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Anintensified hydrological cycle with global warming is expected to

increase the intensity and frequency of extreme precipitation events.
However, whether and to what extent the enhanced extreme precipitation
translates into changesinriver floods remains controversial. Here we
demonstrate that previously reported unapparent or even negative

responses of river flood discharge (defined as annual maximum discharge)
to extreme precipitationincreases are largely caused by mixing the signals
of floods with different generating mechanisms. Stratifying by flood type,

we show a positive response of rainstorm-induced floods to extreme
precipitationincreases. However, this response is almost entirely offset
by concurrent decreases in snow-related floods, leading to an overall
unapparent change in total global floods in both historical observations
and future climate projections. Our findings highlight anincreasing
rainstorm-induced flood risk under warming and the importance of
distinguishing flood-generating mechanisms in assessing flood changes
and associated social-economic and environmental risks.

Global warming is the most widely recognized signature of anthro-
pogenic climate change and has profoundly affected the Earth’s
hydrologic system and increased the risks of hydrometeorological
natural hazards'?. Observational evidence and climate model projec-
tions consistently suggest widespread increasesin the frequency and
magnitude of extreme precipitation in response to warming-induced
increases in atmospheric water-holding capacity®, whichis expected
tointensify river flooding”®. However, direct assessments of historical
floods do not always support this assertion: observations of historical
floods show both increasing and decreasing trends at the regional
scale with little systematic change globally’™", and the global patterns
of flood-temperature scaling relationships remain controversial'*2°,
Theinconsistency inthe relationship between extreme precipitation

and flooding with temperature highlights the challenge in predicting
the risk of flooding and the consequent economic and social losses
under future warming.

Conventionally, flood changes are often assessed without
considering flood types throughout the entire study period and
domain (quantified either by annual maximum approach™* or
peaks-over-threshold approach’). However, flooding is a com-
plex physical process that involves interactions among hydrol-
ogy, meteorology and land surface features, and can be triggered
by multiple mechanisms? > (for example, intense rainfall,
long-lasting and low-intensity rainfall, rain-on-snow and snow-
melt). Even for the same catchment, the generating mechanism
of floods may vary over time®>. Assessments without considering
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flood types may mix the signals of changes in floods driven by dif-
ferent mechanisms, which could directly lead to erroneous con-
clusions regarding how flood changes with various driving factors
(for example, storm, snowmelt, soil moisture, land cover change)
under warming'®,

To address this issue and advance a predictive understanding
of flood changes under historical conditions and future warming,
we first categorize a total of 246,170 annual maximum flood events
(thatis, events with annual maximum streamflow from 1950 to 2017)
in 7,239 catchments globally over the past seven decades into differ-
ent flood types (Supplementary Figs.1-5). A classification algorithm
is developed and applied to categorize flood events into four types.
This algorithm consists of a decision tree that defines the dominant
driving factors of each flood type and a statistical clustering algo-
rithm that determines the classification thresholds (see Methods).
The four flood types include (1) intense rainfall-induced maximum
flood (IR-MF), (2) excessive soil moisture-induced maximum flood
(ES-MF), (3) snowmelt-induced maximum flood (SM-MF) and (4)
rain-on-snow-induced maximum flood (RS-MF). These event-based
flood types are used to determine the dominant flood type for each
catchment on the basis of which all catchments are stratified into
four groups for long-term trend analysis. We then investigated the
historical evolutions of different types of flood and their relation-
ships with changes in extreme precipitation under warming. Using
the latest climate projections from state-of-the-art climate mod-
els participating in the Coupled Model Intercomparison Project 6
(CMIP6), we lastly explored the translation of enhanced extreme
precipitation under future warming to changes in floods by com-
paring their trends and the shifts in scaling relationships with tem-
perature (Supplementary Fig. 6). The overall goal is to clarify and
reconcile the disagreements on global river flood changes under a
warming climate.

Classification of flood types

During the past decades, the annual maximum flood events show sub-
stantial disparities in flood type across catchments and the propor-
tions of each flood type in individual catchments (Fig. 1a-d). IR-MFs,
ES-MFs, SM-MFs and RS-MFs occurredin 93.5%, 92.4%,56.8% and 77.8%
of the 7,239 catchments, respectively. Over 94.3% of the catchments
experienced multiple types of flood. For all the identified flood events,
IR-MF, ES-MF, SM-MF and RS-MF accounted for 31.4%, 27.2%,19.8% and
21.6%, respectively.

Different flood types exhibit diverse spatial patterns, with IR-MFs
mainly occurring in low and mid latitudes of North America, south-
western Europe and most catchments in the Southern Hemisphere
(Fig. 1a). The proportion of ES-MFs broadly follows that of IR-MFs,
butamuchhigher proportion of ES-MFs was found in the tropics and
western Europe (Fig. 1b). In contrast, high proportions of snow-related
floods (SM-MFs and RS-MFs) were generally found in high latitudes
and mountainous regions (for example, the Alps Mountains and the
Rocky Mountains extending from eastern Alaskato the southwestern
United States; Fig. 1c,d). These patterns are generally consistent
with global/regional flood classifications conducted previously,
especially in the United States and Europe®**, despite slight differ-
ences in the classification results between IR-MF and ES-MF due to
different definitions of antecedent catchment wetness conditions®.
Additionally, the classified type of floods also aligned well with com-
mon understandings of the timing for each flood type, for example,
snow-related floods mainly occurred in late winter and spring, while
IR-MFs dominated in summer and autumn (Supplementary Fig. 7). We
further divided the 7,239 catchments into four groups on the basis of
their dominant flood type (that is, the flood type showing the high-
est proportion of occurrence; Fig. 1e), and the ratios of catchments
dominated by IR-MFs, ES-MFs, SM-MFs and RS-MFs accounted for
34.9%,22.7%,21.8% and 20.6%, respectively.

Historical changesin different types of flood

We examined historical changes in flood magnitude (annual maximum
streamflow) and extreme precipitation (annual maximum precipita-
tion) during the period 1950-2017 in the 7,239 catchments. The spatially
aggregated annual maximum floods (by calculating the time series of
annual maximum streamflow at each catchment and then averaging the
values across all catchments) showed aminor and non-significant trend
(0.10 mm d decade™, P=0.11) over the past 68 yr (Fig. 2a), despite a
significant increasing trend in the aggregated annual maximum pre-
cipitation (0.42 mm d decade™, P< 0.01). However, such results differ
amongindividual flood types (Fig. 2d-g). Specifically, the aggregated
IR-MFs showed a significant upward trend over the past decades at a
rate of 0.21mm d™ decade™ (P < 0.01). Similarly, a positive trend was
found for ES-MFs, with an non-significant rate of 0.07 mm d " decade™
(P=0.13).In contrast, SM-MFs and RS-MFs both experienced decreasing
trendsatarate of-0.12mm d™ decade™ (P < 0.01) and -0.11 mm d ™" dec-
ade™(P=0.13), respectively. Evidently, the increasing trends in IR-MFs
and ES-MFs have largely been offset by the concurrent decreasing
trends in SM-MFs and RS-MFs, leading to an overall minor change in
the annual maximum floods over the past 68 yr. The robustness of this
findingis further confirmed by uncertainty analyses of the impacts of
variationsin flood classification thresholds and catchment samples on
the aggregated trend analysis (Supplementary Texts1and 2).

We next investigated the trends in annual maximum flood and
precipitation in individual catchments (Fig. 2b,c). Increased annual
maximum precipitation was found in most of the catchments (70.1%),
and this increase almost equally occurred in the four groups of catch-
ments dominated by different types of flood (Fig. 2b). As for changes
infloods, the number of catchments showing a positive change more
or less equalled that showing a negative change (50.6% versus 49.4%).
However, 64.5% (20.9%) of IR-MF dominated catchments and 60.8%
(18.8%) of ES-MF dominated catchments showed significantly increased
floods during the study period (Fig. 2c and Supplementary Fig. 8b). In
comparison, only 32.6% (10.2%) and 43.2% (14.5%) of SM-MF and RS-MF
dominated catchments exhibited significant increases in floods. In
the catchments with increased extreme precipitation, the propor-
tion of catchment agreeing on the direction of the positive change
in floods and extreme precipitation is 72.3% (IR-MF), 65.5% (ES-MF),
34.5% (SM-MF) and 47.4% (RS-MF), respectively, for the four groups
of catchments. This indicates that whether intensified extreme pre-
cipitation translates into an increase in flooding depends greatly on
the dominant flood type (different flood-generating mechanisms) at
theregional scale.

To further explore the relationship between changes in floods
and extreme precipitation during the historical period, we com-
pared the scaling curves of streamflow (Q) with air temperature (7)
and precipitation (P), with T referred to as the Q-T and P-T scaling
curve, respectively. A ‘hook’-like structure (or peak structure) has
been widely reported for the scaling curve of P-T%*, which features
a peak point temperature (7,...») at which the extreme percentile
of daily Preaches its peak during a given period (Supplementary
Fig.6a). Asimilar structure and peak point temperature (7,c,.q; SUp-
plementary Fig. 6¢) has also been found for the scaling curve of Q-T7.
When comparing the peak point temperatures of the scaling curves
(Tpearp@nd Toeq o) at the catchments, agood agreement between 7,y
and T,...o mainly appears in regions where floods are dominated by
IR-MF and ES-MF, with a Pearson correlation coefficient (R) of 0.62
(P<0.01) and 0.59 (P < 0.01) (Supplementary Fig. 9), respectively.
Additionally, the correlation between T,,.pand T, increases with
the proportions of these two flood types (Fig. 3¢,d). For example, for
catchments with proportion of IR-MF (or ES-MF) larger than 75%, the
correlation coefficientis as high as 0.85 (or 0.82). Evidently, the Q-T
relationship closely follows the P-Trelationship, and the peak of Qis
largely controlled by the peak of Pin these catchments. In contrast,
the correlations between 7., and T, are rather weak (and are
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Fig.1| Classification of annual maximum flood events in the 7,239
catchments. a-d, Proportions of four types of flood event, IR-MF (a), ES-MF (b),
SM-MF (c) and RS-MF (d), inindividual catchments. The grey points represent

Type

SM-MF RS-MF

catchments with a zero proportion of a specific flood type. e, Spatial distribution
of four groups of catchments classified on the basis of their dominant flood type
(thatis, the flood type showing the highest proportion of occurrence).

even negative) in catchments dominated by snowmelt-related floods
(Fig. 3e,f and Supplementary Fig. 9), with 7., generally concen-
trated in a relatively narrow range around 5 °C (which should be
the temperature at which the catchments experience substantial
snowmelt”) despite large variations in 7, In this case, it is easy
to understand the inconsistency in changes of floods and extreme
precipitationinthese regions as the generation of floods is not neces-
sarily related to extreme precipitation.

Flood changes under future warming

To explore changes in floods under future warming, we used outputs
from 11 CMIP6 models from 1950 to 2100 (1950-2014 for historical
simulations and 2015-2100 for future projections under the SSP585 and

SSP245 scenarios). First, model performanceinreproducing floods and
extreme precipitation was assessed by comparing with observations
(Supplementary Text 3). Although the models capture flood dynam-
ics less well than extreme precipitation at the catchment scale, the
ensemble model outputs broadly capture the magnitudes of mean
annual maximum Q (Supplementary Fig. 16), the direction of changesin
annual maximum Q (Supplementary Fig.17) and the outcomes of flood
classification (Supplementary Fig. 18) on the basis of observations in
validation catchments. Furthermore, therelationships between T,.;.»
and T, for the four groups of catchments dominated by different
types of flood are similar between model outputs (Supplementary
Fig.19) and observations. These results indicate that the models are
generally capable of capturing the observed key responses of floods
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Fig. 2| Changes in annual maximum flood and precipitationin the 7,239
catchments from 1950-2017. a, Time series of annual maximum precipitation
and streamflow averaged over all catchments from 1950 to 2017. Shaded bands
indicate the spatial variability among catchments (25th and 75th percentiles).
Solid lines show the smoothed time-series data (three-year moving averages).
Dashed lines represent the fitted trends estimated using linear regression with
time as the dependent variable, with significance level (two-tailed Student’s
t-test) indicated. b,c, Spatial patterns of trends in annual maximum precipitation

(b) and flood (c) inindividual catchments. Insert bars represent the proportions
of catchments with positive trends (both significant and non-significant) in four
groups of catchments, with the proportions of catchments showing significant
trends provided in Supplementary Fig. 8a,b. d-g, Time series of annual maximum
precipitation and flood averaged over four groups of catchments classified on
the basis of the dominant flood type, IR-MF (d), ES-MF (e), SM-MF (f) and RS-MF
(g). The shaded bands, solid lines and dashed lines are similarly defined asina.

to climate change during the historical period and can thus be used to
extrapolate these responses into the future.

Global changes in floods and extreme precipitation from the
past to the future (under high-emission scenario SSP585) based on
multi-model ensemble outputs are illustrated in Fig. 4. The upward
trend in annual maximum precipitation observed in the historical

period would persistinto the future across most parts of the globe atan
average rate of 1.62% decade™. By contrast, the trend in floods exhibits
mixed spatial patterns under future warming. Significant increases
in floods are projected to occur in vast areas of mid and low latitudes
(Fig. 4b) that are generally dominated by IR-MFs (Fig.1a and Extended
DataFig.1a) and ES-MFs (Fig.1b and Extended Data Fig.1b). In Australia,
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the eastern United States, southern South America, East-South Asia
and Africa, the relative increase in floods is even higher than that of
extreme precipitation (Fig. 4c). However, at highlatitudes (for example,
majority of Europe and northern North America) and some mountain-
ous regions (for example, the Rocky Mountains in North America)
where SM-MF and RS-MF tend to dominate (Fig. 1c,d and Extended Data
Fig.1c,d), the projected floods show a decreasing trend over the same
period (Fig. 4c). The concurrent positive (a trend of 2.01% decade™
for IR-MFs and 1.52% decade™ for ES-MFs) and negative (a trend of
-0.79% decade™ for SM-MFs and —0.25% decade™ for RS-MFs) flood
changes, when combined, result in a relatively small overall trend
(0.72% decade™). Similar results have been found on the basis of model
outputs under low-emission scenario (SSP245; Extended Data Fig. 2),
demonstrating again that warming-induced increases in extreme pre-
cipitationdo translate intoincreased floods over many regions except
for areas where floods are primarily triggered by snowmelt.

We further investigated the shifts in P-T and Q-T scaling curves
(quantified by the shiftsin peak points of the curves) from the historical
(1950-2014) to the future (2015-2100) periods (Fig. 5and Supplemen-
tary Fig.11). The P-T'scaling curves show positive shift rates over most
of the globe (-95%; Fig. 5a), with an average value of 4.9% °C" under
high-emission scenario (Fig. 5b), againindicating increasing extreme
precipitation withrising temperature. Atmid and low latitudes where
IR-MFs and ES-MFs dominate, the shifts in Q-T scaling curves follow
those of the P-Tscaling curves over most regions (Fig. 5b,c), with~75% of
areas exhibiting a positive shift rate, whichindicatesrising streamflow
extremes under warming (Fig. 5a). At high-latitude regions dominated
by snow-related floods, the shift in Q-T scaling curves also exhibits a
positive rate in more than 50% of the regions, while only ~30% of the

areas in these regions show a positive trend in streamflow extremes
under warming (Fig. 5a), with an overall decreasing trend (Fig. 4f,g).
We found that the positive (or high) shift rate therein does notindicate
alargeincreaseinfloods under warming as itis mainly contributed by
the small (or even negative) changes in 7., (Extended Data Fig. 3)
instead ofincreasesin floods. The P-Tand Q-T'scaling curves and their
peak points show substantial differences in these regions (Fig. 3e,f),
and so do the shiftsinthe scaling curves. Evidently, one should be cau-
tious when using the scaling relationships to quantify and/or compare
the response of extreme precipitation and streamflow to warming in
regions where floods are related to snow. It again underscores the
importance of considering region-dependent flood generation mecha-
nisms when assessing flood changes under climate change.

Discussion

Existing assessments of historical flood changes did not reveal an
overwhelming flood increase in response to widespread increases in
extreme precipitation induced by warming’™. However, our results
clearly demonstrate that the relationship between changesin extreme
precipitation and changes in floods under global warming, and the
resulting flood risks would be largely misinterpreted without consider-
ing the flood types. Here we present evidence that warming-induced
increased extreme precipitation did translateintoincreased river floods
in regions where rainstorm-induced floods dominate (for example,
southeastern United States, western Europe, south of South America;
Fig. 2c), whichis further supported by the consistency in the P~-Tand
Q-Tscaling relationships therein (Fig. 3¢,d). This positive response
of floods to extreme precipitation will persist into the future across
these regions, with an accelerating trend in flooding as projected by
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Fig.4|Changesinflood and extreme precipitation from the historical to

the future period. a, Time series of annual maximum precipitation (P) and
streamflow (Q) averaged over the global land area from the historical (1950-2014
under historical forcing) to the future (2015-2100 under the SSP585 scenario)
period based on the outputs of 11 CMIP6 models. Shaded bands represent the
variation by individual model. The trends were estimated on the basis of the
ensemble mean of model outputs using linear regression, with significance level

(atwo-tailed Student’s t-test) indicated. b,c, Global patterns of the trends in
annual maximum P (b) and Q (¢) from 1950 to 2100. The whitespace represents
dry lands with very limited run-off. d-g, Time series of annual maximum Q
averaged over regions dominated by different flood types, IR-MF (d), ES-MF
(e), SM-MF (f) and RS-MF (g). The shaded bands, solid lines and dashed lines are
similarly defined asina.

climate models (Fig. 4d,e), suggesting an increasing flood risk under
future warming.

In contrast, regions dominated by snowmelt-related floods expe-
rienced opposite changesin floods and extreme precipitation during
the historical period, that s, reduced floods with increasing extreme
precipitation (Fig. 2f,g), which would offset the increasing trends of
rainstorm-induced floods when lumping floods of different types

(Figs.2aand 4a). Asillustrated by the differencein their scaling relation-
ships withtemperature (Fig. 3e,f), the generation of snowmelt-related
floods, which are greatly affected by variations in snow accumulations®
and/or shortened snow duration® as the climate continues towarm, is
not directly related to extreme precipitation. In this case, it would be
misleading to extrapolate flood risks in the future on the basis of the
changesin extreme precipitation (Figs.4 and 5). However, it should also
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be noted that a decrease in snowmelt-related flood magnitude (peak
streamflow) does not necessarily lead to reduced flood risks in these
regions. Studies reported that historically snow-dominated mountain-
ousregionstend to shift from spring snowmelt-driven events towards
more frequent rainstorm-dominated winter floods*. The shiftsin the
timing of snowmelt also have major impacts on flood controls, water
resources management and aquatic/riparian ecosystems™.
Inaddition to the contrasting changes between rainstorm-induced
floods and snow-related floods, we also observe differences between
changesin IR-MF and ES-MF, and between changes in SM-MF and RS-MF.
Compared with IR-MF, ES-MF may be more susceptible to changes
in soil moisture, especially antecedent soil moisture®>*. Declines
in soil moisture may partly offset the positive response of ES-MF to
increased precipitation and therefore result in smaller increases in
ES-MF?*, RS-MF exhibits a more complicated change pattern than
the other three flood types as it involves both extreme precipitation
and snowmelt process. Besides, studies found that changes in RS-MF
under warming are also related to elevation that affects the develop-
ment of snowpack®. Snowmelt was estimated by asimple degree-day
model in this study, this model probably introducing uncertainty in
classifying these two types of snowmelt-related flood. A more accu-
rate classification between SM-MF and RS-MF with higher-resolution
snowmelt observations and/or more physically based snowmelt models
would reduce the uncertainty. Furthermore, this study focused on
annual peak flow, whereas literature has shown that climate change
may have differentimpacts on floods of varying magnitudes’, which
may differ in terms of flood-generating mechanisms. Future work on
floods of different magnitudes using the framework of this study will

provide a more complete picture of the impact of climate change on
flood risk.

In summary, the generation of floods is highly complex and
involves nonlinear interactions among climate, landscape and the
hydrological system'*? %, Abetter understanding of such interactions
is a prerequisite for identifying/attributing the changing signals in
flood records and forecasting future changesin flood risks in a chang-
ing climate. This study reconciles the previous controversial findings
on global flood trends under warming by revealing diverse changing
signals of floods with different generating mechanisms and their rela-
tionships withwarming-induced increases in extreme precipitation. It
highlights theimportance of distinguishing flood types for understand-
ing the effect of warming on the occurrence of hydrological extremes,
and provides consequential information for flood risk assessment and
policy interventions for water-related disaster management under a
changing climate.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
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Methods

Historical observations

Daily streamflow (Q) observations in 7,239 catchments (and their
boundaries) across the globe (Supplementary Fig. 1) from 1950 t0 2017
were obtained from a global streamflow collection®**, which consists
of streamflow records from more than 20,000 catchments worldwide.
The 7,239 catchments were chosen subject to the following selection
criteria. First, the catchments should have daily Q records for at least
30 yr during 1950-2017. Second, the catchment areas are larger than
100 km?*to encompass at least one grid cell of the meteorological data-
sets (at -9 km spatial resolution) and smaller than 100,000 km?. Third,
the catchments should have a minimum impact from humaninterven-
tions, including reservoir, urban afforestation/deforestation and water
transfer. Thus, catchments with (1) reservoirs and dams whose reservoir
capacity is larger than 10% of the mean annual Q (based on the Global
Reservoir and Dam database v1.01)*, (2) urban areas larger than 5%
(based onthe GlobCover v2.3 map) and (3) areas with afforestation or
deforestation larger than 10% (based on 30 m Landsat imagery from
2000 to 2013)*, and (4) problematic water balance closure (that is,
mean annual streamflow higher than mean annual precipitation, or
the sum of mean annual streamflow and potential evapotranspiration
lower than mean annual precipitation) are excluded.

Global hourly precipitation, volumetric soil water and 2 m air
temperature from1950-2017 were obtained from the ERAS-Land hourly
dataset**, with a spatial resolution of 0.1°. These gridded data were
further upscaled to daily resolution and aggregated for individual
catchments by averages and/or accumulations of the grids covered
by the catchments. Snowmelt was estimated according to Hock’s sim-
ple degree-day model* using daily precipitation and temperature
data, with the temperature threshold and melt rate set at 274.5 K and
2mmd™ K™ according to previous studies®.

CMIP6 model simulations

We used outputs from 11 climate models participating in CMIP6*
under historical forcing (1950-2014) and future emission scenarios
(2015-2100; a high-emission scenario of SSP585 and a low-emission
scenario of SSP245). The 11 CMIP6 models are MIROC-ESM2-0, MIROC6,
GFDL-CM4, ACCESS-CM2, ACCESS-ESM1-5, INM-CM4-8, INM-CM5-0,
IPSL-CM5A-LR, EC-Earth3, CMCC-CM2-SR5and CMCC-ESM2. We used
daily outputs of air temperature, precipitation and run-off. All outputs
from the models were spatially resampled on a1° x 1° grid using the
first-order conservative remapping scheme*’. When comparing the
modelled run-off with catchment observations, small catchments
located close to each other may share the same grids, so we only used
observations at catchments larger than 5,000 km? (857 catchments)
for model validation.

Identification of flood events

The event identification method used in this study consists of four
steps (Supplementary Fig. 2): (1) base flow separation, (2) identifica-
tion of initial starts and ends of events, (3) refinement of the event
starts and (4) estimation of the identification parameter. We used
the one-parameter filter method*® to separate base flow from daily
streamflow. The recession constant of the method was quantified for
each catchment using the Brutsaert-Nieber method*’ applied with
the automatic base flow identification technique developed in ref.*°.
Wethenidentified individual flood events by locating their start-and
endpoints. To achieve this, we firstidentified the local turning points
(local peaks and valleys) of the hydrograph. The point with a higher
(lower) flow than its preceding and following points was defined as
the local peak (valley). The initial start-point was identified as the
closest valley before the peak (peak of annual flow within a calendar
year) when the total flow was initially higher than the base flow, while
the end of an event was set at the first point on the falling limb of
the hydrograph at which the quick flow fell below 10% of the peak

quick flow. Subsequently, we identified whether there was another
potential start-point on the rising limb (from the initial start-point
to the peak) that was also the endpoint of a small run-off event (for
example, the event marked in bluein Supplementary Fig. 2c) preced-
ing the objective flood event with annual peak flow (for example, the
event markedinredinSupplementary Fig. 2c). This refined start-point
should be located at the local valley where the quick flow was lower
than a certain percentage (defined as the refinement threshold) of
the maximum quick flow before it. Then, we compared the differ-
ence (quantified by standard deviation) in the run-off coefficients of
flood events with and without small run-off events being removed.
The value of the refinement threshold was determined on the basis
of the assumption that a smaller difference in run-off coefficients of
flood events would be achieved by removing small run-off events that
should be treated as independent events with different run-off coef-
ficients®2, Total daily rainfall during the rising period of the event
(the period from the beginning of the event until the day when peak
flow was observed) plus the rainfall-streamflow response period (time
lag between rainfall and streamflow response®®) was used to estimate
run-off coefficient for each event. For the regions with snowmelt, the
sum of rainfall and snowmelt was calculated as the effective rainfall
toidentify flood events.

We further quantified event characteristics listed in Supplemen-
tary Table1for all the identified flood events (in total 246,170 events).
These characteristics provide information on the rainfall, snowmelt
and soil moisture dynamics preceding and during the flood events,
which point to the triggers of events and were used as the indicators
for the classification of flood types.

Classification of flood types

We classified the identified annual maximum flood events into four
types, including: (1) IR-MF, occurring after short and high-intensity
rainfall that rapidly fills the storage capacity or exceeds the infiltra-
tion capacity; (2) ES-MF, characterized by large amounts of rainfall
over several days preceding the flood event and high antecedent soil
moisture storage; (3) SM-MF, triggered by heavy snowmelt without (or
with minor) rainfall; and (4) RS-MF, caused by high-intensity rainfall as
well as slight snowmelt.

Hydrological classification of flood events based on hydrome-
teorological forcing within catchments (for example, rainfall and
snowmelt) and catchment states (for example, soil moisture) is one
of the most commonly used methods for flood typology**. It can be
further categorized into two approaches: the decision tree”*>*** and
the statistical clustering algorithm®>*¢. In this study, we combined these
two approaches to classify flood types by first constructing a deci-
siontree to define the criteriafor each flood type, this tree consisting
of decision attributes and the attribute thresholds (Supplementary
Fig. 4 and Table 1). The characteristics of each flood event were com-
pared with the corresponding threshold values to decide which
sub-group it belongs to. However, instead of predefining the thresholds
subjectively, wefirst set the ranges of thresholds, that is, the 25th-75th
percentile of the corresponding characteristics of all events (Sup-
plementary Table 2). Then, we used a global optimization algorithm
(SCE-UA)* to search for the optimal sets of thresholds with which
the optimal clustering performance would be achieved. The cluster-
ing performance was evaluated by the Calinski-Harabasz index*®, a
similarity index that quantifies the similarities within groups and the
differences between groups, with a higher index representing better
clustering performance. Combining the two approaches, the subjec-
tivity of threshold determination could be minimized to some extent,
and thebuilt decision tree could help to better interpret classification
results. A flowchart of the methodology used to categorize the flood
events into four different typesisillustrated in Supplementary Fig. 5.
The resulting classification thresholds (one set of thresholds for all
catchments) are provided in Supplementary Table 2.
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Long-term trend analysis

We first created the long-term annual maximum precipitation and
streamflow time series from available observations and CMIP6 models
for the study period. We then estimated the linear trend of annual time
series over the study period using the least squares fitting. A two-tailed
Student’s ¢-test was used to quantify the probability that the trend
is statistically significantly different from zero. Trend analysis was
performed for catchment/grid scale time series data and spatially
aggregated time series data (that is, annual maximum precipitation
and streamflow time series averaged across all catchments/grids or
across the four groups of catchments/grids based on flood types).

Scalingrelationship of precipitation and streamflow with
temperature

The historical day-to-day sensitivities of precipitation and/or stream-
flow with temperature, defined as the scaling relationship, have been
widely applied to project extreme precipitation and/or flooding for
a future warmer climate®’?, Taking the precipitation and tempera-
ture (P-T) scaling relationship as an example, we first stratified the
daily precipitation of each catchment/grid within the analysis period
according to the corresponding near-surface air temperature at the
same catchment/grid in bins of equal width (a temperature bin size of
0.5°C was used here). Then, a high-precipitation quantile (the 99th
percentile) within each temperature bin was estimated to create ascal-
ing curve thatrelates these estimated conditional quantiles to the aver-
age temperature of each bin (Supplementary Fig. 6). The peak point
of the scaling curve was identified by applying the locally weighted
scatterplot smoothing method*’. However, it should be noted that
previous studies have also pointed out that the ‘hook’-like structure (or
peaksstructure) of the scaling curve might be rectified using sub-daily
data®. The same steps were implemented to obtain the scaling curves
of streamflow with temperature.

To explore changes in the scaling relationships of precipitation
and streamflow with temperature under future warming, we investi-
gated the shiftinscaling curves between epochs, where one epoch (the
period 2015-2100 under SSP585/SSP245 scenario) was warmer than the
other (the1950-2014 period under historical forcing). Referring to the
method appliedin ref. %, the shift rate (a,, % °C™) was quantified by the
change in the peak points of the two scaling curves (Supplementary
Fig. 6b) using the following equation:

'“(Péeak)’l"(";l:eak)
2 1
ap = | e Teak—rheakr | %100 @)
1 2 i -
where T caker and T2 ai_p YEPTESENE the temperature at which the pre

cipitation percentile in the scaling curve reaches the peak, P; and

eak
Pgeak, under historical and future climates, respectively. The same
method was used to quantify the shift rate of the Q-T scaling curves

under warming (Supplementary Fig. 6d).

Data availability

The streamflow records were obtained from the Global Runoff Data
Centre (http://www.bafg.de/GRDC), the United States Geological
Survey GAGES-II database (https://www.sciencebase.gov), the Water
Survey of Canada Hydrometric Data (HYDAT; https://www.canada.
ca/en/environment-climate-change), the Catchment Characterisa-
tion and Modelling-Joint Research Centre database (https://ccm.
jrc.ec.europa.eu/), the HidroWeb portal of the Brazilian Agéncia
Nacional de Aguas (http://www.snirh.gov.br/hidroweb), the Aus-
tralian Bureau of Meteorology (http://www.bom.gov.au/water-
data) and the Chilean Center for Climate and Resilience Research
(http://www.cr2.cl/datos-de-caudales/). The Global Reservoir and
Dam database is available at https://sedac.ciesin.columbia.edu/
data/set/grand-vl-dams-revO1. The GlobCover v2.3 map is available

at http://due.esrin.esa.int/page_globcover.php. The Global forest
change dataset is available at http://earthenginepartners.appspot.
com/science-2013-global-forest. The ERA5-Land dataset is available at
https://www.ecmwf.int/en/era5-land. The CMIP6 data can be accessed
through the Earth System Grid Federation (ESGF) system (https://
esgf-node.linl.gov/search/cmip6/).

Code availability
The code® used as the basis for this study is available at https://doi.
org/10.5281/zenodo.7319421.
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Extended Data Fig. 1| Global classifications of annual maximum flood 2014 under historical forcing. e, Regions dominated by different types of
events based on CMIP6 outputs. a-d, Global proportions of four flood types, floods (that s, the flood type showing the highest proportion of occurrence

IR-MF (a), ES-MF (b), SM-MF (c), and RS-MF (d), based on the ensemble mean of for eachregion).
classification outcomes for individual CMIP6 models using outputs from 1950 to
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Extended Data Fig. 2| Changes in flood and extreme precipitation from the
historical to the future period (SSP245 scenario). a, Time series of annual
maximum precipitation (P) and streamflow (Q) averaged over the global land
area from the historical (1950-2014 under historical forcing) to the future
(2015-2100 under SSP245 scenario) period based on the outputs of 11 CMIP6
models. Shaded bands represent the variation by individual models. The trends
were estimated based on the ensemble mean of model outputs using linear

regression with significance level (a two-tailed student’s ¢ test) labeled in the
panel. b-c, Global patterns of the trends of annual maximum P (b) and Q (c) from
1950 t02100. The whitespace represents the dry lands with very limited runoff.
d-g, Time series of annual maximum Q averaged over regions dominated by
different flood types, IR-MF (d), ES-MF (e), SM-MF (f), and RS-MF (g). The shaded
bands, solid lines and dotted lines are similarly defined as those in panel a.
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Extended Data Fig. 3| Changes in peak point temperatures of the P~Tand
Q-Tscaling curves from the historical to the future period (SSP585 scenario).
a, Comparison between the changes in peak point temperatures of the P-T

and Q-T scaling curves (Tje,.p and Ti,,.) averaged over regions dominated by
different flood types based on the outputs of 11 CMIP6 models from the historical

Temperature change (°C)

(1950-2014 under historical forcing) to the future (2015-2100 under SSP585
scenario) period. Error bars indicate the variations among 11 models (mean value
+onestandard deviation). b-c, Global spatial patterns of the changes in 7., (b)
and T,,q (€) from the historical to the future period.
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