycle compared to in situ observations, and the best 
variability of the six-hourly sensible heat flux among six 
commonly-used reanalysis products (Decker et  al. 2012). 
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Therefore, it is reasonable to use these proxies estimated 
from the reanalysis as pseudo-truth even over Africa and 
boreal regions where observations are limited for model 
validation. For the CFMIP2 models, the PBL depth is 
directly estimated following the algorithm in Vogelezang 
and Holtslag (1996). The corresponding vertical gradients 
of atmospheric temperature, relative humidity, wind speed 
and geopotential height profiles in ERA-Interim, which are 
all assimilated with observations from a world-wide Radio-
sonde network (Dee et al. 2011), are also used to calculate 
the pseudo-observed PBL depth with the same algorithm. 
Note that the PBL height in the ERA-Interim archive is a 
model-derived parameter (not assimilated) and thus not 
chosen as the pseudo-truth to validate the CFMIP2-esti-
mated PBL height. Instead, we simply use it as the refer-
ence metric to define geospatial patterns of PBL mixing 
levels from daytime to nighttime to qualitatively analyze 
spatial characteristics of the inter-model variations of the 
temperature diurnal cycle.

2.3 � Proxies for the PBL mixing

Among the variables analyzed in this study, those repre-
senting the PBL mixing need further clarification. The PBL 
depth should be the direct quantification of the degree of 
the turbulent mixing, but it is not a standard CMIP5 output 
variable. As the CMIP5 output with limited vertical levels 
(only five layers below 500 mb) can hardly depict any PBL 
process, we use some proxies for the PBL depth and other 
indices to represent the modeled PBL mixing.

During the daytime, Tmax appears with the diurnal maxi-
mum PBL depth (PBLmax) (Figure SI1). Here we use the 
diurnal maximum of surface sensible heat flux (SHmax) as 
a proxy for the PBLmax because SHmax represents the maxi-
mum level of energy that induces PBL growth. Although 
SHmax may appear slightly earlier than PBLmax over some 
regions (Figure SI1) due to an earlier formed maximum of 
the near-surface temperature gradient at noon, their strong 
positive correlation (Figure SI2) ensures that SHmax could 
be a good proxy for PBLmax. Since the PBL growth ena-
bles the formation of clouds by mixing moist air upward to 
the height where temperature and pressure allow conden-
sation to occur, the lifting condensation level (LCL) could 
be another proxy for the PBL depth (Betts 2004; Dirmeyer 
et al. 2014) which is defined as

where T2m and TD2m are 2-m air temperature and dewpoint 
temperature, ΓDry and ΓDew are dry adiabatic and dewpoint 
lapse rate. A deep PBL and a high LCL are both favored 
in hot and dry conditions while neither of them can be 
deeply developed in cool and moist conditions. As the 

(1)
LCL = (T2m − TD2m)/(ΓDry − ΓDew)

≈ 125(T2m − TD2m),

diurnal mean LCL is dominated by daytime values, which 
is an indicator of how much the PBL must grow to trigger 
convection (Dirmeyer et  al. 2013; Svensson and Lindvall 
2015), we use the diurnal mean LCL here as another proxy 
for PBLmax. In addition, we estimate the diurnal mean value 
of the Priestley–Taylor coefficient (PTC) based on the for-
mulation of Dirmeyer et al. (2013):

where SH and λE are the sensible heat and latent heat 
respectively, and the thermodynamic coefficient ε is related 
to the change of saturation mixing ratio with the tempera-
ture at the LCL (Betts 2004). PTC is a measure of the sur-
face evaporation efficiency into the PBL, which is deter-
mined by dry-air entrainment at the top of the growing 
daytime PBL and surface/near-surface properties (e.g. aer-
odynamic resistance and stomatal conductance) (Dirmeyer 
et  al. 2013). Although the surface/near-surface properties 
regulate PTC by changing the EF, Van Heerwaarden et al. 
(2009) and Dirmeyer et  al. (2013) have both showed that 
PTC is a good indicator of the enhancement of evaporation 
by dry-air entrainment under all surface conditions.

During the nighttime, the PBL climatology is controlled 
by nearly constant stably-stratified conditions, which make 
the PBL state vary little during the whole night (e.g. Liu 
and Liang 2010; Svensson and Lindvall 2015). Thus, we 
use the mean PBL height averaged from midnight to early 
morning (PBLnight) to quantify the degree of the nighttime 
turbulent diffusion which affects the magnitude of Tmin. 
As the sensible heat flux at nighttime (negative value) rep-
resents the amount of the downward heat transfer along 
with the downgradient diffusion in a stable PBL, we use 
the mean sensible heat flux also averaged from midnight 
to early morning (SHnight) as the proxy for PBLnight. Their 
general negative correlation further justifies our rational-
ity for using this proxy (Figure SI2). Note that the night-
time surface turbulent momentum flux or friction velocity, 
which drive the nighttime turbulence, are not available in 
the CMIP5 archive, and hence cannot be analyzed.

The CFMIP2 data with more model levels allow us to 
estimate the PBL depth using the atmospheric vertical gra-
dients following the algorithm in Vogelezang and Holtslag 
(1996) (referred to as the VH method hereafter). The VH 
method is a bulk-Richardson number method, which has 
been evaluated by Seidel et  al. (2012) as the best method 
for climatological analysis due to its suitability for both 
the stable and convective PBL. The Richardson number is 
defined as

(2)PTC =

(

�E

SH + �E

)(

1+ ε

ε

)

, ε =
�

CP

dq

dT

∣

∣

∣

∣

TLCL

,

(3)
Ri(z) =

(g/θvs)(θvz − θvs)(z − zs)

(uz − us)2 + (vz − vs)
2
+

(

bu2∗
) ,
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where s denotes the surface, z is the height, g is the accel-
eration of gravity, θv is the virtual potential temperature, 
u and v are the wind speed components, b is a constant, 
and u* is the surface friction velocity. Here we set b = 0 to 
ignore the surface frictional effect, and assume the surface 
values of u and v to be zero. The lowest level z at which the 
interpolated Ri crosses the critical value of 0.25, z(Ri0.25), 
is the estimated PBL height for our analysis. Unfortunately, 
this method can only be used for the diurnal mean data of 
the CFMIP2, which represents primarily the daytime situ-
ation, because most of the necessary quantities on global 
scale are not available in the hourly CFMIP2 archive. Thus, 
the nighttime PBL depth remains underived. However, the 
3-h CFMIP2 and ARMBE data over the ARM-SGP site 
can be used to estimate the entire diurnal cycle of the PBL 
depth using the VH method.

2.4 � Methodology

Our analysis consists of two major components: (1) the 
multi-model ensemble mean biases and (2) the inter-model 
variations. For the first component, the biases of the simu-
lated climatology of the temperatures (DTR, Tmax and Tmin) 
and PBL mixing from the CMIP5 multi-model ensemble 
means are examined to identify their connections. The 
modeled temperature time series are first assessed through 
an inter-annual correlative analysis at the grid level with 
their key controlling factors to assess the model’s capac-
ity in describing the well-known statistical relationships. 
Linear trends are removed from the time series before the 
correlations are calculated. The correlative coefficients are 
presented as the area-weighted averages over four large-
scale climate zones defined later. Then the geospatial pat-
terns of the modeled temperature climatology are com-
pared with the CRU observations to quantify their biases 
and several simulated metrics representing the PBL mixing 
are validated against ERA-Interim. As the primary fea-
tures of model biases with respect to PBL characteristics 
remain consistent across seasons, only annual mean results 
are presented in this paper. Note that not all models pro-
vide the variables that are studied, but of the total 20 mod-
els, at least 16 are included in any of the variable analysis. 
In addition, the PBL mixing estimated from the CFMIP2 
data for the daytime situation and the whole diurnal cycle 
over the ARM-SGP site are presented to support our results 
from the CMIP5 models.

For the second component, the inter-model varia-
tions of the simulated DTR, Tmax and Tmin climatology 
are analyzed on the principle of the PBL mixing pat-
terns. First, the regions with large inter-model variations 
of the simulated temperatures are sorted out based on 
the PBLmax, PBLnight and the diurnal PBL-depth range 
(DPR, DPR =  PBLmax −  PBLnight) climatology. Here the 

PBL depth in the ERA-Interim archive is used because it 
includes the effects of turbulent parameters, and hence 
simulates the spatial variation much better than the data 
derived from the VH method (Davy and Esau 2014b). 
Then we attempt to plausibly explain the large inter-model 
variations of the simulated temperatures in terms of two 
dominating processes related to surface radiation and PBL 
mixing that affect land–atmosphere interactions, aiming at 
quantifying the contributions of the PBL mixing to model 
uncertainties in simulating the diurnal cycle of LSAT. With 
several dominant variables selected, an inter-model cor-
relative analysis is used to determine which variables sig-
nificantly impact the model differences of the simulated 
temperatures over certain climate regions, and a variance 
analysis method derived from the multiple-linear regression 
is implemented on these variables to quantify their relative 
contributions.

For the regional mean statistics of correlative analyses at 
grid levels, four typical climate zones are defined follow-
ing Bonan et al. (2002): boreal arctic regions [Alaska and 
northwestern Canada (55°N–75°N, 170°W–90°W) + Sibe-
ria (55°N–75°N, 80°E–140°E)], tropical rainforests [Ama-
zon (15°S–5°N, 75°W–45°W)  +  Congo (10°S–5°N, 
10°E–25°E)], transitional zones between wet and dry cli-
mates [central US (30°N–50°N, 110°W–85°W)  +  cen-
tral Asia (40°N–55°N, 70°E–110°E) +  India (5°N–30°N, 
70°E–90°E)], and arid/semi-arid regions [Sahara and Ara-
bian Peninsula (10°N–30°N, 0°E–50°E) + southern Africa 
(35°S–15°S, 10°E–30°E)].

3 � Results and discussion

3.1 � Multi‑model ensemble means

3.1.1 � Inter‑annual correlations between temperatures 
and key controlling variables

The CMIP5-modeled DTR, Tmax and Tmin time series are 
first evaluated by examining their basic statistical relation-
ships with several key controlling factors over the four 
climate zones. Table 2 lists the areal averages of the grid-
scale inter-annual correlations between the temperatures 
and 8 diagnostic variables. These eight variables are cho-
sen because they are significantly (p  <  0.05) correlated 
with at least one of the three temperatures. As expected, 
total cloud cover (TCC) negatively correlates with Tmax 
(and thus DTR) over all climate zones while it has a neg-
ligible impact on Tmin. The relatively weaker relationship 
between TCC and Tmax over the boreal arctic regions could 
be attributed to less incident solar insolation than other cli-
mate zones. Total atmospheric water vapor content (WVC) 
reduces DTR by significantly increasing Tmin due to water 
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vapor enhanced downward longwave radiation (Dai et  al. 
1999). Thus, the negative correlation between WVC and 
DTR is evident over all regions except the boreal arctic 
regions where WVC warms Tmax and Tmin comparably. 
EF measures the proportion of the latent heat in total tur-
bulent fluxes which are partitioned from the available net 
surface radiation, and thus negatively correlates with Tmax 
(and thus DTR) over most land areas. The similar negative 
correlation is also found between the uppermost 10-cm SM 
and Tmax (and DTR), with the strongest correlations over 
the transitional areas and tropical rainforests, which are 
consistent with the findings of hot spots with strong SM-
atmosphere coupling by Koster et al. (2004). Despite little 
correlation with DTR, the 10-m poleward meridional wind 
(VAS) has a comparable positive correlation with Tmax 
and Tmin over all the regions except the tropical rainfor-
est where the meridional temperature gradients are weak. 
This corresponds to the fact that LSAT is sensitive to the 
horizontal heat advection in mid- and high latitudes (Dai 
et  al. 1999; Wang and Zeng 2014). As for the PBL mix-
ing effects, SHmax and LCL both show a positive correla-
tion with DTR as Tmax tends to be warmer with stronger 
convective mixing at daytime. During the nighttime, the 
downgradient diffusion warms Tmin by increasing down-
ward (negative) heat flux under stable-stratified condi-
tions, and thus SHnight positively correlates with DTR. The 
relatively weak relationship between SHnight and Tmin/DTR, 
particularly over the tropical forests, could be partly attrib-
uted to the non-linear effects of near-surface temperature 
gradient on the turbulence and sensible heat flux (Holtslag 
et al. 2007). In such cases, although the sensible heat flux 

is proportional to the vertical temperature gradient, when 
the surface is extreme cold or the wind speed is too low, the 
stability effects could become so strong that the turbulence 
would die out and the heat flux would vanish. Nevertheless, 
the general positive correlations between SHnight and DTR 
still allow us to use SHnight to estimate the nighttime effects 
of the downgradient turbulent diffusion. Overall, these 
correlative relationships are all consistent with the basic 
physical principles and previous results, indicating that the 
CMIP5 models are able to describe general variations of 
the temperature diurnal cycle and their associations with 
key controlling factors.

3.1.2 � Model biases in simulating the diurnal temperature 
climatology

Figure 1 shows the spatial patterns of the DTR, Tmax and 
Tmin climatology in the multi-model ensemble means and 
the corresponding CRU observations. Evidently, CMIP5 
models are able to reproduce the general spatial charac-
teristics of the observed temperatures, with a spatial cor-
relation >0.9 (p < 0.01, n = 14,466) for all three variables. 
The regions with large diurnal variations of LSAT are well 
captured, such as the southwestern US, the Sahara desert, 
Central and Western Asia, southern Africa and most parts 
of Australia. However, quantitatively DTR, Tmax and Tmin 
exhibit biases similar to previous studies with fully-coupled 
models (e.g. IPCC 2007). The magnitude of DTR is under-
estimated over almost all land areas, with mostly a cold 
bias of Tmax except central North America, the Amazon 
basin, eastern Siberia and parts of western and central Asia, 

Fig. 1   Geographical distribution of the CMIP5-simulated and CRU-observed climatological DTR, Tmax and Tmin (°C) and the multi-model 
ensemble mean biases
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and a widespread warm bias of Tmin except northwestern 
Eurasia and parts of western and southern Asia (Fig. 1).

Table 3 lists the area-weighted global mean temperature 
biases for the multi-model ensemble means and individual 
models. The multi-model ensemble mean biases for DTR, 
Tmax and Tmin are −2.13, −0.62 and 1.51 °C respectively, 
which are consistent with the overall spatial features with 
respect to the characteristic sign of the biases (Fig. 1). Sim-
ilarly, all individual models except CNRM-CM5, CanAM4 
and INM-CM4 also systematically underestimate DTR due 
to underestimated Tmax and overestimated Tmin. CNRM-
CM5 and CanAM4 slightly overestimate DTR because of 
overestimated Tmax (and slightly underestimated Tmin for 
CNRM-CM5), while INM-CM4 notably overestimates 
DTR because of severely underestimated Tmin. To further 
quantify the fidelity in simulating the spatial pattern of the 
DTR climatology for each model, we also calculate the 
root mean square error (RMSE) of DTR and its systematic 
portion (RMSES) following Willmott (1984) using the grid-
scale annual means of DTR as the samples of the modelled 
and observed values. All models have comparable RMSES, 
suggesting that they perform comparably well in reproduc-
ing the spatial gradient of the observed DTR, but the RMSE 

shows distinct model variations, with the best results in 
GFDL-HIRAM-C360 and CMCC-CM (<2.8  °C) and the 
worst in INM-CM4 (4.58 °C). Hence, the inter-model dif-
ferences in RMSE result largely from the unsystematic 
portion, which represents the model’s fidelity in simulating 
localized observations. The multi-model ensemble mean 
exhibits the smallest RMSE value (2.38 °C), indicating its 
best accuracy in simulating DTR than any individual mod-
els. Nevertheless, both the multi-model ensemble means 
and individual models systematically underestimate the 
DTR, with possible causes investigated next mainly from 
the perspective of the PBL mixing.

3.1.3 � Model biases in simulating PBL mixing

We first examine the model biases of the PBL mixing prox-
ies derived from the CMIP5 output. Figure  2 shows the 
climatological SHmax, LCL and PTC from ERA-Interim 
and the corresponding biases in the multi-model ensem-
ble means. SHmax and LCL represent the general charac-
teristics of a convective daytime PBL. Their spatial pat-
terns show an evident gradient from low values over cold 
and moist regions to high values over hot and dry regions, 
and their biases have a good spatial correspondence to 
the biases in Tmax. A negative bias, which represents the 
weakened level of turbulent mixing, is evident over north-
ern Eurasia, eastern Asia and the arid/semi-arid regions 
in mid- and low-latitudes such as western US, the Sahara 
desert, southern Africa and central Australia, while a posi-
tive bias, which represents the enhanced level of PBL mix-
ing, mainly appears over the central US, parts of western 
and central Asia, India and tropical forest as also identified 
by Svensson and Lindvall (2015). For the regions with the 
weakened PBL mixing, a larger simulated humidity gradi-
ent at the entrainment zones with more dry air entrained 
into the PBL is expected, with a more persistent humid-
ity gradient at the bottom of the PBL and a higher latent 
heat. The opposite situation is expected for the regions with 
the enhanced PBL mixing. The strong inverse spatial cor-
respondence in the biases of PTC and SHmax and LCL is 
a good indication of such anticipation, showing the over-
estimated (underestimated) evaporation efficiency over the 
regions where SHmax and LCL are underestimated (over-
estimated). Since PTC is a good indicator of the enhanced 
surface evaporation due to the effect of dry-air entrainment 
(Van Heerwaarden et  al. 2009; Dirmeyer et  al. 2013), the 
overestimated evaporation efficiency and thus the underes-
timated Tmax could be partly attributed to the enhanced dry-
air entrainment induced by the weakened PBL turbulent 
mixing, and vice versa.

The modeled level of the nighttime PBL mixing is given 
in Fig.  3. The general negative SHnight indicates that the 
stably-stratified conditions dominate over almost all land 

Table 3   Global mean biases of DTR, Tmax and Tmin (°C) and global 
mean RMSE of DTR (°C) in multi-model ensemble mean and indi-
vidual models along with the systematic RMSE of DTR (RMSES, °C) 
in parenthesis

DTR bias Tmax bias Tmin bias DTR RMSE 
(RMSES)

Ensemble mean −2.13 −0.62 1.51 2.38 (1.48)

GFDL-HIRAM-
C360

−1.45 −1.28 0.18 2.49 (1.86)

CMCC-CM −2.17 −0.78 1.38 2.76 (1.7)

EC-EARTH −2.24 −1.39 0.85 2.85 (1.52)

CNRM-CM5 0.52 0.36 −0.16 2.86 (1.71)

HadGEM2-A −1.51 −1.13 0.38 2.89 (1.66)

MRI-AGCM3-2S −2.17 −0.79 1.38 2.89 (1.77)

CSIRO-Mk3-6-0 −1.93 0.36 2.29 2.95 (1.72)

MRI-CGCM3 −2.29 −0.39 1.9 2.99 (1.81)

CCSM4 −2.1 −1.41 0.68 3.06 (2.11)

FGOALS-s2 −2.33 1.14 3.47 3.07 (1.87)

ACCESS1-0 −2.01 −1.14 0.86 3.14 (1.75)

CESM1-CAM5 −2.07 −0.99 1.08 3.15 (2.21)

MIROC5 −2.18 0.85 3.02 3.29 (1.78)

CanAM4 0.32 0.38 0.06 3.59 (1.78)

MPI-ESM-LR −3.11 −0.54 2.56 3.63 (1.83)

GFDL-CM3 −3.05 −1.35 1.71 3.73 (1.98)

ACCESS1-3 −3.27 −1.3 1.97 3.79 (1.8)

BNU-ESM −3.13 −1.77 1.36 3.84 (2.01)

GISS-E2-R −3.32 −0.69 2.63 3.87 (1.89)

INM-CM4 1.79 −1.77 −3.55 4.58 (2.01)
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areas. Hence, the larger downward sensible heat fluxes (i.e., 
negative biases in SHnight) suggest that the downgradient 
diffusion in the PBL is generally overestimated, and thus 

transports more heat from the atmosphere to the near-sur-
face, which creates the widespread warm bias of Tmin. This 
enhanced mixing in a stably-stratified PBL has been widely 
recognized in previous studies on weather and climate 
models (e.g. Steeneveld et al. 2008; Shin and Hong 2011; 
Svensson et al. 2011; Holtslag et al. 2013), but addressing 
this long-standing issue has proven challenging because 
it effectively compensates for errors caused by other pro-
cesses such as large-scale flow (Sandu et al. 2013).

To further confirm the above CMIP5 results, we next 
analyze the diurnal mean PBL mixing using the high verti-
cal resolution CFMIP2 data which allow us to directly esti-
mate the PBL depth with the VH method. Given that the 
multi-model ensemble mean temperature biases in CFMIP2 
exhibit similar patterns as those in CMIP5 (Figure SI3), 
it is not surprising that the biases of the estimated PBL 
height against the ERA-Interim results (which are similarly 
derived using the VH method) are comparable to the biases 
of SHmax and LCL estimated from the CMIP5 output, with 
the overestimates over the warm Tmax bias regions and the 
opposite over the cold Tmax bias regions (Fig. 4). Here we 
use the jump of specific humidity at the PBL height (Δq), 
defined as the PBL value minus the free-atmosphere value, 
to quantify the potential effects of the dry air entrainment 
as done in Van Heerwaarden et  al. (2009). The lower the 
PBL height is, the more the jump of the specific humidity 

Fig. 2   Geographical distribution of the climatological SHmax (W/m2), LCL (m) and PTC (unitless) in the ERA-Interim reanalysis (left panels) 
and the corresponding CMIP5 multi-model ensemble mean biases (right panels)

Fig. 3   Geographical distribution of the climatological SHnight  
(W/m2) in the ERA-Interim reanalysis (top panel) and the correspond-
ing CMIP5 multi-model ensemble mean biases (bottom panel)
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and thus the dry air entrainment could be made. Figure 4 
shows that Δq is generally overestimated over the regions 
with the weakened PBL depth such as central and eastern 
Asia, the Sahara desert and southern Africa, and basically 
underestimated in the regions with the enhanced PBL depth 
such as the central US and parts of western and central 
Asia. The biases of Δq correspond spatially well to these of 
PTC (Fig. 4), indicating that more dry air entrainment leads 
to higher surface evaporation and thus potentially lower 
Tmax, and vice versa. These results agree with the patterns 
of the PBL mixing proxies in the CMIP5 analysis and con-
sistently support our hypothesized cause for the daytime 
temperature biases. Due to lack of required hourly data in 
CFMIP2 archive, the biases of PBL depth at nighttime can-
not be further validated at the global scale.

Finally we analyze the three-hourly CFMIP2 data 
together with the ARMBE observations to evaluate the 
entire diurnal cycle of the PBL mixing and its connec-
tion to temperature evolution at the ARM-SGP site. Fig-
ure 5 shows the climatological diurnal cycle of the LSAT, 
PBL height and sensible heat flux between the modeled 
and observed. The modeled Tmax and Tmin are both over-
estimated at the ARM-SGP site, which is consistent with 
the grid level results shown in Fig. 1. The underestimated 
DTR is due to the larger overestimation of Tmin than 
Tmax. Correspondingly, both the PBLmax and PBLnight are 

overestimated, which is consistent with the results of Sei-
del et  al. (2012) who used radiosonde observations to 
evaluate the simulated PBL climatology over the US. This 
overestimation could potentially warm Tmax and Tmin by 
less dry air entrainment at daytime and more downgradient 
turbulence diffusion at nighttime, respectively. The sensi-
ble heat shows a consistent bias pattern, with the overesti-
mated SHmax representing a stronger PBL mixing and the 
underestimated SHnight (a larger downward absolute value) 
representing more downward heat transfer. This supports 
our rationality to use the sensible heat as a proxy for PBL 
depth in the CMIP5 analysis. In addition, a comparison of 
the vertical profile of specific humidity indicates that the 
overestimated PBL height at daytime generates a lower 
Δq, which represents a less amount of potential dry air 
entrainment into the PBL (Fig. 6). This further cements our 
hypothesis about the interactions among the PBL mixing, 
dry air entrainment and surface evaporation.

3.1.4 � Temperature biases related to other contributing 
factors

We realize that the biases of the PBL mixing cannot fully 
explain the temperature biases and other factors may also 
have a contribution, especially at regional scales. For exam-
ple, during the daytime, the overestimated solar radiation 

Fig. 4   Geographical distribution of the climatological PBL height (m), Δq (g/kg/km) and PTC (unitless) estimated from the ERA-Interim rea-
nalysis (left panels) and the corresponding CFMIP2 multi-model ensemble mean biases (right panels)
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along with the underestimated TCC should play a role in 
explaining the warm bias of Tmax over central North Amer-
ica and the Amazon basin (Figure SI4). The underestimated 

precipitation over these regions (Figure SI4) as also iden-
tified by Scheff and Frierson (2015) could have an effect 
by lowering the surface evaporation as well. However, most 
parts of central North America and the Amazon basin are 
dominated by wet climate conditions where the SM is plen-
tiful. In this case, the surface evaporation and Tmax depend 
much less on SM variations, but more on the near-surface 
humidity gradient which is effectively controlled by the 
dry air entrainment as indicated by Van Heerwaarden et al. 
(2009). Hence, the PBL mixing effects associated with the 
dry air entrainment could make a more important contribu-
tion to the Tmax bias. In contrast, over the Sahara desert and 
southern Africa where dry climate conditions dominate, 
the cold bias in Tmax (Fig. 1) could be largely attributed to 
the enhanced evaporation due to overestimated precipita-
tion (Figure SI4). As these regions are extremely limited by 
the available SM, the PBL mixing effects on the humidity 
gradient may not be dominant. Nevertheless, the sensitivity 
test made by Van Heerwaarden et  al. (2009) showed that 
the dry air entrainment could significantly enhance the sur-
face evaporation under all conditions, even over dry land 
surfaces although it only plays a secondary role. For this 
reason, we propose this mechanism as a global scale con-
tributor to the daytime Tmax biases, including dry climate 
conditions.

During the nighttime, the overestimated PBL mixing 
always plays a major role in causing the warm biases of 

Fig. 5   The diurnal cycle of the LSAT (°C), PBL height (m) and sen-
sible heat flux (W/m2) as a function of local solar time (LST) from 
the CFMIP2 multi-model ensemble means and ARMBE data over the 
ARM-SGP site. The value of DTR (°C) is shown in the top panel

Fig. 6   Vertical profiles of specific humidity (g/kg) from the CFMIP2 
multi-model ensemble means and ARMBE observations over the 
ARM-SGP site. The horizontal dashed lines indicate the PBL heights 
estimated from the two datasets. The jump of specific humidity at the 
PBL height, Δq (g/kg/km), defined as the PBL value minus the free-
atmosphere value, is also shown
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Tmin. Moreover, the surface downward longwave radiation, 
the main radiative driver for the temperature variation at 
night, is found to be generally underestimated (Figure SI4) 
as also identified by Steeneveld et al. (2008), which tends 
to induce a cold bias of Tmin. Given the widespread warm 
biases of Tmin (Fig. 1), the underestimated radiative forcing 
further highlights the contributions of the enhanced mixing 
to the Tmin biases.

In summary, the biases of PBL mixing are consist-
ent with our expectations about their roles in inducing the 
biases of the diurnal cycle of LSAT. It is reasonable to use 
the interaction between the dry air entrainment and surface 
evaporation at daytime and the enhanced mixing at night-
time as the possible explanation for the biases of Tmax and 
Tmin. Hence the systematic deficiencies of PBL schemes in 
simulating the turbulent mixing could very likely contrib-
ute to the biases of DTR although other factors also have 
an effect. The analyses on the multi-model ensemble mean 
biases mainly reflect the systematic errors in GCMs. How-
ever, in order to make significant improvement in GCMs, 
the regions with large inter-model disagreements of the 
simulated temperatures should be identified and highlighted 
because they are probably the locations where the represen-
tations of temperature-related physical processes have large 
uncertainties. Therefore, we will focus on the inter-model 
variability of the diurnal cycle of LSAT in the next section.

3.2 � Inter‑model variability

3.2.1 � Inter‑model RMSE in simulating DTR, Tmax and Tmin 
climatology

The multi-model ensemble means have shown above to 
some extent a spatially homogeneous sign of biases in the 
climatology of DTR, but may conceal some key informa-
tion with respect to regions where the results among mod-
els vary substantially. For instance, assume that two mod-
els have an identical but opposite sign of the bias and their 
ensemble mean is zero, but in reality neither of the models 
generates the correct result. One way to avoid this problem 
is to examine the inter-model RMSE as the measurement of 
the model deviations from observations. Note that RMSE 

(

√

1
n

∑n
i=1 (xi − obs)2) consists of two portions, namely 

( 1
n

∑

n

i=1 (xi − obs)2) = (x̄ − obs)2 + 1
n

∑

n

i=1 (xi − x̄)2, where 

n represents the total number of the models, xi is the indi-
vidual model result, and x̄ is the multi-model ensemble 
mean. The first term represents the RMSE induced by the 
multi-model ensemble mean biases and the second term 
denotes the inter-model standard deviation (SD).

Despite a widespread negative DTR bias, the inter-
model RMSE of DTR (Fig. 7) shows a strong locality in the 

spatial pattern. The large RMSE values mainly appear over 
the semi-arid and arid regions such as the Sahara desert and 
southern Africa and over the boreal cold and dry regions 
such as northeastern Russia and China. In high latitudes, 
the RMSE may result from the multi-model ensemble mean 
biases as they are spatially coupled. However, in mid- and 
low- latitudes, it seems that the inter-model SD plays an 
important role in determining RMSE, especially over the 
semi-arid and arid regions where the multi-model ensem-
ble means strongly depend on the model selection. Here 
we take the Sahara desert as an example. The multi-model 
ensemble means of Tmax, Tmin and DTR biases derived from 
the top 5 models in Tables 3 are −1.22, 0.45 and −1.67 °C, 
respectively, whereas those from the bottom 5 models are 
−1.92, 0.78 and −2.7 °C, respectively. The notable differ-
ences between the two groups of models suggest that the 
ensemble mean biases could be largely affected by the 
choice of models, especially over the regions with the large 
inter-model variations.

We expect to see the large inter-model RMSE of the 
temperatures over the regions where CMIP5 models have 
substantial uncertainties in modelling the PBL mixing. 

Fig. 7   Geographical distribution of inter-model RMSE of DTR (°C) 
climatology (top panel) and biases and RMSE of DTR climatology 
as a function of diurnal PBL-depth range (DPR, in m) provided by 
the ERA-Interim reanalysis (bottom panel). In the bottom panel, the 
colored lines represent 20 individual CMIP5-AMIP simulations, the 
black solid line is the multi-model ensemble mean, and the black 
dashed line is the inter-model RMSE of DTR climatology
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The DPR quantifies the amplitude of the PBL depth tran-
sition from convective daytime conditions to stably-strat-
ified nighttime conditions. The regions with a large DPR 
always experience extreme PBL conditions which are 
poorly modeled by current PBL schemes (e.g. Holtslag 
et al. 2013; Sterk et al. 2013), and hence are expected to 
have large uncertainties in modeled DTR. Figure 7 shows 
the global mean DTR biases for each individual model as a 
function of DPR provided by the ERA-Interim reanalysis. 
All models demonstrate a negative DTR bias except sev-
eral models with notably overestimated DTR. The inter-
model spread is relatively small in low-DPR regions, but 
tends to increase gradually with the magnitude of DPR 
and maximizes with the largest DPR. This is consistent 
with the spatial pattern of the inter-model RMSE of DTR, 
suggesting to a large extent that the modeled PBL mixing 
induces large uncertainties in modeled DTR over the larg-
est DPR regions such as the arid and semi-arid regions. 
In addition, the inter-model RMSE of DTR also has large 
values over the smallest DPR regions such as the boreal 
arctic regions, which could be caused by model’s system-
atic biases as well.

The ensemble mean biases and RMSE are quantified 
based on the observations and thus also depend on the data 
quality of observations, which may vary in time and space. 
Due to lack of knowledge about the uncertainties of obser-
vations, next we will make a more specific quantitative 
analysis of the modeled DTR uncertainties by concentrat-
ing on the inter-model variations of the simulated temper-
atures rather than the model biases and RMSE which are 
affected by the uncertainties of observations. We will iden-
tify the regions with the largest inter-model variations of 
DTR as well as Tmax and Tmin based on the climatological 
PBL patterns, and then quantify the relative contributions 
to the inter-model temperatures variations from the mod-
eled PBL turbulent mixing and other variables over these 
regions.

3.2.2 � Spatial characteristics of inter‑model variations 
of the simulated temperatures

Figure  8 shows the geospatial patterns of inter-model SD 
of the simulated DTR, Tmax and Tmin climatology. Com-
pared to the inter-model RMSE (Fig.  7), the inter-model 

Fig. 8   Geographical distribution of inter-model standard deviation 
of Tmax, Tmin and DTR (°C) climatology (left panels) and the corre-
sponding climatological diurnal maximum, nighttime mean and range 

of PBL depth (PBLmax, PBLnight and DPR, in meters) provided by the 
ERA-Interim reanalysis (right panels)
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SD of DTR shows a similar but much clearer locality pat-
tern, with large values over the semi-arid and arid regions 
such as southwestern North America, the Sahara desert 
and Arabian Peninsula, southern Africa and Australia. The 
inter-model SD of Tmax and Tmin presents a consistent dis-
tribution with that of DTR, with more uncertainties in Tmin 
because of the poor representation of stably-stratified con-
ditions in PBL schemes (e.g. Steeneveld et al. 2008; Holt-
slag et al. 2013). Relatively large values of inter-model SD 
of Tmax and Tmin also appear over the boreal arctic regions 
such as northern Canada, which is more notable in winter 
(not shown). However, due to the similar magnitudes of 
Tmax and Tmin over these regions and thus fairly small DTR 
in each model, the inter-model SD of DTR is not as much 
as that of Tmax and Tmin.

The aforementioned spatial features of the inter-model 
SD of the temperatures are expected as they match very 
well with the climatological PBL patterns (PBLmax, 
PBLnight and DPR) provided by the ERA-Interim (Fig. 8). 
The arid and semi-arid regions experience both the strong-
est convective conditions with the largest PBLmax during 
the daytime, and the stable-stratified conditions with the 
smallest PBLnight during the nighttime. Hence, it is natural 
to see that the large inter-model SD of DTR appears over 
these regions with the greatest day-night contrast in the 
PBL depth (i.e., the largest DPR), and so do the large inter-
model variations of Tmax and Tmin. The boreal arctic regions 
are dominated by long-lived stable conditions with a very 
shallow PBL during both daytime and nighttime compared 
to ambient conditions, and thus become another climate 
zone with the large inter-model SD of Tmax and Tmin. How-
ever, the long-lived stable conditions (with the smallest 
DPR) make the model differences of DTR insignificant. To 
further confirm these results, we plot the inter-model SD 
of the simulated DTR, Tmax and Tmin as a function of DPR 
in Fig.  9, which shows that the largest inter-model varia-
tions appear over the regions with the largest and small-
est DPR, namely the arid and semi-arid regions and boreal 
arctic regions. The former controlled by alternate strong 
convective and stable-stratified conditions are identified as 
the primary regions with the largest inter-model variations 
of DTR, Tmax and Tmin, and the latter are also marked with 
the large inter-model variations in Tmax and Tmin but not in 
DTR.

3.2.3 � Relative contributions of PBL mixing to inter‑model 
variations

As the large inter-model variations of the simulated tem-
perature diurnal cycle mainly appear over the regions 
which are always dominated by extreme PBL conditions, 
the uncertainties in the simulated PBL mixing are expected 
to play an important role. However, representations of other 

processes such as the surface radiation also affect the tem-
perature variations. In this subsection, we will quantify the 
relative contributions to the large inter-model temperature 
variations from several key controlling variables related to 
surface radiative and PBL mixing processes. The key radia-
tive variables considered here include surface downward 
shortwave and longwave radiation in clear sky conditions 
(DSRCS and DLRCS) and the corresponding cloud radia-
tive effect (DSRCF and DLRCF) as well as the land sur-
face albedo and emissivity which determine the amount of 
net radiation. The key variables related to the PBL mixing 
contain EF and top 10-cm SM which determine the parti-
tioning of turbulent fluxes in terms of the evaporation and 
total available water, and another three variables (SHmax, 
LCL and SHnight) introduced in Sect. 2.3. Note that PTC is 
not chosen as it is highly correlated with EF and reciprocal 
SHmax or LCL. The relative contributions of these control-
ling variables to Tmax, Tmin and DTR are estimated based on 
a statistical method.

We first calculate the areal averages of the grid-scale 
inter-model correlations between the temperatures and 
selected controlling variables to sort out the significant 
influential factors by climate zone (Table  4). For the sur-
face radiative processes, the shortwave solar radiation is 
largely modified by cloud cover during the daytime and 
thus DSRCF negatively correlates with Tmax and DTR over 
all regions except the boreal arctic regions. With the effects 
of cloud cover removed, the correlation of DSRCS with 
the temperatures becomes insignificant except a positive 

Fig. 9   Inter-model standard deviation of climatological DTR, Tmax 
and Tmin (°C) as a function of diurnal PBL-depth range (DPR, in m) 
provided by the ERA-Interim reanalysis
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correlation with Tmax and DTR over the arid and semi-arid 
regions. DLRCF negatively correlates with Tmax over the 
tropical rainforests and transitional zones, probably due to 
the greater effects of clouds on solar radiation. However, 
under clear-sky conditions, DLRCS shows a widespread 
positive correlation with Tmax and Tmin, which reflects 
a stronger dependence of the modeled temperatures on 
GHGs forced longwave radiation, especially for Tmin. As 
for the land surface radiative parameters, the albedo neg-
atively correlates with Tmax and the subsequent Tmin over 
the boreal cold areas and transitional zones, and a negative 
correlation between the emissivity and Tmax exists over the 
arid and semi-arid regions. For the variables related to the 
PBL mixing, EF and SM, which act to hamper the levels of 
PBL mixing, negatively correlate with Tmax and DTR over 
most regions. EF and Tmin show a positive correlation over 
the boreal arctic areas, likely due to the enhanced warming 
effects of the water–vapor forced surface downward long-
wave radiation. As for the proxies for the PBL depth dur-
ing the daytime, SHmax naturally increases Tmax and thus 
DTR and the diurnal mean LCL both positively correlates 
with Tmax and subsequent Tmin over all regions. At night, 
the downgradient diffusion makes SHnight negatively corre-
late with Tmin and hence positively correlate with DTR over 
most of the regions despite their nonlinear interactions as 
proposed by Holtslag et  al. (2007). Overall, those signifi-
cant correlative relationships in each climate zone depict 
the general dependence of the inter-model variations of 
the temperature diurnal cycle on surface radiative and PBL 
mixing processes.

As far as the two regions controlled by extreme PBL 
conditions are concerned, we could identify the major 
controlling factors as follows. Over the arid and semi-arid 
regions, the model differences in Tmax are significantly con-
trolled by DSRCF, DSRCS, DLRCS, land surface emissiv-
ity, EF, SM, SHmax and LCL, while those in Tmin are mainly 
influenced by DLRCS, LCL and SHnight. Hence DSRCF, 
DSRCS, DLRCS, EF, SM, SHmax and SHnight, which sig-
nificantly correlate with Tmax and Tmin asymmetrically, play 
an important role in determining the inter-model variations 
of DTR. Over the boreal arctic regions, DLRCS, the land 
surface albedo, SHmax and LCL significantly influence the 
inter-model variations of Tmax, while DLRCS, the land sur-
face albedo, EF and SHnight contribute largely to those of 
Tmin. Although the DTR differs insignificantly among mod-
els over the boreal arctic regions, EF, SHmax and SHnight, 
which are significantly correlated with DTR, still have 
noticeable asymmetrical effects on Tmax and Tmin.

The relative contributions of these controlling factors 
to the inter-model variations of Tmax, Tmin and DTR are 
quantified using the variance analysis method based on the 
multiple linear regression. To reduce the collinearity among 
the variables, we only use EF and SHmax to represent the 

partitioning of the surface turbulent flux and the daytime 
PBL depth, while SM and LCL are excluded from the 
variance analysis. The percentage contributions of the con-
trolling factors that pass the significance test over the two 
regions are shown in Fig.  10. For the arid and semi-arid 
regions, EF and DSRCF account for the largest amount 
(nearly 30 % each) of the inter-model SD of Tmax, which 
is consistent with the notion that Tmax is most affected by 
surface solar heating and the partitioning of turbulent fluxes 
for evaporation (e.g. Dai et  al. 1999; Zhou et  al. 2009b, 

Fig. 10   Relative contributions of key controlling variables related 
to atmospheric radiative and PBL mixing processes to the inter-
model variations of Tmax, Tmin and DTR over two climate zones 
with extreme PBL conditions: (top panel) arid and semi-arid climate 
regions and (bottom panel) boreal arctic regions
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2010). SHmax explains up to 20  % of the inter-model SD 
of Tmax. DSRCS and DLRCS are the other two significant 
factors for Tmax variations that are associated with effects 
of atmospheric aerosols and GHGs. As for Tmin, DLRCS 
associated with the warming effects of water vapor is the 
most important contributor and accounts for 34  % of the 
inter-model variations. SHnight, which represents the level 
of downward heat transport from the atmosphere, also 
considerably explains the Tmin variations by 15 %. Conse-
quently, the inter-model variations of DTR are explained by 
the variables with notably asymmetrical effects on Tmax and 
Tmin, namely DLRCS, SHmax, EF and DSRCF in a decreas-
ing order. For the boreal arctic regions, DLRCS mostly 
explains both the inter-model variations of Tmax and Tmin by 
up to 40 %, followed by the PBL-mixing variables, namely 
SHmax and SHnight. EF also explains a comparable amount 
of the Tmin variations, possibly due to the warming effects 
of the evaporated water vapor. The asymmetrical contribu-
tions of SHmax, EF and SHnight explain the inter-model vari-
ations of DTR although insignificant over the boreal arctic 
regions.

Here we emphasize the contributions of uncertainties in 
modeled PBL mixing to the inter-model variations of the 
temperature diurnal cycle. Under strong convective condi-
tions such as the daytime PBL over the arid and semi-arid 
regions, the magnitude of Tmax is very sensitive to changes 
in surface solar radiation and available SM for evapora-
tion. Hence it is not surprising that the model differences in 
DSRCF and EF, which represent the uncertainties in mod-
eled shortwave cloud radiative effects (Lewis and Karoly 
2013) and turbulent moisture exchanges (Perkins et  al. 
2007), explain the most inter-model variations of Tmax. 
If DSRCF and EF are fixed among the models, the next 
most notable contributor to the Tmax variations is SHmax, 
representing the different degrees of PBL mixing result-
ing from various implementations of PBL schemes with 
different turbulent heat transfer coefficient, near-surface 
wind and entrainment zone elevation (e.g. Svensson et al. 
2011). Such uncertainties could be even more significant 
than those originating from different inclusions of aero-
sol and GHG forcings among models as reflected by the 
smaller contributions of DSRCS and DLRCS to the Tmax 
variations (Zhou et  al. 2009b, 2010; Lindvall and Sven-
sson 2015). In stable stratified conditions that often occur 
at nighttime in the arid and semi-arid regions and almost 
all-day in the boreal arctic regions, the PBL-mixing effects 
could be the dominant sources of the uncertainties in tem-
perature modeling for three major reasons. First, more than 
half of the DLRCS originates within the lowest hundreds of 
meters of the atmosphere and so DLRCS is largely deter-
mined by temperature and moisture profiles controlled by 
the PBL mixing (Bosveld et  al. 2014). Hence, the model 
differences in DLRCS, which explain the most of the 

inter-model temperature variations, could be largely linked 
to the differences in PBL schemes. Second, the stable PBL 
conditions have been shown to be poorly simulated with 
overestimated turbulent mixing (e.g. Svensson et al. 2011; 
Holtslag et al. 2013; Bosveld et al. 2014). Different levels 
of this enhanced mixing among PBL schemes could sig-
nificantly contribute to the uncertainties in temperature 
simulations, as reflected by the large inter-model variations 
of Tmin accounted by SHnight, which is also diagnosed by 
Sandu et al. (2013) and Sterk et al. (2013). Last but not the 
least, the temperatures is extremely sensitive to external 
forcings in stable conditions because of the small atmos-
pheric effective heat capacity (Esau et al. 2012; Davy and 
Esau 2014a, b; Davy et  al. 2016). Given this small heat 
capacity, any slight differences in external forcings among 
models can lead to large inter-model temperature varia-
tions as indicated by Davy and Esau (2014b). This explains 
why the inter-model SD of Tmin is overall larger than that 
of Tmax and hence determines the inter-model SD of DTR 
(Fig. 8). Therefore, accurate and consistent representations 
of the diurnal PBL processes are needed, particularly in 
stably-stratified conditions, to reduce the uncertainties of 
the simulated temperature diurnal cycle.

Our above analyses indicate that the model uncertain-
ties in PBL turbulent mixing could make significant con-
tributions to large inter-model variations of the tempera-
ture diurnal cycle, especially over the regions with diurnal 
extreme (strong convective and stably-stratified) condi-
tions, namely the arid and semi-arid regions and boreal 
arctic regions. Although the selected surface radiative and 
PBL mixing controlling factors cannot completely explain 
the inter-model temperature differences, the variance anal-
ysis indicates that the PBL-mixing processes could be as 
important as the surface radiative forcings which are direct 
drivers for temperature variations. Similar to Holtslag et al. 
(2013), our results highlight the need for a more reliable 
description of PBL processes associated with the turbulent 
mixing in GCMs to reduce the uncertainties in modelling 
the temperature diurnal evolution.

4 � Conclusions and future prospects

In this research, we examine the effects of modeled PBL 
mixing on the simulated temperature diurnal cycle climatol-
ogy over land in 20 CMIP5 models with AMIP simulations. 
When compared with observations, the magnitude of DTR is 
systematically underestimated over almost all land areas due 
to a widespread warm bias of Tmin and mostly a cold bias of 
Tmax. Analyses of the CMIP5 multi-model ensemble means 
suggest that the biases of the simulated PBL mixing could 
very likely contribute to the temperature biases. For the 
regions with the cold bias in Tmax, the daytime PBL mixing 
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is generally underestimated. The consequent more dry air 
entrainment from the free atmosphere could help maintain 
the surface humidity gradient, and thus produce more sur-
face evaporation and potentially lower the Tmax. The oppo-
site situation holds true for the regions with the warm bias 
of Tmax. This mechanism could be particularly applicable 
to the regions with moderate and wet conditions where the 
surface evaporation depends more on the surface humidity 
gradient, but less on the available SM. For the widespread 
warm bias of Tmin, the widely-recognized enhanced PBL 
mixing at nighttime should play a dominant role by transfer-
ring more heat from the atmosphere to the near-surface to 
warm the Tmin. Our further analyses using the high resolu-
tion CFMIP2 output also support the CMIP5 results about 
the connections of the biases between the simulated turbu-
lent mixing and the temperature diurnal cycle. The large 
inter-model variations of the simulated temperature diurnal 
cycle primarily appear over the arid and semi-arid regions 
and boreal arctic regions where the model differences in 
the PBL turbulence mixing could make equally significant 
contributions to the inter-model variations of DTR, Tmax and 
Tmin compared to the model differences in surface radiative 
processes. These results highlight the importance and need 
for accurate descriptions of the PBL processes with respect 
to the turbulent mixing in order to improve the temperature 
diurnal cycle simulations in GCMs.

We realize that the interactive mechanisms between the 
near-surface temperatures and PBL processes are more 
complex than what is analyzed here based on the statistical 
techniques. The large-scale circulation and many small-scale 
physical processes in the PBL such as radiation divergence, 
gravity waves and low-level jets can all modify the surface 
energy budgets and thus the temperature diurnal cycle (Holt-
slag et al. 2013; Lewis and Karoly 2013; Svensson and Lind-
vall 2015). However, the limitations of our understanding 
of complex PBL processes, the challenges in modeling the 
PBL processes, and the lack of high resolution model output 
and observations for turbulent parameters hinders our further 
analysis. Nevertheless, we establish a preliminary relation-
ship between the effects of PBL mixing and the modeled 
temperature diurnal cycle in this work, and will carry out 
further attribution studies by conducting carefully designed 
sensitivity experiments with individual models. Our ultimate 
goal for the future work is to find a unified treatment of PBL 
processes that could reproduce the main climatic features 
on the diurnal cycle of near-surface variables in GCMs with 
unnecessary small-scale processes filtered out.
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