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Reconciling disagreement on global river 
flood changes in a warming climate

Shulei Zhang    1 , Liming Zhou    2, Lu Zhang    3,4, Yuting Yang    5, 
Zhongwang Wei    1, Sha Zhou    6, Dawen Yang    5, Xiaofan Yang    6, 
Xiuchen Wu    6, Yongqiang Zhang    7, Xiaoyan Li    6 & Yongjiu Dai    1 

An intensified hydrological cycle with global warming is expected to 
increase the intensity and frequency of extreme precipitation events. 
However, whether and to what extent the enhanced extreme precipitation 
translates into changes in river floods remains controversial. Here we 
demonstrate that previously reported unapparent or even negative 
responses of river flood discharge (defined as annual maximum discharge) 
to extreme precipitation increases are largely caused by mixing the signals 
of floods with different generating mechanisms. Stratifying by flood type, 
we show a positive response of rainstorm-induced floods to extreme 
precipitation increases. However, this response is almost entirely offset 
by concurrent decreases in snow-related floods, leading to an overall 
unapparent change in total global floods in both historical observations 
and future climate projections. Our findings highlight an increasing 
rainstorm-induced flood risk under warming and the importance of 
distinguishing flood-generating mechanisms in assessing flood changes 
and associated social-economic and environmental risks.

Global warming is the most widely recognized signature of anthro-
pogenic climate change and has profoundly affected the Earth’s 
hydrologic system and increased the risks of hydrometeorological 
natural hazards1,2. Observational evidence and climate model projec-
tions consistently suggest widespread increases in the frequency and 
magnitude of extreme precipitation in response to warming-induced 
increases in atmospheric water-holding capacity3–6, which is expected 
to intensify river flooding7,8. However, direct assessments of historical 
floods do not always support this assertion: observations of historical 
floods show both increasing and decreasing trends at the regional 
scale with little systematic change globally9–17, and the global patterns 
of flood–temperature scaling relationships remain controversial18–20. 
The inconsistency in the relationship between extreme precipitation 

and flooding with temperature highlights the challenge in predicting 
the risk of flooding and the consequent economic and social losses 
under future warming.

Conventionally, flood changes are often assessed without 
considering flood types throughout the entire study period and 
domain (quantified either by annual maximum approach12–15 or 
peaks-over-threshold approach9–11). However, flooding is a com-
plex physical process that involves interactions among hydrol-
ogy, meteorology and land surface features, and can be triggered 
by multiple mechanisms21–25 (for example, intense rainfall, 
long-lasting and low-intensity rainfall, rain-on-snow and snow-
melt). Even for the same catchment, the generating mechanism 
of floods may vary over time22. Assessments without considering 
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Historical changes in different types of flood
We examined historical changes in flood magnitude (annual maximum 
streamflow) and extreme precipitation (annual maximum precipita-
tion) during the period 1950–2017 in the 7,239 catchments. The spatially 
aggregated annual maximum floods (by calculating the time series of 
annual maximum streamflow at each catchment and then averaging the 
values across all catchments) showed a minor and non-significant trend 
(0.10 mm d−1 decade−1, P = 0.11) over the past 68 yr (Fig. 2a), despite a 
significant increasing trend in the aggregated annual maximum pre-
cipitation (0.42 mm d−1 decade−1, P < 0.01). However, such results differ 
among individual flood types (Fig. 2d–g). Specifically, the aggregated 
IR-MFs showed a significant upward trend over the past decades at a 
rate of 0.21 mm d−1 decade−1 (P < 0.01). Similarly, a positive trend was 
found for ES-MFs, with an non-significant rate of 0.07 mm d−1 decade−1 
(P = 0.13). In contrast, SM-MFs and RS-MFs both experienced decreasing 
trends at a rate of −0.12 mm d−1 decade−1 (P < 0.01) and −0.11 mm d−1 dec-
ade−1 (P = 0.13), respectively. Evidently, the increasing trends in IR-MFs 
and ES-MFs have largely been offset by the concurrent decreasing 
trends in SM-MFs and RS-MFs, leading to an overall minor change in 
the annual maximum floods over the past 68 yr. The robustness of this 
finding is further confirmed by uncertainty analyses of the impacts of 
variations in flood classification thresholds and catchment samples on 
the aggregated trend analysis (Supplementary Texts 1 and 2).

We next investigated the trends in annual maximum flood and 
precipitation in individual catchments (Fig. 2b,c). Increased annual 
maximum precipitation was found in most of the catchments (70.1%), 
and this increase almost equally occurred in the four groups of catch-
ments dominated by different types of flood (Fig. 2b). As for changes 
in floods, the number of catchments showing a positive change more 
or less equalled that showing a negative change (50.6% versus 49.4%). 
However, 64.5% (20.9%) of IR-MF dominated catchments and 60.8% 
(18.8%) of ES-MF dominated catchments showed significantly increased 
floods during the study period (Fig. 2c and Supplementary Fig. 8b). In 
comparison, only 32.6% (10.2%) and 43.2% (14.5%) of SM-MF and RS-MF 
dominated catchments exhibited significant increases in floods. In 
the catchments with increased extreme precipitation, the propor-
tion of catchment agreeing on the direction of the positive change 
in floods and extreme precipitation is 72.3% (IR-MF), 65.5% (ES-MF), 
34.5% (SM-MF) and 47.4% (RS-MF), respectively, for the four groups 
of catchments. This indicates that whether intensified extreme pre-
cipitation translates into an increase in flooding depends greatly on 
the dominant flood type (different flood-generating mechanisms) at 
the regional scale.

To further explore the relationship between changes in floods 
and extreme precipitation during the historical period, we com-
pared the scaling curves of streamflow (Q) with air temperature (T) 
and precipitation (P), with T referred to as the Q~T and P~T scaling 
curve, respectively. A ‘hook’-like structure (or peak structure) has 
been widely reported for the scaling curve of P~T6,26, which features 
a peak point temperature (Tpeak-P) at which the extreme percentile 
of daily P reaches its peak during a given period (Supplementary  
Fig. 6a). A similar structure and peak point temperature (Tpeak-Q; Sup-
plementary Fig. 6c) has also been found for the scaling curve of Q~T7,19. 
When comparing the peak point temperatures of the scaling curves 
(Tpeak-P and Tpeak-Q) at the catchments, a good agreement between Tpeak-P 
and Tpeak-Q mainly appears in regions where floods are dominated by 
IR-MF and ES-MF, with a Pearson correlation coefficient (R) of 0.62 
(P < 0.01) and 0.59 (P < 0.01) (Supplementary Fig. 9), respectively. 
Additionally, the correlation between Tpeak-P and Tpeak-Q increases with 
the proportions of these two flood types (Fig. 3c,d). For example, for 
catchments with proportion of IR-MF (or ES-MF) larger than 75%, the 
correlation coefficient is as high as 0.85 (or 0.82). Evidently, the Q~T 
relationship closely follows the P~T relationship, and the peak of Q is 
largely controlled by the peak of P in these catchments. In contrast, 
the correlations between Tpeak-P and Tpeak-Q are rather weak (and are 

flood types may mix the signals of changes in floods driven by dif-
ferent mechanisms, which could directly lead to erroneous con-
clusions regarding how flood changes with various driving factors 
(for example, storm, snowmelt, soil moisture, land cover change)  
under warming18.

To address this issue and advance a predictive understanding 
of flood changes under historical conditions and future warming, 
we first categorize a total of 246,170 annual maximum flood events 
(that is, events with annual maximum streamflow from 1950 to 2017) 
in 7,239 catchments globally over the past seven decades into differ-
ent flood types (Supplementary Figs. 1–5). A classification algorithm 
is developed and applied to categorize flood events into four types. 
This algorithm consists of a decision tree that defines the dominant 
driving factors of each flood type and a statistical clustering algo-
rithm that determines the classification thresholds (see Methods). 
The four flood types include (1) intense rainfall-induced maximum 
flood (IR-MF), (2) excessive soil moisture-induced maximum flood 
(ES-MF), (3) snowmelt-induced maximum flood (SM-MF) and (4) 
rain-on-snow-induced maximum flood (RS-MF). These event-based 
flood types are used to determine the dominant flood type for each 
catchment on the basis of which all catchments are stratified into 
four groups for long-term trend analysis. We then investigated the 
historical evolutions of different types of flood and their relation-
ships with changes in extreme precipitation under warming. Using 
the latest climate projections from state-of-the-art climate mod-
els participating in the Coupled Model Intercomparison Project 6 
(CMIP6), we lastly explored the translation of enhanced extreme 
precipitation under future warming to changes in floods by com-
paring their trends and the shifts in scaling relationships with tem-
perature (Supplementary Fig. 6). The overall goal is to clarify and 
reconcile the disagreements on global river flood changes under a  
warming climate.

Classification of flood types
During the past decades, the annual maximum flood events show sub-
stantial disparities in flood type across catchments and the propor-
tions of each flood type in individual catchments (Fig. 1a–d). IR-MFs, 
ES-MFs, SM-MFs and RS-MFs occurred in 93.5%, 92.4%, 56.8% and 77.8% 
of the 7,239 catchments, respectively. Over 94.3% of the catchments 
experienced multiple types of flood. For all the identified flood events, 
IR-MF, ES-MF, SM-MF and RS-MF accounted for 31.4%, 27.2%, 19.8% and 
21.6%, respectively.

Different flood types exhibit diverse spatial patterns, with IR-MFs 
mainly occurring in low and mid latitudes of North America, south-
western Europe and most catchments in the Southern Hemisphere 
(Fig. 1a). The proportion of ES-MFs broadly follows that of IR-MFs, 
but a much higher proportion of ES-MFs was found in the tropics and 
western Europe (Fig. 1b). In contrast, high proportions of snow-related 
floods (SM-MFs and RS-MFs) were generally found in high latitudes 
and mountainous regions (for example, the Alps Mountains and the 
Rocky Mountains extending from eastern Alaska to the southwestern 
United States; Fig. 1c,d). These patterns are generally consistent 
with global/regional flood classifications conducted previously, 
especially in the United States and Europe24,25, despite slight differ-
ences in the classification results between IR-MF and ES-MF due to 
different definitions of antecedent catchment wetness conditions24. 
Additionally, the classified type of floods also aligned well with com-
mon understandings of the timing for each flood type, for example, 
snow-related floods mainly occurred in late winter and spring, while 
IR-MFs dominated in summer and autumn (Supplementary Fig. 7). We 
further divided the 7,239 catchments into four groups on the basis of 
their dominant flood type (that is, the flood type showing the high-
est proportion of occurrence; Fig. 1e), and the ratios of catchments 
dominated by IR-MFs, ES-MFs, SM-MFs and RS-MFs accounted for 
34.9%, 22.7%, 21.8% and 20.6%, respectively.
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even negative) in catchments dominated by snowmelt-related floods  
(Fig. 3e,f and Supplementary Fig. 9), with Tpeak-Q generally concen-
trated in a relatively narrow range around 5 °C (which should be 
the temperature at which the catchments experience substantial 
snowmelt27) despite large variations in Tpeak-P. In this case, it is easy 
to understand the inconsistency in changes of floods and extreme 
precipitation in these regions as the generation of floods is not neces-
sarily related to extreme precipitation.

Flood changes under future warming
To explore changes in floods under future warming, we used outputs 
from 11 CMIP6 models from 1950 to 2100 (1950–2014 for historical 
simulations and 2015–2100 for future projections under the SSP585 and 

SSP245 scenarios). First, model performance in reproducing floods and 
extreme precipitation was assessed by comparing with observations 
(Supplementary Text 3). Although the models capture flood dynam-
ics less well than extreme precipitation at the catchment scale, the 
ensemble model outputs broadly capture the magnitudes of mean 
annual maximum Q (Supplementary Fig. 16), the direction of changes in 
annual maximum Q (Supplementary Fig. 17) and the outcomes of flood 
classification (Supplementary Fig. 18) on the basis of observations in 
validation catchments. Furthermore, the relationships between Tpeak-P 
and Tpeak-Q for the four groups of catchments dominated by different 
types of flood are similar between model outputs (Supplementary 
Fig. 19) and observations. These results indicate that the models are 
generally capable of capturing the observed key responses of floods 

IR-MFa ES-MFb

SM-MFc

Proportion (%)
0 20 40 60 80 100

RS-MFd

Proportion (%)
0 20 40 60 80 100

Dominant flood typee

Type
IR-MF ES-MF SM-MF RS-MF

Fig. 1 | Classification of annual maximum flood events in the 7,239 
catchments. a–d, Proportions of four types of flood event, IR-MF (a), ES-MF (b), 
SM-MF (c) and RS-MF (d), in individual catchments. The grey points represent 

catchments with a zero proportion of a specific flood type. e, Spatial distribution 
of four groups of catchments classified on the basis of their dominant flood type 
(that is, the flood type showing the highest proportion of occurrence).
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to climate change during the historical period and can thus be used to 
extrapolate these responses into the future.

Global changes in floods and extreme precipitation from the 
past to the future (under high-emission scenario SSP585) based on 
multi-model ensemble outputs are illustrated in Fig. 4. The upward 
trend in annual maximum precipitation observed in the historical 

period would persist into the future across most parts of the globe at an 
average rate of 1.62% decade−1. By contrast, the trend in floods exhibits 
mixed spatial patterns under future warming. Significant increases 
in floods are projected to occur in vast areas of mid and low latitudes  
(Fig. 4b) that are generally dominated by IR-MFs (Fig.1a and Extended 
Data Fig. 1a) and ES-MFs (Fig.1b and Extended Data Fig. 1b). In Australia, 
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Fig. 2 | Changes in annual maximum flood and precipitation in the 7,239 
catchments from 1950–2017. a, Time series of annual maximum precipitation 
and streamflow averaged over all catchments from 1950 to 2017. Shaded bands 
indicate the spatial variability among catchments (25th and 75th percentiles). 
Solid lines show the smoothed time-series data (three-year moving averages). 
Dashed lines represent the fitted trends estimated using linear regression with 
time as the dependent variable, with significance level (two-tailed Student’s 
t-test) indicated. b,c, Spatial patterns of trends in annual maximum precipitation 

(b) and flood (c) in individual catchments. Insert bars represent the proportions 
of catchments with positive trends (both significant and non-significant) in four 
groups of catchments, with the proportions of catchments showing significant 
trends provided in Supplementary Fig. 8a,b. d–g, Time series of annual maximum 
precipitation and flood averaged over four groups of catchments classified on 
the basis of the dominant flood type, IR-MF (d), ES-MF (e), SM-MF (f) and RS-MF 
(g). The shaded bands, solid lines and dashed lines are similarly defined as in a.
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the eastern United States, southern South America, East-South Asia 
and Africa, the relative increase in floods is even higher than that of 
extreme precipitation (Fig. 4c). However, at high latitudes (for example, 
majority of Europe and northern North America) and some mountain-
ous regions (for example, the Rocky Mountains in North America) 
where SM-MF and RS-MF tend to dominate (Fig. 1c,d and Extended Data  
Fig. 1c,d), the projected floods show a decreasing trend over the same 
period (Fig. 4c). The concurrent positive (a trend of 2.01% decade−1 
for IR-MFs and 1.52% decade−1 for ES-MFs) and negative (a trend of 
−0.79% decade−1 for SM-MFs and −0.25% decade−1 for RS-MFs) flood 
changes, when combined, result in a relatively small overall trend 
(0.72% decade−1). Similar results have been found on the basis of model 
outputs under low-emission scenario (SSP245; Extended Data Fig. 2), 
demonstrating again that warming-induced increases in extreme pre-
cipitation do translate into increased floods over many regions except 
for areas where floods are primarily triggered by snowmelt.

We further investigated the shifts in P~T and Q~T scaling curves 
(quantified by the shifts in peak points of the curves) from the historical 
(1950–2014) to the future (2015–2100) periods (Fig. 5 and Supplemen-
tary Fig. 11). The P~T scaling curves show positive shift rates over most 
of the globe (~95%; Fig. 5a), with an average value of 4.9% °C−1 under 
high-emission scenario (Fig. 5b), again indicating increasing extreme 
precipitation with rising temperature. At mid and low latitudes where 
IR-MFs and ES-MFs dominate, the shifts in Q~T scaling curves follow 
those of the P~T scaling curves over most regions (Fig. 5b,c), with ~75% of 
areas exhibiting a positive shift rate, which indicates rising streamflow 
extremes under warming (Fig. 5a). At high-latitude regions dominated 
by snow-related floods, the shift in Q~T scaling curves also exhibits a 
positive rate in more than 50% of the regions, while only ~30% of the 

areas in these regions show a positive trend in streamflow extremes 
under warming (Fig. 5a), with an overall decreasing trend (Fig. 4f,g). 
We found that the positive (or high) shift rate therein does not indicate 
a large increase in floods under warming as it is mainly contributed by 
the small (or even negative) changes in Tpeak-Q (Extended Data Fig. 3) 
instead of increases in floods. The P~T and Q~T scaling curves and their 
peak points show substantial differences in these regions (Fig. 3e,f), 
and so do the shifts in the scaling curves. Evidently, one should be cau-
tious when using the scaling relationships to quantify and/or compare 
the response of extreme precipitation and streamflow to warming in 
regions where floods are related to snow. It again underscores the 
importance of considering region-dependent flood generation mecha-
nisms when assessing flood changes under climate change.

Discussion
Existing assessments of historical flood changes did not reveal an 
overwhelming flood increase in response to widespread increases in 
extreme precipitation induced by warming9–17. However, our results 
clearly demonstrate that the relationship between changes in extreme 
precipitation and changes in floods under global warming, and the 
resulting flood risks would be largely misinterpreted without consider-
ing the flood types. Here we present evidence that warming-induced 
increased extreme precipitation did translate into increased river floods 
in regions where rainstorm-induced floods dominate (for example, 
southeastern United States, western Europe, south of South America; 
Fig. 2c), which is further supported by the consistency in the P~T and 
Q~T scaling relationships therein (Fig. 3c,d). This positive response 
of floods to extreme precipitation will persist into the future across 
these regions, with an accelerating trend in flooding as projected by 
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climate models (Fig. 4d,e), suggesting an increasing flood risk under 
future warming.

In contrast, regions dominated by snowmelt-related floods expe-
rienced opposite changes in floods and extreme precipitation during 
the historical period, that is, reduced floods with increasing extreme 
precipitation (Fig. 2f,g), which would offset the increasing trends of 
rainstorm-induced floods when lumping floods of different types  

(Figs. 2a and 4a). As illustrated by the difference in their scaling relation-
ships with temperature (Fig. 3e,f), the generation of snowmelt-related 
floods, which are greatly affected by variations in snow accumulations28 
and/or shortened snow duration29 as the climate continues to warm, is 
not directly related to extreme precipitation. In this case, it would be 
misleading to extrapolate flood risks in the future on the basis of the 
changes in extreme precipitation (Figs. 4 and 5). However, it should also 
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streamflow (Q) averaged over the global land area from the historical (1950–2014 
under historical forcing) to the future (2015–2100 under the SSP585 scenario) 
period based on the outputs of 11 CMIP6 models. Shaded bands represent the 
variation by individual model. The trends were estimated on the basis of the 
ensemble mean of model outputs using linear regression, with significance level 

(a two-tailed Student’s t-test) indicated. b,c, Global patterns of the trends in 
annual maximum P (b) and Q (c) from 1950 to 2100. The whitespace represents 
dry lands with very limited run-off. d–g, Time series of annual maximum Q 
averaged over regions dominated by different flood types, IR-MF (d), ES-MF 
(e), SM-MF (f) and RS-MF (g). The shaded bands, solid lines and dashed lines are 
similarly defined as in a.
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be noted that a decrease in snowmelt-related flood magnitude (peak 
streamflow) does not necessarily lead to reduced flood risks in these 
regions. Studies reported that historically snow-dominated mountain-
ous regions tend to shift from spring snowmelt-driven events towards 
more frequent rainstorm-dominated winter floods30. The shifts in the 
timing of snowmelt also have major impacts on flood controls, water 
resources management and aquatic/riparian ecosystems31.

In addition to the contrasting changes between rainstorm-induced 
floods and snow-related floods, we also observe differences between 
changes in IR-MF and ES-MF, and between changes in SM-MF and RS-MF. 
Compared with IR-MF, ES-MF may be more susceptible to changes 
in soil moisture, especially antecedent soil moisture32,33. Declines 
in soil moisture may partly offset the positive response of ES-MF to 
increased precipitation and therefore result in smaller increases in 
ES-MF34. RS-MF exhibits a more complicated change pattern than 
the other three flood types as it involves both extreme precipitation 
and snowmelt process. Besides, studies found that changes in RS-MF 
under warming are also related to elevation that affects the develop-
ment of snowpack35. Snowmelt was estimated by a simple degree-day 
model in this study, this model probably introducing uncertainty in 
classifying these two types of snowmelt-related flood. A more accu-
rate classification between SM-MF and RS-MF with higher-resolution 
snowmelt observations and/or more physically based snowmelt models 
would reduce the uncertainty. Furthermore, this study focused on 
annual peak flow, whereas literature has shown that climate change 
may have different impacts on floods of varying magnitudes18, which 
may differ in terms of flood-generating mechanisms. Future work on 
floods of different magnitudes using the framework of this study will 

provide a more complete picture of the impact of climate change on  
flood risk.

In summary, the generation of floods is highly complex and 
involves nonlinear interactions among climate, landscape and the 
hydrological system19,21–25. A better understanding of such interactions 
is a prerequisite for identifying/attributing the changing signals in 
flood records and forecasting future changes in flood risks in a chang-
ing climate. This study reconciles the previous controversial findings 
on global flood trends under warming by revealing diverse changing 
signals of floods with different generating mechanisms and their rela-
tionships with warming-induced increases in extreme precipitation. It 
highlights the importance of distinguishing flood types for understand-
ing the effect of warming on the occurrence of hydrological extremes, 
and provides consequential information for flood risk assessment and 
policy interventions for water-related disaster management under a 
changing climate.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
Historical observations
Daily streamflow (Q) observations in 7,239 catchments (and their 
boundaries) across the globe (Supplementary Fig. 1) from 1950 to 2017 
were obtained from a global streamflow collection36–41, which consists 
of streamflow records from more than 20,000 catchments worldwide. 
The 7,239 catchments were chosen subject to the following selection 
criteria. First, the catchments should have daily Q records for at least 
30 yr during 1950–2017. Second, the catchment areas are larger than 
100 km2 to encompass at least one grid cell of the meteorological data-
sets (at ~9 km spatial resolution) and smaller than 100,000 km2. Third, 
the catchments should have a minimum impact from human interven-
tions, including reservoir, urban afforestation/deforestation and water 
transfer. Thus, catchments with (1) reservoirs and dams whose reservoir 
capacity is larger than 10% of the mean annual Q (based on the Global 
Reservoir and Dam database v1.01)42, (2) urban areas larger than 5% 
(based on the GlobCover v2.3 map) and (3) areas with afforestation or 
deforestation larger than 10% (based on 30 m Landsat imagery from 
2000 to 2013)43, and (4) problematic water balance closure (that is, 
mean annual streamflow higher than mean annual precipitation, or 
the sum of mean annual streamflow and potential evapotranspiration 
lower than mean annual precipitation) are excluded.

Global hourly precipitation, volumetric soil water and 2 m air 
temperature from 1950–2017 were obtained from the ERA5-Land hourly 
dataset44, with a spatial resolution of 0.1°. These gridded data were 
further upscaled to daily resolution and aggregated for individual 
catchments by averages and/or accumulations of the grids covered 
by the catchments. Snowmelt was estimated according to Hock’s sim-
ple degree-day model45 using daily precipitation and temperature 
data, with the temperature threshold and melt rate set at 274.5 K and 
2 mm d−1 K−1 according to previous studies23.

CMIP6 model simulations
We used outputs from 11 climate models participating in CMIP646 
under historical forcing (1950–2014) and future emission scenarios 
(2015–2100; a high-emission scenario of SSP585 and a low-emission 
scenario of SSP245). The 11 CMIP6 models are MIROC-ESM2-0, MIROC6, 
GFDL-CM4, ACCESS-CM2, ACCESS-ESM1-5, INM-CM4-8, INM-CM5-0, 
IPSL-CM5A-LR, EC-Earth3, CMCC-CM2-SR5 and CMCC-ESM2. We used 
daily outputs of air temperature, precipitation and run-off. All outputs 
from the models were spatially resampled on a 1° × 1° grid using the 
first-order conservative remapping scheme47. When comparing the 
modelled run-off with catchment observations, small catchments 
located close to each other may share the same grids, so we only used 
observations at catchments larger than 5,000 km2 (857 catchments) 
for model validation.

Identification of flood events
The event identification method used in this study consists of four 
steps (Supplementary Fig. 2): (1) base flow separation, (2) identifica-
tion of initial starts and ends of events, (3) refinement of the event 
starts and (4) estimation of the identification parameter. We used 
the one-parameter filter method48 to separate base flow from daily 
streamflow. The recession constant of the method was quantified for 
each catchment using the Brutsaert-Nieber method49 applied with 
the automatic base flow identification technique developed in ref. 50. 
We then identified individual flood events by locating their start- and 
endpoints. To achieve this, we first identified the local turning points 
(local peaks and valleys) of the hydrograph. The point with a higher 
(lower) flow than its preceding and following points was defined as 
the local peak (valley). The initial start-point was identified as the 
closest valley before the peak (peak of annual flow within a calendar 
year) when the total flow was initially higher than the base flow, while 
the end of an event was set at the first point on the falling limb of 
the hydrograph at which the quick flow fell below 10% of the peak 

quick flow. Subsequently, we identified whether there was another 
potential start-point on the rising limb (from the initial start-point 
to the peak) that was also the endpoint of a small run-off event (for 
example, the event marked in blue in Supplementary Fig. 2c) preced-
ing the objective flood event with annual peak flow (for example, the 
event marked in red in Supplementary Fig. 2c). This refined start-point 
should be located at the local valley where the quick flow was lower 
than a certain percentage (defined as the refinement threshold) of 
the maximum quick flow before it. Then, we compared the differ-
ence (quantified by standard deviation) in the run-off coefficients of 
flood events with and without small run-off events being removed. 
The value of the refinement threshold was determined on the basis 
of the assumption that a smaller difference in run-off coefficients of 
flood events would be achieved by removing small run-off events that 
should be treated as independent events with different run-off coef-
ficients51,52. Total daily rainfall during the rising period of the event 
(the period from the beginning of the event until the day when peak 
flow was observed) plus the rainfall-streamflow response period (time 
lag between rainfall and streamflow response53) was used to estimate 
run-off coefficient for each event. For the regions with snowmelt, the 
sum of rainfall and snowmelt was calculated as the effective rainfall 
to identify flood events.

We further quantified event characteristics listed in Supplemen-
tary Table 1 for all the identified flood events (in total 246,170 events). 
These characteristics provide information on the rainfall, snowmelt 
and soil moisture dynamics preceding and during the flood events, 
which point to the triggers of events and were used as the indicators 
for the classification of flood types.

Classification of flood types
We classified the identified annual maximum flood events into four 
types, including: (1) IR-MF, occurring after short and high-intensity 
rainfall that rapidly fills the storage capacity or exceeds the infiltra-
tion capacity; (2) ES-MF, characterized by large amounts of rainfall 
over several days preceding the flood event and high antecedent soil 
moisture storage; (3) SM-MF, triggered by heavy snowmelt without (or 
with minor) rainfall; and (4) RS-MF, caused by high-intensity rainfall as 
well as slight snowmelt.

Hydrological classification of flood events based on hydrome-
teorological forcing within catchments (for example, rainfall and 
snowmelt) and catchment states (for example, soil moisture) is one 
of the most commonly used methods for flood typology54. It can be 
further categorized into two approaches: the decision tree21,22,24,25 and 
the statistical clustering algorithm55,56. In this study, we combined these 
two approaches to classify flood types by first constructing a deci-
sion tree to define the criteria for each flood type, this tree consisting 
of decision attributes and the attribute thresholds (Supplementary  
Fig. 4 and Table 1). The characteristics of each flood event were com-
pared with the corresponding threshold values to decide which 
sub-group it belongs to. However, instead of predefining the thresholds 
subjectively, we first set the ranges of thresholds, that is, the 25th–75th 
percentile of the corresponding characteristics of all events (Sup-
plementary Table 2). Then, we used a global optimization algorithm 
(SCE-UA)57 to search for the optimal sets of thresholds with which 
the optimal clustering performance would be achieved. The cluster-
ing performance was evaluated by the Calinski-Harabasz index58, a 
similarity index that quantifies the similarities within groups and the 
differences between groups, with a higher index representing better 
clustering performance. Combining the two approaches, the subjec-
tivity of threshold determination could be minimized to some extent, 
and the built decision tree could help to better interpret classification 
results. A flowchart of the methodology used to categorize the flood 
events into four different types is illustrated in Supplementary Fig. 5. 
The resulting classification thresholds (one set of thresholds for all 
catchments) are provided in Supplementary Table 2.
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Long-term trend analysis
We first created the long-term annual maximum precipitation and 
streamflow time series from available observations and CMIP6 models 
for the study period. We then estimated the linear trend of annual time 
series over the study period using the least squares fitting. A two-tailed 
Student’s t-test was used to quantify the probability that the trend 
is statistically significantly different from zero. Trend analysis was 
performed for catchment/grid scale time series data and spatially 
aggregated time series data (that is, annual maximum precipitation 
and streamflow time series averaged across all catchments/grids or 
across the four groups of catchments/grids based on flood types).

Scaling relationship of precipitation and streamflow with 
temperature
The historical day-to-day sensitivities of precipitation and/or stream-
flow with temperature, defined as the scaling relationship, have been 
widely applied to project extreme precipitation and/or flooding for 
a future warmer climate6,7,26. Taking the precipitation and tempera-
ture (P~T) scaling relationship as an example, we first stratified the 
daily precipitation of each catchment/grid within the analysis period 
according to the corresponding near-surface air temperature at the 
same catchment/grid in bins of equal width (a temperature bin size of 
0.5 °C was used here). Then, a high-precipitation quantile (the 99th 
percentile) within each temperature bin was estimated to create a scal-
ing curve that relates these estimated conditional quantiles to the aver-
age temperature of each bin (Supplementary Fig. 6). The peak point 
of the scaling curve was identified by applying the locally weighted 
scatterplot smoothing method59. However, it should be noted that 
previous studies have also pointed out that the ‘hook’-like structure (or 
peak structure) of the scaling curve might be rectified using sub-daily 
data60. The same steps were implemented to obtain the scaling curves 
of streamflow with temperature.

To explore changes in the scaling relationships of precipitation 
and streamflow with temperature under future warming, we investi-
gated the shift in scaling curves between epochs, where one epoch (the 
period 2015–2100 under SSP585/SSP245 scenario) was warmer than the 
other (the 1950–2014 period under historical forcing). Referring to the 
method applied in ref. 26, the shift rate (αp, % °C−1) was quantified by the 
change in the peak points of the two scaling curves (Supplementary 
Fig. 6b) using the following equation:

αP = (e
ln(P2peak)−ln(P1peak)

T2peak−P−T1peak−P ) × 100 (1)

where T1
peak−P and T2

peak−P represent the temperature at which the pre-
cipitation percentile in the scaling curve reaches the peak, P1

peak and 
P2
peak, under historical and future climates, respectively. The same 

method was used to quantify the shift rate of the Q~T scaling curves 
under warming (Supplementary Fig. 6d).

Data availability
The streamflow records were obtained from the Global Runoff Data 
Centre (http://www.bafg.de/GRDC), the United States Geological 
Survey GAGES-II database (https://www.sciencebase.gov), the Water 
Survey of Canada Hydrometric Data (HYDAT; https://www.canada.
ca/en/environment-climate-change), the Catchment Characterisa-
tion and Modelling–Joint Research Centre database (https://ccm.
jrc.ec.europa.eu/), the HidroWeb portal of the Brazilian Agência 
Nacional de Águas (http://www.snirh.gov.br/hidroweb), the Aus-
tralian Bureau of Meteorology (http://www.bom.gov.au/water-
data) and the Chilean Center for Climate and Resilience Research  
(http://www.cr2.cl/datos-de-caudales/). The Global Reservoir and 
Dam database is available at https://sedac.ciesin.columbia.edu/
data/set/grand-v1-dams-rev01. The GlobCover v2.3 map is available 

at http://due.esrin.esa.int/page_globcover.php. The Global forest 
change dataset is available at http://earthenginepartners.appspot.
com/science-2013-global-forest. The ERA5-Land dataset is available at 
https://www.ecmwf.int/en/era5-land. The CMIP6 data can be accessed 
through the Earth System Grid Federation (ESGF) system (https://
esgf-node.llnl.gov/search/cmip6/).

Code availability
The code61 used as the basis for this study is available at https://doi.
org/10.5281/zenodo.7319421.
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Extended Data Fig. 1 | Global classifications of annual maximum flood 
events based on CMIP6 outputs. a-d, Global proportions of four flood types, 
IR-MF (a), ES-MF (b), SM-MF (c), and RS-MF (d), based on the ensemble mean of 
classification outcomes for individual CMIP6 models using outputs from 1950 to 

2014 under historical forcing. e, Regions dominated by different types of  
floods (that is, the flood type showing the highest proportion of occurrence  
for each region).
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Extended Data Fig. 2 | Changes in flood and extreme precipitation from the 
historical to the future period (SSP245 scenario). a, Time series of annual 
maximum precipitation (P) and streamflow (Q) averaged over the global land 
area from the historical (1950-2014 under historical forcing) to the future  
(2015–2100 under SSP245 scenario) period based on the outputs of 11 CMIP6 
models. Shaded bands represent the variation by individual models. The trends 
were estimated based on the ensemble mean of model outputs using linear 

regression with significance level (a two-tailed student’s t test) labeled in the 
panel. b-c, Global patterns of the trends of annual maximum P (b) and Q (c) from 
1950 to 2100. The whitespace represents the dry lands with very limited runoff. 
d-g, Time series of annual maximum Q averaged over regions dominated by 
different flood types, IR-MF (d), ES-MF (e), SM-MF (f), and RS-MF (g). The shaded 
bands, solid lines and dotted lines are similarly defined as those in panel a.
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Extended Data Fig. 3 | Changes in peak point temperatures of the P~T and  
Q~T scaling curves from the historical to the future period (SSP585 scenario). 
a, Comparison between the changes in peak point temperatures of the P~T 
and Q~T scaling curves (Tpeak-P and Tpeak-Q) averaged over regions dominated by 
different flood types based on the outputs of 11 CMIP6 models from the historical 

(1950-2014 under historical forcing) to the future (2015-2100 under SSP585 
scenario) period. Error bars indicate the variations among 11 models (mean value 
± one standard deviation). b-c, Global spatial patterns of the changes in Tpeak-P (b) 
and Tpeak-Q (c) from the historical to the future period.
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