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ABSTRACT: North China is one of the most densely populated regions in the world. To its west, north, and northwest,
the world’s largest afforestation project has been going on for decades. At the same time, North China has been suffering
from air pollution because of its large fossil fuel consumption. Here we show that the changes in land cover and aerosol
concentration are coupled with the variations of land surface temperature, cloud cover, and surface solar radiation during
the summer 2000–2013. Model experiments show that the interannual variation of aerosol concentration in North China
is mainly a result of the varying atmospheric circulation. The increasing vegetation cover due to afforestation has enhanced
surface evapotranspiration (ET) and cooled the local surface, and precipitation is observed to be increasing with ET. The model
with prescribed increasing vegetation cover can simulate the increasing ET but cannot reproduce the increasing precipitation.
Although this may be caused by model biases, the lack of aerosol processes in the model could also be a potential cause.
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1. Introduction

Associated with rapid economic development and intense
human activities, China has been experiencing dramatic
environmental changes. In order to hold back the invasion
of Gobi Desert and raise the forest cover in northern China,
the Chinese government launched the Three-North Shel-
terbelt Forest (or the Green Great Wall) Program (Parungo
et al., 1994; Tan and Li, 2015). The project was begun in
1978 and is planned to be completed around 2050, when
the belt will be 4500 km long. It is by far the world’s largest
tree-planting project. Studies found that this project has
greatly increased the vegetation and decreased the inten-
sity of dust storms in northern China (Parungo et al., 1994;
Tan and Li, 2015). On the other hand, the energy consump-
tion in China is rapidly increasing in the past decade and
it accounts for two-thirds of the growth in global carbon
emission from energy use in this period (Sheehan et al.,
2014). In addition to the emission of carbon dioxide, the
use of fossil fuel led to serious air pollution that exists as
atmospheric aerosols (Luo et al., 2014). North China has
one of the highest concentrations of atmospheric aerosols
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in the world (Remer et al., 2008). These aerosol particles
and droplets can directly absorb and scatter solar radiation
(Li et al., 2010) and can also indirectly affect radiation and
precipitation by changing the macro- and microphysics of
clouds (Li et al., 2011; Koren et al., 2012; Niu and Li,
2012). In the past decades, both land use and land cover
change and air pollution have attracted great attentions
around the world, and their impacts on climate remain
unsettled and are still active research topics (e.g. Wu et al.,
2013b; Hua et al., 2015; Li et al., 2016; Wu et al., 2016;
Zhao et al., 2016). Moreover, the combined influence of
the two factors on climate was seldom investigated.

2. Study area

North China is region where both land use and land cover
change and air pollution are intense, so it is an ideal
place to study their individual and combined effects. The
region has strong gradients in topography, vegetation and
climate with higher (lower) elevation, sparser (denser)
vegetation, and drier (wetter) climate in the northwest
(southeast) (Figure S2, Supporting information). Along
the southeast-to-northwest line is a semi-arid transitional
zone between the wet southeast and dry northwest, where
the land surface and climate are sensitive to each other
and their interactions are strong (Zhang et al., 2011). This
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transitional zone is also a major region of the Green
Great Wall, because its land cover is more fragile and is
frequently subjected to the invasion of the desert.

3. Data and methods

3.1. Data

The used datasets include a variety of global climate
field from observation-based products or reanalysis. Since
the year 2000, various satellite missions provide a large
amount of data for the land and atmosphere states and the
water and energy fluxes. As the aerosol concentration (Luo
et al., 2014) and the vegetation activity and its interaction
with climate are all highest during boreal summer in this
region, our analyses focus on June–July–August (JJA)
2000–2013. Monthly data were used unless otherwise
mentioned.

We used station-based CRU TS3.22 daily maximum
near-surface temperature and cloud cover fraction (Harris
et al., 2014) at 0.5∘ × 0.5∘ resolution.

Several products from the Collection 5 MODerate
resolution Imaging Spectroradiometer (MODIS, https://
modis.gsfc.nasa.gov/), an instrument onboard the Terra
and Aqua satellites, were used, including EVI and NDVI
(Huete et al., 2002) (MOD13C2) at 0.05∘ × 0.05∘ reso-
lution, Aqua (MYD11C3) and Terra (MOD11C3) LST
(Wan, 2008) at 0.05∘ × 0.05∘ resolution, and Terra 550 nm
AOD (Remer et al., 2005) and Cloud cover fraction
(Platnick et al., 2003) (MOD08_M3 v051) at 1∘ × 1∘ reso-
lution. Terra LST (10:30 and 22:30 local time) is available
from 2000, while Aqua LST (1:30 and 13:30 local time)
is available from 2002. As 13:30 local time is close to the
time when the surface has the maximum temperature, we
used the Aqua LST for this study but extended it to 2000
based on a good linear relationship between Aqua and
Terra LST (see Suppporting information).

Two ET data sets were used: MODIS ET product
(MOD16A2) at 0.05∘ × 0.05∘ resolution from the Uni-
versity of Montana (Mu et al., 2011) and ET from
ERA-Interim reanalysis (Dee et al., 2011) at 0.75∘ × 0.75∘
resolution. The algorithm for MODIS ET is based on the
Penman–Monteith equation driven by MODIS data and
daily meteorological data.

In addition to MODIS AOD mentioned above, we also
used level 3 MISR (Multi-angle Imaging SpectroRadiome-
ter) (Diner et al., 1998) AOD product (MIL3MAE) at
0.5∘ × 0.5∘ resolution. MISR is a key instrument aboard the
Terra satellite in a sun-synchronous orbit. MISR acquires
systematic multi-angle imagery for global monitoring of
top-of-atmosphere and surface albedos and to measure the
shortwave radiative properties of aerosols, clouds and sur-
face scenes in order to characterize their impact on the
Earth’s climate.

We used the monthly surface downward solar radiation
data from the Clouds and the Earth’s Radiant Energy
System (CERES) (Wielicki et al., 1996) Edition 2.8
at 1∘ × 1∘ resolution. CERES instruments are collect-
ing observations on three separate satellite missions,

including Terra and Aqua observatories and the Suomi
National Polar-orbiting Partnership (S-NPP) observa-
tory. CERES products include both solar-reflected and
Earth-emitted radiation from the top-of-atmosphere to the
Earth’s surface.

For precipitation data, we used Tropical Rainfall Mea-
suring Mission (TRMM) (Huffman et al., 2007) 3B43
precipitation data at 0.25∘ × 0.25∘ resolution and PRE-
Cipitation REConstruction over Land (PREC/L) precip-
itation data (Chen et al., 2002) at 1∘ × 1∘ resolution.
TRMM 3B43 provides the best-estimate precipitation rate
and root-mean-square precipitation-error estimate field by
combining the 3-hourly merged-infrared estimates with
the monthly-accumulated Global Precipitation Climatol-
ogy Centre (GPCC) rain gauge analysis. PREC/L was pro-
duced by interpolation of gauge observations over land.

3.2. MV-EOF analysis

Multivariate empirical orthogonal function (MV-EOF)
analysis is the same as the traditional EOF analysis or
principal component analysis except that two or more vari-
ables are used. As the variables may have different units
and variances, each variable is standardized by its mean
standardized deviation in the spatial domain. Thus, the
variances of different variables are comparable and each
variable maintains its own spatial distribution of variance.
As the time dimensions of the variables are the same, they
are combined into a new variable along a spatial dimension
(longitude or latitude). Then a tradition EOF analysis is
performed for the combined new variable. The results are
the strongest principal component time series and the asso-
ciated spatial patterns for the combined variable, which can
be decomposed in the way the original variables are com-
bined to get the spatial patterns of the original variables.

3.3. WRF simulations

We designed regional climate model simulations with the
Weather Research and Forecast (WRF) model (Skamarock
et al., 2008) (version 3.5) to investigate the effects of veg-
etation change and aerosols. The model resolution was
36 km and has 30 vertical levels. The initial and bound-
ary conditions (including SST) were from ERA-Interim
reanalysis (Dee et al., 2011) 6-hourly data. The spatial
domain of the simulations is shown in Figure S5. Two
experiments were performed for 2000–2013. In the con-
trol experiment (WRF_CTL), the vegetation state was kept
the same as the year 2000 (with a seasonal cycle) and
did not change from year to year. In the other experi-
ment (WRF_VEG), the monthly vegetation in the model
was prescribed according to MODIS-based datasets of leaf
area index (LAI) (Yuan et al., 2011) and albedo (Liu et al.,
2013). We performed simulations for 1 May to 31 August
of each year in 2000 to 2013, and the data in JJA were used
for analysis. Vegetation fraction was updated according to
the LAI. Each experiment has 14 ensemble members with
different combinations of physical parameterizations (see
Supporting Information).

The model has a globally constant near-zero aerosol
field, and the influence of aerosols on clouds is not
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considered (due to the large uncertainties and high com-
putational cost of the aerosol-related module, we did not
use it for this study). Nevertheless, the role of aerosols can
be inferred by comparing model results with observations.
If the model can simulate an observed variability, then the
aerosols should not be an important factor for this vari-
ability. While if the model cannot simulate an observed
variability, there is a possibility that aerosols play a role
in this variability, although the model deficiency is also a
possible factor.

4. Results

4.1. Observational analysis

We first look at the land surface changes using satellite-
derived Enhanced Vegetation Index (EVI), Normalized
Difference Vegetation Index (NDVI), evapotranspiration
(ET) and land surface temperature (LST). The vegetation
activity (EVI and NDVI) and ET show significant increas-
ing trends in the transitional zone, where LST shows a
significant cooling trend (Figure 1). These are evident sig-
nals of the Green Great Wall. A multivariate Empirical
Orthogonal Function (MV-EOF) analysis (see Methods)
is used to find the consistent large-scale interannual vari-
ability of EVI and ET and reduce the noise and uncertain-
ties from a single dataset and at a few grid points. ET is
selected because it is closely related to the surface water
and energy balance and it would be interesting to find out
its relationship with vegetation. Figure 2 (top) shows the
dominant mode from the MV-EOF analysis of EVI and ET,
which explains 41.9% of the total variance. The dominant
mode shows an evident increasing trend of EVI and ET in
the transitional zone, consistent with the spatial patterns
of their trends in Figure 1. The similarity of the patterns
of EVI and ET changes indicates a strong local coupling
between them.

To reduce the uncertainties in satellite observations of
aerosol concentration, we performed an MV-EOF analysis
for the AOD (aerosol optical depth) datasets from two
different sensors: MODIS and MISR, both onboard the
Terra satellite. Their dominant mode, occupying 48% of
the total variance, shows a similar pattern for the two
datasets, with the strongest variability in the central North
China Plain (Figure 2 bottom). This region also has the
highest average AOD (Luo et al., 2014). The first principal
component (PC1) time series shows a strong interannual
variability but no evident trend. This time series is very
similar to the variations of the average AOD in the domain
(not shown). Although the total use of fossil fuels in the
region was increasing, the use of cleaner energy sources
and the introduction of more efficient equipment have
reduced the emissions (Chan and Yao, 2008; Sheehan
et al., 2014). This may be the reason for the absence of
AOD trend; we will discuss its interannual variations later.

Afforestation usually leads to more transpiration and
higher ET, which can cool the surface. Aerosols from
anthropogenic emissions can block the downward solar
radiation and cool the surface too. In addition to these

direct effects on surface temperature, both of them can
affect clouds. Increased ET provides more moisture for
cloud formation. The influence of aerosols on clouds are
complicated, but most observations show that in a wet
region like the North China Plain and during the mon-
soon season aerosols can enhance the development of
clouds and increase the frequency and intensity of pre-
cipitation (Li et al., 2011; Koren et al., 2012). Thus, both
afforestation and aerosols can cool the surface directly
and indirectly. Local correlations between the vegetation
index (EVI) or aerosol index (AOD) and surface tempera-
ture show predominantly negative correlations (Figure S3),
especially over the regions where vegetation or aerosols
have large variabilities (Figure 2). This confirms the pos-
sible cooling effects of vegetation and aerosols, but the
exactly influence pathways, especially whether clouds are
involved, are unclear.

To investigate the coupling of surface temperature,
cloud cover, and surface solar radiation, we performed an
MV-EOF analysis for the three variables. Surface daily
maximum temperature (Tmax) and cloud cover fraction
are from a station-based Climate Research Unit (CRU)
dataset, and surface downward solar radiation (Rs) is
from a satellite-based Clouds and the Earth’s Radiant
Energy System (CERES) dataset. Figure 3 shows the two
dominant modes. In both modes, the three variables show
similar spatial patterns (cloud fraction varies oppositely
to the other two), indicating that they are strongly locally
coupled. PC1 time series is significantly correlated with
the AOD variations in the area (P< 0.01), and spatially
the largest variability is in the central North China Plain,
where AOD has the largest variability (Figure 2). This
result alone does not tell us why AOD is related to the
variations of Tmax, clouds, and Rs. It is possible that
aerosols affect the clouds, or they are both controlled by
the variations of some other factors such as atmospheric
circulation. This needs further investigation. PC2 time
series shows a trend and is significantly correlated with the
EVI and ET variations (P< 0.02). The associated surface
cooling, increasing cloud, and decreasing Rs are strongest
in the northern North China Plain. Again, the result does
not tell a causal relationship. The vegetation and ET
increases could increase moisture (Jiang and Liang, 2013)
and cloud cover in the northern plain and decrease surface
temperature. It is also possible that the vegetation and ET
respond to the increasing cloud and precipitation (Figures
6(a) and (b)). Although human afforestation should be the
main reason for the vegetation increase in this area, the
positive vegetation-precipitation feedback (Zhang et al.,
2003; Liu et al., 2006) could also play a role, especially in
such a semi-arid region. Global warming can also enhance
the vegetation activity (Zhou et al., 2001), but considering
the recent warming hiatus (Li et al., 2015) and the length
of our study period, it should not have a major influence.

Similar results as in Figure 3 can be obtained if replacing
the CRU Tmax and cloud cover fraction with MODIS LST
(13:30) and cloud cover (Figure S4). Although MODIS
LST is retrieved under clear-sky conditions, the influence
of clouds and especially precipitation during cloudy days
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Figure 1. The linear trend of JJA 2000–2013 EVI, NDVI, ET and LST at 13:30. Data derived from MODIS satellite data. The green stippling
highlights the trends that are 90% confident. The stars show the location of Beijing city. Note that MODIS LST is the near-surface temperature
retrieved under clear-sky conditions, so it is less affected by cloud variations and shows stronger relationships with surface changes than the all-sky

2 m air temperature from stations (e.g. CRU data).

can be memorized by the land surface and brought to
clear-sky days.

4.2. Model simulations

Figure 4(a) shows that the model, without aerosol pro-
cesses, can simulate the observed interannual variability of

Tmax and Rs in North China quite well. This suggests that
aerosols do not have a major influence on their variability.
The simulated precipitation and ET are not so consistent
with observations, a common feature of most weather and
climate models. With changing vegetation cover, exper-
iment WRF_VEG simulates lower Tmax and higher ET
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Figure 2. MV-EOF analyses showing the dominant interannual variations of land cover and aerosols during JJA 2000–2013. Top panels are for
MODIS EVI and ET and bottom panels are for AOD from MODIS Terra and MISR Terra. Both the dominant EOF patterns and the associated PC

time series are shown. The percentage variance explained by each dominant mode is shown at the top right corner of the time series.
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Figure 3. MV-EOF analysis showing the interannual coupling of Tmax (CRU), cloud cover fraction (CRU) and surface incident solar radiation
(CERES) during JJA 2000–2013. (a) First mode. (b) Second mode. Top panels show the EOF patterns (unitless), and the bars in bottom panels show
the associated principal component (PC) time series. The green lines are (a) the PC1 time series of the two AOD products (Figure 2) and (b) the
PC1 time series of EVI and ET (Figure 2). The percentage variance explained by each mode are shown at the top left of the bottom panels, and the
correlations between the bars and green lines are shown at the top right of the bottom panels. Note that the MV-EOF in this figure is performed in a

smaller spatial domain than in Figure 2 in order to capture the EOF modes associated with both aerosols and vegetation.
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(a) (b)

Figure 4. Results from WRF experiments. (a) JJA 2000–2013 interannual anomaly (from 2000) of average Tmax, RS, precipitation, and ET over
North China (33∘ –42∘N, 112∘–123∘E; area in Figure 3) from two model experiments and observations. (b) The difference in Tmax and ET between
the two experiments (WRF_VEG−WRF_CTL) and the average LAI prescribed in the WRF_VEG experiment. The shadings show the stand errors
of the 14 ensemble members. The observational data for Tmax, Rs, precipitation and ET are from CRU, CERES, PREC/L and MODIS, respectively.
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Figure 5. Same as Figure 3 but for the variables from WRF_VEG experiment. WRF_CTL shows very similar results (not shown). The two green
lines are the same as in Figure 3.

than the control experiment WRF_CTL. Their differences
(WRF_VEG−WRF_CTL) are highly consistent with the
variation of LAI (Figure 4(b)). The spatial patterns of the
differences in surface temperature and ET are also very
similar to the pattern of LAI change (Figure S5). It is evi-
dent that the enhanced vegetation activity increases ET
and cools the surface. The differences in Rs and precipita-
tion between WRF_CTL and WRF_VEG are less signifi-
cant, but Rs decreases slightly and precipitation increases
slightly in WRF_VEG compared to WRF_CTL, an indi-
cation of slightly increased cloudiness.

To further compare the model results with observations,
we performed the same MV-EOF analysis as in Figure 3
but using the model output (Figure 5). The two experi-
ments show similar results, which capture the dominant
coupled variability of Tmax, cloud cover, and Rs, but the
second variability mode associated with vegetation and ET
variations is not captured. The model does not consider the
influence of varying aerosol concentrations, but the vari-
ability of the first mode, same as in observations, is still
very similar to that of AOD. This result, along with those
in Figure 4(a), indicate that this dominant variability is not
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Figure 6. Precipitation linear trend during JJA 2000–2013. (a) TRMM. (b) PREC/L. (c) Average of WRF_CTL ensembles. (d) Average of
WRF_VEG ensembles. The green stippling highlights the trends that are 90% confident. The green box encloses the region for MV-EOF analyses

(Figures 3 and 5).
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Figure 7. Same as Figure 6 but for ET. (a) MODIS ET. (b) ERA-Interim ET. (c) Average of WRF_CTL ensembles. (d) Average of WRF_VEG
ensembles.
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caused by aerosols, and the interannual variations of atmo-
spheric circulation may have controlled both this variabil-
ity and the variations of AOD in North China. It is found
that the cloud cover and AOD in North China are strongly
associated with the monsoon circulation (Figure S6). As
found in a previous study (Yan et al., 2011), a stronger East
Asian summer monsoon can lead to higher AOD and more
cloud and precipitation in North China, and the effect of
wet deposition is secondary.

For the second mode (Figure 5(b) vs Figure 3(b)), the
coupled patterns of the three variables and their interannual
variations are properly simulated, and the bias is mainly
in the decadal variation or trend, which is usually related
to some external forcing. This bias can be clearly seen
in the trends of precipitation (Figure 6) as wells as the
cloud cover (not shown) but the former has more accurate
and consistent observations. The observed dipole pattern
of precipitation trends in North China (increasing in the
north and decreasing in the south), which is similar to that
in the second mode of the MV-EOF analysis (Figure 3(b)),
is not simulated by both experiments. We also checked
each of the 14 ensemble members. Although some of them
show areas of stronger increasing trends of precipitation
in WRF_VEG than in WRF_CTL, none of them show the
observed dipole pattern of significant precipitation trends.
What is the source of this model bias?

Figure 7 shows the ET trends from a MODIS-based
product, ERA-Interim, and the two model experiments.
MODIS ET shows significant increasing trends in the tran-
sitional zone, which are not seen in ERA-Interim or the
experiment WRF_CTL, but the experiment WRF_VEG
produces the trends quite well. ERA-Interim was con-
strained by observations, but it did not consider the
changing vegetation cover, and its precipitation and ET
were produced by the assimilation model (not observed).
WRF_CTL also did not consider the changing vegetation.
These explain why ERA-Interim and CTL cannot produce
the observed ET trends. Although WRF_VEG produced
the observed increasing ET in the transitional zone, it
did not produce the increasing trend of precipitation
(Figure 6). This indicates that the model may not correctly
simulate the response of precipitation to ET, a key process
in land–atmosphere interactions. It is also possible that
the increasing trend of precipitation is not a result of the
increasing ET, and due to some model biases, both experi-
ments do not capture this trend. It is difficult to pinpoint the
exactly physical processes where the model has biases. It
could be in the parameterizations of the boundary layer, the
cumulus convection, or the microphysics. Nevertheless,
the differences in simulated precipitation trends are mainly
in North China, where the aerosol concentration is the
highest (Figure 6). This suggests that the lack of aerosols
processes in the model could be an important reason for
these differences. Although the aerosol concentration in
North China does not show a trend (Figure 2), aerosols
may influence the response of clouds and precipitation to
surface ET, and the influence of aerosol indirect effects on
convection and precipitation can be positive or negative,
depending on the atmosphere and cloud conditions (Koren

et al., 2008; Fan et al., 2009; Li et al., 2011; Niu and
Li, 2012) and aerosol composition (Fan et al., 2008). In
addition, aerosol direct effect can lead to heating in the
atmosphere and cooling at surface, which may affect the
regional atmospheric circulation (Wu et al., 2013a). Due
to the complex nature of the influence of aerosols on
precipitation and the high computational cost of aerosol
simulations, the exact influence of aerosols on the trends
of clouds and precipitation in North China will be left for
future study.

5. Concluding remarks

Land use and land cover change and air pollution are
two major environmental concerns of human society,
and they also influence long-term climate change. In
some regions, like North China, rapid urbanization and
industrialization have caused dramatically environmen-
tal changes. At the same time, large-scale man-made
afforestation was implemented in this region to mitigate
environmental consequences. Most previous studies have
focused on individual research topics, but few studies have
considered them together. Here we find that afforestation
not only reduces global warming in North China by
enhancing surface ET and but also probably interacts with
aerosols to modify regional hydrological and radiative
processes. Aerosols may influence land–atmosphere
interactions and change the results of long-term climate
projections. Current climate models have begun to include
detailed representations of aerosols and their direct and
indirect effects (Grell et al., 2005), but large uncertain-
ties remain and more work needs to be done (Ghan and
Schwartz, 2007). The complex land–atmosphere–aerosol
interactions should be paid more attention in future cli-
mate projections, especially in regions with high aerosol
concentrations.
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