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Abstract
Recent studies using observations, reanalysis data and climate model simulations documented that 2 m surface air temperature 
(T2m) has been amplified over the world’s hottest and driest Sahara Desert and the Arabian Peninsula, referred to as desert 
amplification (DA). This study presents a comprehensive analysis of hourly surface observations, radiosonde measurements, 
and two latest state-of-the-art reanalysis products for the period 1979–2018 to examine the diurnal and vertical variations of 
DA and their connections with planetary boundary layer height (PBLH). It focuses on the Arabian Peninsula (AP), where 
observations are relatively abundant compared to the data scarce Sahara regions. Both observational and reanalysis data show 
that the diurnal cycle of surface warming rate depends, to some extent, inversely on the magnitude of climatological PBLH, 
and so DA has a distinct diurnal asymmetry with a stronger warming for a shallower PBLH. Results of upper air profiles 
reveal that DA is a bottom-heavy warming profile, which maximizes near the surface, decreases quickly with height, and is 
limited to the lower troposphere (> 700 hPa) and surface. The major PBLH biases could explain, at least partially, some of 
the diurnal and vertical warming/cooling biases in the reanalyses. These results suggest that besides the surface radiative 
forcing, the PBLH may play an important role in modulating the diurnal and vertical structure of DA over the AP through 
heat redistributing via turbulent mixing.
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1  Introduction

Deserts make up approximately 1/3 of the global land sur-
face area (Zhou 2016; Wei et al. 2017a). The Sahara and 
Arabian deserts, the world’s two largest hot deserts, are 
formed in the subtropical subsiding branch of the Hadley 
cells and so generally associated with dry and cloudless 
weather conditions (Wu et al. 2009). The Sahara Desert and 
the Arabian Peninsula (SDAP) are among the driest and hot-
test regions on Earth and considered to be a hotspot in terms 
of climate change and impacts from regional to global scales 
through the influence of dust aerosols and atmospheric cir-
culation (Knippertz and Todd, 2012; Vizy and Cook 2017; 

Thomas and Nigam 2018). Observations and climate model 
simulations indicate adverse impacts of increasing warm-
ing and drought on fragile desert ecosystems in response to 
elevated greenhouse gas (GHG) concentrations (Huang et al. 
2016; Thomas and Nigam 2018).

By analyzing observational, reanalysis and projected land 
surface 2 m air temperatures (referred to as T2m hereafter), 
several recent studies documented that T2m in mid- and low- 
latitudes has warmed the most over the SDAP. Zhou et al. 
(2015, 2016) examined the observational, reanalysis, and 
modeled T2m trends in 50°S–50°N by large-scale ecoregion 
for the period 1979–2012 and found dramatically increased 
warming rates with increasing surface aridity and the strong-
est warming over the driest and least vegetated SDAP. Cook 
and Vizy (2015) evaluated annual mean T2m of three rea-
nalyses and two observational gridded datasets for the period 
1979–2012 and showed 2–4 times more warming over the 
Sahara than over the whole tropics. Evan et al. (2015) exam-
ined in-situ observations of three stations and one atmos-
pheric reanalysis for the months of July and August during 
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the period of 1979–2012 and identified amplified warming 
in summer over the Western Sahara Desert. Zhou (2016) 
further examined T2m changes in historical and projected 
simulations (1950–2100) from the Coupled Model Intercom-
parison Project phase 5 (CMIP5) and found strongest surface 
warming consistently and persistently seen over the SDAP 
during various 30-year periods after the 1980s, pointing to 
desert amplification (DA) in a warming climate. This work 
also showed that the magnitude of DA increased linearly 
with the global mean radiative forcing due to increasing 
GHGs. DA was reproduced by CMIP5 historical “all forc-
ings” simulations, but was absent if only natural forcings 
were used, suggesting human influence (Zhou et al. 2015; 
2016; Zhou 2016). Using multiple satellite datasets, Wei 
et al. (2017a) indicated that DA was strongest at the sur-
face, decreased with height, and mostly disappeared in the 
upper troposphere. The essential features of DA remained 
robust across all seasons, although the magnitude of DA was 
greater during summer months (Zhou et al. 2016; Vizy and 
Cook 2017; Wei et al. 2017a). These results suggest that DA 
is a fundamental feature of global warming patterns in mid- 
and low- latitudes and intensifies with increasing GHGs.

DA is conceptually similar to the well-known arctic 
amplification (AA), a subject of intensive research for sev-
eral decades (e.g., Serreze and Barry 2011). AA has been 
attributed to feedbacks associated with surface albedo, water 
vapor, cloud, and lapse rate, and to changes in atmospheric 
and oceanic heat transport (IPCC 2007, 2013). In contrast, 
DA is an emerging new concept and its causes are largely 
unknown. Several recent studies suggested that DA may 
result mainly from large-scale greenhouse effects in a warm-
ing climate over the SDAP associated with increasing water 
vapor (Cook and Vizy 2015; Zhou et al. 2016; Zhou 2016; 
Wei et al. 2017a; Evan et al. 2015). This attribution was 
proposed from the local surface energy budget perspective, 
based on the results that the desert warming rate is well 
correlated spatially and temporally with enhanced down-
ward longwave radiation (DLR) at the surface as a result of a 
warmer and moister atmosphere. It is suggested that DA may 
alter regional-scale climate and circulation over the deserts 
and surroundings and thus have significant environmental, 
societal, and economic consequences (Zhou 2016; Vizy and 
Cook 2017). Hence, understanding major processes that con-
trol DA is essential for a complete assessment of climate 
change and impacts.

One distinct feature of hot desert climate is the pro-
nounced diurnal cycle. The SDAP is characterized by 
extremely high temperatures during daytime and very low 
temperatures during nighttime, which creates the largest 
diurnal temperature range (DTR) in the world (Zhou et al. 
2007, 2009, 2010). It is also marked by a large diurnal cycle 
in the atmospheric planetary boundary layer (PBL). Tur-
bulent mixing in the PBL governs the vertical exchange 

of heat, moisture, momentum, and aerosols in the surface-
atmosphere interface and thus strongly influences the atmos-
pheric temperature, moisture, and wind (Stull 1988). The 
PBL height (PBLH) represents the maximum height of the 
free atmosphere that is directly influenced by the Earth’s 
surface and responds to surface impacts. On the diurnal time 
scale, the development of PBL typically consists of the deep 
convective boundary layer (CBL) during the day, the shal-
low stable boundary layer (SBL) at night, and their transi-
tion stages in the morning and evening periods. In general, 
PBLH depends proportionally on the intensity of surface 
heating over dry regions, and so the global PBL climatol-
ogy shows the maximum PBLH in the SDAP, up to 3.5 km 
in summer months (Ao et al. 2012). Among various climate 
zones worldwide, the SDAP generally has the deepest and 
well-mixed PBL at daytime but the shallowest and most sta-
bly stratified PBL at nighttime, with the strongest diurnal 
asymmetry in PBLH (Gamo 1996; Messager et al. 2010; 
Garcia-Carreras et al. 2015; Davy 2018).

It is interesting to note that the spatial pattern of DA is 
coupled geographically well with that of the climatologi-
cal DTR and PBLH over the SDAP, which are strongly 
connected with the unique diurnal features of desert land 
surface and PBL processes. Besides the positive radia-
tive forcing at the surface, recent studies indicated that the 
PBLH modulates the T2m response to the surface forcing 
and is a stronger predictor of the diurnal asymmetry in sur-
face warming (McNider et al. 2012; Davy and Esau 2016; 
Davy et al. 2016). This implies that the strong diurnal cycle 
of PBLH over the SDAP may result in a diurnal asymme-
try in DA. Also, the amplified surface warming associated 
with DA could modify the vertical warming profile or lapse 
rate over deserts via strong turbulent mixing in the PBL. 
However, recent detection and attribution of DA have been 
limited to the seasonal and annual features of daily mean 
T2m (Zhou et al. 2015; Cook and Vizy 2015; Zhou et al. 
2016; Zhou 2016; Wei et al. 2017a; Evan et al. 2015; Vizy 
and Cook 2017), little attention is given to understand how 
DA varies diurnally and vertically. Hence, understanding 
the diurnal and vertical features of DA and their connections 
with PBLH is an important next step.

The diurnal variation is one of the most fundamental 
modes of variability of the global climate system and may 
function as a bridge between weather and climate (Yang 
and Slingo 2001; Ruppert 2016). Changes in surface tem-
peratures such as daily maximum (Tmax), daily minimum 
(Tmin), and the DTR have been examined intensively to 
study climate change and variability (IPCC 2007, 2013). 
Associated with global warming is a greater warming in 
Tmin than Tmax, and thus a substantial reduction in the DTR 
observed over many land areas since 1950 (Vose et al. 2005; 
IPCC 2007, 2013). The DTR calculated from Tmin and Tmax 
(DTR = Tmax–Tmin) are often analyzed to describe the ̄diurnal 
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cycle, but the full diurnal cycle is far more complex than the 
simple difference in the two numbers and needs analysis of 
high temporal resolution data (e.g., Vinnikov et al. 2002; 
Davy et al. 2017).

Despite its importance to Earth’s climate, the Sahara has 
one of the sparsest networks of routine meteorological meas-
urements of any landmass on Earth, with most measurements 
only available at the periphery of the desert (Marsham et al. 
2013). This data gap fundamentally limits our understanding 
of the Saharan climate because of insufficient observations 
available for data collection, assimilation or model valida-
tion (Garcia-Carreras et al. 2015; Wei et al. 2017a, b). Also, 
weather and climate models have difficulties in realistically 
simulating the magnitude and diurnal evolution of PBLH 
and T2m, particularly over dry climates (Christensen et al. 
2008; McNider et al. 2012; Boberg and Christensen 2012; 
Lewis and Karoly 2013; Davy and Esau 2016; Davy et al. 
2017; Wei et al. 2017b; Davy 2018). These data limitations 
and model deficiencies cast doubt on detecting and attribut-
ing DA. Further validation of DA using in situ observations 
is essential.

Surface and atmospheric observations in the Arabian Pen-
insula (AP) are relatively abundant compared to significant 
data gaps in the Sahara Desert. DA is a continental-scale 
warming pattern covering the entire SDAP and so the warm-
ing features in the AP are representative of DA. In addition, 
high temporal and spatial resolution reanalysis products have 
been released recently with improved quality. This provides 
a great opportunity to further understand and validate DA 
using in-situ observations and advanced reanalysis data over 
the AP. The present paper analyzes high resolution data 
from surface and radiosonde observations and two widely 
used reanalysis data to examine the diurnal cycle and verti-
cal structure of DA and its potential drivers over the AP. 
It focuses on the modern satellite data era for the period 
1979–2018 to maximize spatial coverage of measurements 
that are assimilated into reanalysis products. This era also 
corresponds to the period when the observed DA signal is 
most significant.

The motivation for this study is threefold. The first goal is 
to search for more observational evidence of DA. The sec-
ond goal is to examine the diurnal variation in surface warm-
ing associated with DA and potential drivers using hourly 
data, rather than the DTR as done previously. The third goal 
is to link the diurnal cycle of DA with that in the upper air. 
Climate change research has focused dominantly on T2m, 
including the detection and attribution of DA, but tempera-
ture changes are not limited to the Earth surface and can be 
extended into the free atmosphere (Brocard et al. 2013). The 
vertical structure of temperature changes can tell a whole 
story of climate change, and in this case, can improve our 
understanding of the diurnal coupling of surface and air tem-
peratures over deserts.

2 � Data and methods

2.1 � Study region

This study focuses on the AP and surrounding areas, 
where high-quality surface and radiosonde observations 
are available. It is worth noting that the spatial coverage 
of observational network in the AP is sparser than that 
in North America and Europe but is relatively abundant 
for large-scale analysis in comparison to the other SDAP 
regions. The study domain, depicted as the rectangle box 
(16.5° N–32.5° N, 34.5° E–50° E) in Fig. 1, covers most 
of the AP countries and part of several neighboring states 
such as Egypt, Sudan, Iraq, Iran, and Israel. It includes 
the Arabian Desert, which occupies almost the entire AP, 
but excludes the relatively humid southern part of the AP 
affected by convective processes and clouds (Hassan et al. 
2016; Patlakas et al. 2019).

The climate of the AP is extremely hot and dry, with 
infrequent low rainfall (Chowdhury and Al-Zahrani 2013; 
Patlakas et al. 2019). The landscape consists of highlands 
in the western and southwestern regions, the vast arid and 
extra arid lands of the interior (Najd), the world’s largest 
continuous bodies of sand deserts, and the Rub Al–Khali 
in the southeast (Patlakas et al. 2019). Despite sharing 
similar large-scale climate features, the AP also demon-
strates some level of heterogeneity at local to regional 
scales due to variations in vegetation, topography, prox-
imity to sea, and regional circulation patterns (Ahmed 
1997; Krishna 2014). Among the AP countries, Saudi 
Arabia occupies ~ 4/5 of the AP and a large part of the 
Arabian Desert lies within the country. It is among the 
hottest countries with very low humidity in the world and 
average temperature ranging from 27 to 43 °C in inland 
regions and 27–38 °C in coastal regions (Krishna 2014). 
For example, the highest (lowest) temperature of 52 °C 
(− 10 °C) are recorded in two stations in Saudi Aribia 
(Almazroui et al. 2014). Saudi Arabia provides most of the 
station-based observations used in this study and is rela-
tively well studied in terms of climate change compared 
to the Sahara Desert.

2.2 � Observational and reanalysis data

2.2.1 � Integrated global daily radiosonde data

Daily weather data for the atmosphere have been regu-
larly obtained from radiosondes and pilot balloons dating 
back to 1905. The Integrated Global Radiosonde Archive 
Version 2 (IGRA2) from the U.S. National Climatic Data 
Center (NCDC) consists of quality-controlled sounding 
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observations from various sources at > 1500 global sta-
tions with varying periods of record (Durre et al. 2006). 
Measurements include atmospheric vertical profiles of 
temperature, humidity, wind and other variables at manda-
tory pressure levels. The IGRA2 has applied a comprehen-
sive set of quality control procedures to the data to remove 
gross errors. So far, it is the largest and most complete 
dataset of quality-assured radiosonde observations freely 

available. Its temporal and spatial coverage is most com-
plete over the U.S., Western Europe, Russia and Australia. 
The vertical resolution and extent of soundings improve 
significantly over time, with nearly three-quarters of all 
soundings reaching up to at least 100 hPa by 2003. How-
ever, the IGRA2 data have not been adjusted for inho-
mogeneities due to changes in instrumentation, observing 
practice, or station location.

It is well recognized that radiosonde data need bias cor-
rection for homogeneity before they can be used for trend 
analysis in climatic research (Thorne et al. 2011; Haim-
berger et al. 2012). One of the widely used homogeneity-
adjusted radiosonde datasets based on the IGRA2 is the 
homogenization of global radiosonde temperatures with 
the Radiosonde Observation Correction Using Reanalyses 
(RAOBCORE) and the Radiosonde Innovation Composite 
Homogenization (RICH) (Haimberger, 2007; Haimberger 
et al. 2008). The RAOBCORE homogenization method 
detected shifts in existing radiosonde observation time 
series and estimated the size of the shifts using back-
ground forecast time series from ERA-40 (1958–1978) 
and ERA-Interim (1979 onwards) as reference for break 
detection. However, the background forecasts may be 
influenced by biases in the radiosonde data, and by uncer-
tainty from other observing systems, most notably satel-
lites, and reanalysis models (Haimberger et al. 2012). To 
avoid this problem, the RICH homogenization method cre-
ated reference series from neighboring radiosonde stations 
for breakpoint adjustment. It works well if the radiosonde 
network is not too sparse and only homogeneous pieces 
of the neighboring time series are used. Note that homo-
geneity adjustments were only made to radiosonde-based 
temperature measurements.

This study used the latest version v1.74 of the RICH 
dataset on 16 pressure levels for several reasons: (1) it 
has the longest data record with most stations compared 
to other homogeneity‐adjusted radiosonde datasets over 
the AP; (2) it has homogeneity-adjusted measurements at 
both daytime and nighttime (00 and 12 Coordinated Time 
Universal or UTC); (3) it exhibits the closest match to the 
latest satellite observations in the tropics (Thorne et al. 
2011). Note that the RAOBCORE adjusted data is assimi-
lated into the ERA5, which is used in this study, while 
RICH adjusted data is not used for the ERA5.

Here the subdaily and daily temperatures from the 
RICH were downloaded for the period 1979–2018. Eight 
radiosonde stations over the study region were chosen fol-
lowing the data selection criteria (Sect. 2.3.1). To estimate 
the climatology of PBLH for the same period, the origi-
nal radiosonde soundings from the IGRA2 were also used 
(Sect. 2.3.3).

Fig. 1   a Surface (in red) and radiosonde (in green) stations used over 
the Arabian Peninsula (AP). The AMO identifier # for every radio-
sonde (11-digtial) and surface (6-digital) station is shown. The geo-
graphic location and elevation for each station are listed in Tables 1 
and 2. The rectangle box (16.5° N–32.5° N, 34.5° E–50.0° E) depicts 
the land area over which the regional mean is averaged for the reanal-
ysis data. b The corresponding true-color satellite image on August 6, 
2020 covering the same area as a obtained from the NASA EOSDIS 
worldview website: https​://world​view.earth​data.nasa.gov/

https://worldview.earthdata.nasa.gov/
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2.2.2 � Integrated global hourly surface observations

Hourly surface-based meteorological observations are avail-
able from the global-scale, quality-controlled integrated sur-
face hourly dataset (DS3505) archived in the U.S. NCDC 
(https​://www7.ncdc.noaa.gov/CDO/cdopo​emain​.cmd). The 
DS3505 consists of numerous global hourly and synoptic 
observations for regular weather parameters (e.g., tempera-
ture, dew point, wind, etc.) into a common format and data 
model, and thus provides a single collection of global hourly 
data with continuous updates. The primary data sources 
include the Automated Surface Observing System (ASOS), 
Automated Weather Observing System (AWOS), and vari-
ous others from more than 35,000 stations worldwide for the 
period 1901-present. The data spatial and temporal coverage 
in the DS3505 is however not even. The best spatial coverage 
is evident in North America, Europe, Australia, and parts of 
Asia, but only a limited number of stations is in the Southern 
Hemisphere and the African Continent. Some stations have 
data as far back as 1901, but there is a substantial increase 
in data volume starting in the late 1970s. In terms of data 
continuity, some stations have over 50 years of continuous 
records, while others have “breaks” in the period of record 
(Smith et al. 2011).

Besides internal quality control (QC) procedures applied 
to several major input datasets to the DS3505, there have 
been continued incremental improvements in automated 
QC software since 2003 (Smith et al. 2011). The input data 
sources were first processed through automated and some 
manual QC and then additional QC software was developed 
and applied to the entire archive. The QC process included 
54 QC algorithms checking for proper data format for each 
field, extreme values and limits, consistency between param-
eters, and continuity between observations. The standardized 
and consistent QC procedure in the DS3505 was designed to 
eliminate obvious errors in the data, minimize overflagging 
of data, and ensure delivery of spatially variable, research-
quality data. Detailed information regarding the QC process 
is described in Smith et al. (2011).

This study used the subhourly and hourly T2m from the 
DS3505 for the period 1979–2018. 21 surface stations over 
the AP were chosen following the data selection criteria 
(Sect. 2.3.1).

2.2.3 � High‑resolution reanalysis products

This study used two of the latest state-of-the-art reanalysis 
products that provide hourly or 6-hourly analysis fields at 
relatively high spatial resolutions for the period 1979–2018.

ECMWF Reanalysis 5th Generation (ERA5) gives a 
numerical description of the recent climate, produced 
by combining vast amounts of historical observations 
into global estimates using advanced modelling and data 

assimilation systems (C3S 2017). This climate reanalysis 
provides hourly estimates of many atmospheric, land and 
oceanic climate variables covering the period 1979 to pre-
sent. The data cover the Earth on a 30 km grid and resolve 
the atmosphere using 137 levels from the surface up to a 
height of 80 km. The monthly mean data of analyzed mete-
orological fields: (1) hourly averaged temperature, humidity, 
wind speed, geopotential height on pressure levels, and (2) 
hourly averaged surface pressure and PBLH, at a spatial res-
olution of 0.5° longitude × 0.5° latitude are used in this study. 
Hourly averaged T2m, surface humidity, and surface fluxes 
at the same spatial resolution are provided by the ERA5-
Land (C3S 2019). The ERA5-Land is a replay of the land 
component of the ERA5 climate reanalysis for the period 
1981-present. It is produced to meet the needs of users for 
a more accurate surface dataset using the tiled ECMWF 
Scheme for Surface Exchanges over Land incorporating the 
land surface hydrology (H-TESSEL) model. All available 
ERA5 and ERA5-land datasets are detailed at https​://cds.
clima​te.coper​nicus​.eu/#!/searc​h?text=ERA5&type=datas​et.

The second Modern-Era Retrospective analysis for 
Research and Applications (MERRA-2) is a NASA atmos-
pheric reanalysis that begins in 1980 with the enhanced use 
of satellite observations (Gelaro et al. 2017). The MERRA-2 
data are provided on the same horizontal grid of 0.625° 
longitude × 0.5° latitude at 42 pressure levels. The monthly 
mean data of analyzed meteorological fields: (1) 6-hourly 
(00, 06, 12 and 18 UTC) instantaneous temperature, humid-
ity, wind speed, geopotential height on pressure levels, and 
(2) hourly averaged variables of T2m, surface humidity, 
surface pressure, PBLH, and surface fluxes, are examined 
in this study. Note that the hourly analyzed sounding data 
is not provided in the MERRA-2. A comprehensive list of 
available variables is detailed at https​://gmao.gsfc.nasa.gov/
pubs/docs/Bosil​ovich​785.pdf.

2.3 � Data processing and methods

The above four datasets have different temporal resolutions. 
The surface observations in the DS3505 have subhourly 
and hourly data; the radiosonde observations in the RICH 
contain subdaily and daily data; the two reanalysis products 
consist of monthly means of hourly averaged or 6-hourly 
instantaneous data. Since the signal of DA is limited to the 
surface and lower troposphere, the four datasets are pro-
cessed into two types: (1) the hourly-averaged data near 
the surface (e.g., T2m, PBLH, and surface fluxes) and (2) 
the sounding data at 00 and 12 UTC (e.g., air temperature 
and humidity). The latter only considers the 10 “mandatory 
reporting” pressure levels at and below 100 hPa shared by 
both radiosonde and reanalysis data: 925, 850, 700, 500, 
400, 300, 250, 200, 150, and 100 hPa. Because the annual 
mean surface pressure over the study region is 948 hPa in the 

https://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf
https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf
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MERRA-2 and 952 hPa in the ERA5, the sounding results 
on 1000 hPa are excluded.

This work mainly analyzes temperature trends consider-
ing the arid nature of the AP climate as rainfall occurs only 
on a few days per year for most stations and humidity is per-
sistently very low (Almazroui et al. 2014). Also, observed 
temperatures are of relatively high-quality, have much fewer 
missing data than other variables in the DS3505, and are 
homogeneity adjusted in the RICH. Only the annual mean 
data are examined to maximize the data coverage as seasonal 
mean data have a smaller sample size with a relatively higher 
ratio of missing data. Doing so will not bias the results with 
seasonality as DA is a large-scale warming pattern across all 
seasons (Vizy and Cook 2017; Wei et al. 2017a). Because 
every variable analyzed here is an annual mean quantity, the 
term “annual mean” will be often omitted for brevity for the 
remainder of this paper.

2.3.1 � Data processing for near surface and atmospheric air 
temperatures

The first task is to create annual mean anomalies for hourly 
T2m and for atmospheric temperatures at 00 and 12 UTC 
for the study period following the five steps detailed next. 
The first step is to create the daily hourly mean data. For 
each day, the subhourly and hourly data are aggregated into 
hourly averaged data. This step is applied only to the surface 

station observations from the DS3505. The second step is to 
create the monthly mean data. For each month, the daily data 
are averaged to create the monthly mean. For every month, 
at least 10 days of data are required for the monthly averag-
ing. Otherwise, missing data is assigned for that month. This 
step is applied to both the surface and radiosonde observa-
tions. The third step is to create the monthly mean anomalies 
by subtracting the long-term monthly mean (climatology) 
from the monthly mean data. The fourth step is to create 
the annual mean anomalies. For every year, the monthly 
mean anomalies are averaged to create the annual mean 
anomalies, and at least 6 months of data are required for the 
annual averaging. The fifth step is to create the long-term 
annual mean anomalies. At least 28 years (70%) of data for 
the study period 1979–2018 are required. The third to fifth 
steps are applied to all four datasets. The use of thresholds 
of 10 days per month (e.g., Li et al. 2020), 6 months per 
year (e.g., Wang and Wang 2016), and 70% of the temporal 
coverage (e.g., Gertler and O’Gorman 2019) is a reason-
able compromise between the data length, completeness, and 
spatial coverage.

The second task is to identify radiosonde stations in the 
RICH and surface stations in the DS3505 from all avail-
able stations over the AP that having valid observations. 
There are 8 radiosonde stations and 21 surface stations in 
the study domain meeting the above data selection criteria. 
Most chosen stations are located within the airport premises, 

Table 1   Surface weather stations used in this study from the DS3505 dataset

Station Name WMO code Latitude (°N) Longitude (°E) Elevation (m)

Ben Gurion Intl Airport, Israel 401800 32.011 34.887 41
Kuwait Intl Airport, Kuwait 405820 29.227 47.969 63
ARAR, Saudi Arabia 403570 30.907 41.138 553
Al Jouf, Saudi Arabia 403610 29.785 40.100 689
Hail, Saudi Arabia 403940 27.438 41.686 1015
Gassim, Saudi Arabia 404050 26.300 43.767 648
Al Ahsa, Saudi Arabia 404200 25.285 49.485 179
King Khaled Intl Airport, Saudi Arabia 404370 24.958 46.699 625
King Abdulaziz Intl Airport, Saudi Arabia 410240 21.680 39.157 15
Al Baha, Saudi Arabia 410550 20.296 41.634 1672
Bisha, Saudi Arabia 410840 19.984 42.621 1185
ABHA, Saudi Arabia 411120 18.240 42.657 2090
King Khaled Ab, Saudi Arabia 411140 18.297 42.804 2066
King Abdullah Bin Abdulaziz, Saudi Arabia 411400 16.901 42.586 6
Turaif, Saudi Arabia 403560 31.693 38.731 854
Qaisumah, Saudi Arabia 403730 28.335 46.125 358
Tabuk, Saudi Arabia 403750 28.365 36.619 778
Prince Mohammad Bin Abdulaziz, Saudi Arabia 404300 24.553 39.705 656
Riyadh Ab, Saudi Arabia 404380 24.71 46.725 635
Taif, Saudi Arabia 410360 21.483 40.544 1478
Nejran, Saudi Arabia 411280 17.611 44.419 1214
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which are isolated from urban centers or industrial areas 
and comply with the World Meteorological Organization 
(WMO) standards (Almazroui et al. 2014). The name, WMO 
identifier number, and location for these stations are listed 
in Tables 1 and 2 and illustrated in Fig. 1a.

The third task is to estimate the linear trend of annual 
mean temperature anomaly time series over the study period 
using least squares fitting. A two-tailed student’s t test is 
used to quantify the probability of whether the trend is sta-
tistically significant from zero. Before the trend analysis, 
a three-hour smoothing is applied to the surface hourly 
data for three reasons. First, the sample size among indi-
vidual hours in the DS3505 varies largely for some stations 
due to irregular missing data and so the smoothing helps 
to reduce the sampling inhomogeneity. Second, the study 
domain spans 15.5° in longitude (34.5° E–50° E) covering 
two time zones in local solar time, and so the smoothing 
helps to reduce the small phase difference in the diurnal 
cycle of data among different grids when spatial averag-
ing is applied. Third, the reanalysis hourly averaged data 
consist of a continuous sequence of data averaged over the 
indicated interval and time stamped at 00:30 UTC, 01:30 
UTC, …, 23:30 UTC, while the reanalysis instantaneous 
data contain snapshots at synoptic times (00 and 12 UTC). 
The 3-hourly averaging helps to smooth out the timing dif-
ference among the data with different temporal resolutions. 
However, this three-hourly smoothing has limited impact 
if the data is smooth in the diurnal cycle. Trend analysis is 
performed at every station for the observations, every grid 
for the reanalysis, or for the spatially aggregated data.

2.3.2 � Data processing for other variables

The above data processing calculates the climatology and lin-
ear trends in the annual mean data of (i) T2m at the hourly 
time scale and (ii) vertical temperature profiles at 00 and 12 
UTC. The monthly means of daily Tmax, Tmin and DTR were 
composited from the hourly T2m values and their annual mean 
trends are estimated accordingly. Similarly, the monthly means 

of hourly averaged surface fluxes: sensible heat, latent heat, 
DLW, downward shortwave radiation (DSR), net shortwave 
and longwave radiation, and upward shortwave and long-
wave radiation, are processed and the linear trends of annual 
mean anomalies of these variables are also calculated for the 
MERRA-2 and ERA5. For simplicity, the trends of T2m, DLR 
and DSR, three frequently used variables, are referred to as 
T2mtrend (ºC/decade), DLRtrend (W/m2/decade), and DSRtrend 
(W/m2/decade) hereafter, respectively.

2.3.3 � Creating climatological PBLH

Both ERA5 and MERRA-2 provide the monthly mean of 
hourly averaged PBLH. The reanalysis PBLH is derived based 
on the bulk Richardson number in the ERA5 (C3S 2017) fol-
lowing the conclusions of Seidel et al. (2012) and the total 
eddy diffusion coefficient of heat with a threshold value of 2 
m2s−1 in the MERRA-2 (Salmun et al. 2018). The monthly 
means of hourly averaged PBLH from the reanalysis are aver-
aged to create the long-term climatology of PBLH, referred 
to as PBLHclimate.

The reanalysis-derived PBLH is a model-based estimate 
with large uncertainties and different PBLH estimation meth-
ods can produce substantially different values (Sect. 3.5). To 
validate and intercompare the reanalysis PBLH, the bulk Rich-
ardson number (Ri) method (Vogelezang and Holtslag 1996) 
is chosen to consistently diagnose the PBLH directly from 
the atmospheric soundings among different datasets. The Ri 
methods have proven to work reasonably well for both stable 
and convective boundary layers, and don’t strongly depend 
on the sounding vertical resolutions (e.g., Seidel et al. 2012; 
Zhang et al. 2013). The Ri is the ratio of turbulence associ-
ated with buoyancy to that associated with mechanical shear 
(Seidel et al. 2012):

(1)Ri(z) =
(g0∕�vs)(�vz − �vs)(z − zs)

(uz − us)
2 + (vz − vs)

2
,

Table 2   Radiosonde stations 
used in this study from the 
RICH dataset

*Elevation in parenthsis refers to the corresponding grid-averaged elevation in the ERA5 (first column) and 
MERRA2 (second column) reanalysis

Station Name WMO code Latitude (°N) Longitude (°E) Elevation* (m)

Bet Dagan, Israel ISM00040179 32.000 34.817 35 (414, 281)
Kuwait Intl Airport, Kuwait KUM00040582 29.243 47.971 56 (397, 174)
Al-Qaisumah, Saudi Arabia SAM00040373 28.317 46.133 358 (753, 339)
Tabuk, Saudi Arabia SAM00040375 28.383 36.600 778 (584, 875)
Hail, Saudi Arabia SAM00040394 27.433 41.683 1015 (943, 969)
Al-Madinah, Saudi Arabia SAM00040430 24.550 39.700 654 (936, 846)
King Khaled Intl Airport, Saudi Arabia SAM00040437 24.933 46.717 614 (693, 637)
Jeddah, Saudi Arabia SAM00041024 21.700 39.183 15 (905, 593)
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where g0 is the acceleration of gravity, z is height, and s 
denotes the surface at the 2 m level, θv is virtual poten-
tial temperature, u and v are the zonal and meridional wind 
speed.

This study followed exactly the steps detailed in Sei-
del et al. (2012) to diagnose the PBLH for the radiosonde 
observations (IGRA2) and reanalysis datasets (ERA5 and 
MERRA-2). Due to the lack of observational winds at 2 m, 
Ri is calculated by setting the surface winds to zero in the 
reanalyses for consistency with the radiosonde observations. 
With these assumptions, the PBLH is designed as the lowest 
level at which the bulk Ri reaches the critical value of 0.25. 
Scanning the Ri profile upward from the surface (at 2 m), the 
first level with Ri ≥ 0.25 is identified, and linear interpolation 
between that level and the next lowest level provides an esti-
mate of z(Ri0.25). The PBLH estimated based on z(Ri0.25) is 
referred to as PBLH_Ri0.25. Note that all PBLH estimates in 
this study are measured in meters above ground level (AGL).

2.3.4 � Multiple linear regression analysis

For the reanalysis data, T2mtrends are found to be mostly 
related to DLRtrend and DSRtrend, which represent the surface 
longwave and shortwave radiative forcing, and PBLHclimate, 
which modulates the T2m response to the surface forcing. 
Next, these three variables are used as independent variables 
in a multiple linear regression to quantify their relative con-
tributions to the spatial and/or diurnal variation in T2mtrend 
over the study domain:

where β1 through β3 are the partial regression coefficients 
estimated based on least squares fitting. Each coefficient rep-
resents the change in T2mtrend to a one-unit change in the 
respective independent variable, holding all other variables 
constant. Its sign determines if the independent variable 
affects T2mtrend positively or negatively. Statistical t and F 
tests can be performed to assess the statistical significance of 
each regression coefficient and the overall regression model, 
respectively. The adjusted R-squared (R2

adjusted) measures the 
percentage of variance in T2mtrend that can be explained by 
the three variables after adjusting the statistic based on the 
number of independent variables in the regression model.

2.3.5 � Obtaining large‑scale features

Besides the large-scale radiative forcing, T2mtrend at indi-
vidual stations is influenced by local factors and thus dem-
onstrates some level of inter-station differences (Sect. 2.1). 
In order to maximize large-scale warming patterns and mini-
mize station-scale temperature variability, spatial averaging 

(2)

T2mtrend = �0 + �1 ∗
1

PBLHclimate

+ �2∗ DLRtrend + �3∗ DSRtrend,

is applied at two spatial scales: (1) station mean and (2) 
regional mean. The former is simply an arithmetic mean of 
individual station data and is used for both the observational 
and reanalysis data. For the reanalysis, the station level data 
are obtained from the grid boxes where the chosen stations 
are located based on their geographic location (latitude and 
longitude). The regional mean is applied only to the reanaly-
sis fields using area-weighted averaging over the land grids 
within the rectangle study domain (16.5° N–32.5° N, 34.5° 
E–50° E) depicted in Fig. 1.

The regional mean cannot be done for the observations 
because of limited stations available in the study domain 
and the non-uniform distribution of stations. As an alterna-
tive, an empirical orthogonal function (EOF) analysis is per-
formed on the observed surface and radiosonde data to emu-
late their regional mean data that could be compared with 
the regional mean reanalysis data. EOF decomposes the data 
in terms of orthogonal basis functions and finds both spatial 
patterns (called EOF) and associated time series to extract 
the space–time modes of climate variability (Bjornsson and 
Venegas 1997). The first EOF explains the greatest fraction 
of the total variance, the second for the largest part of the 
remaining variance, and so on. The EOF analysis helps to 
identify the most important modes of data variability, which 
describe the degree of coherence of spatial variation. A new 
temperature time series can be reconstructed based on the 
first EOF pattern to quantify the dominant large-scale warm-
ing patterns shared among all stations.

3 � Results and discussion

3.1 � Hourly T2m trends in surface observations

Figure  2 shows the diurnal cycle of T2mtrend during 
1979–2018, along with the diurnal cycle of climatological 
T2m, for the 21 surface stations in the DS3505. For each 
station, the T2mtrend is positive at every hour and exhibits a 
strong diurnal pattern. Among the 504 (24 h * 21 stations) 
trends, 501 are statistically significant (p < 0.05). The warm-
ing rate is generally in opposite phase with the climatologi-
cal T2m value but with a lag of few hours. The largest/small-
est warming is mostly seen around the transitions between 
day and night, with the largest warming in the early morning 
and the smallest warming in the late afternoon to the early 
evening. Among the 21 stations, the 24-h averaged warm-
ing rate ranges from 0.39 to 0.93 °C/decade, and the diurnal 
range of the hourly warming rate is 0.20 to 0.77 °C/decade.

To focus on the large-scale warming features, Fig. 3a 
shows the diurnal cycle of station mean hourly T2mtrend. 
The hourly warming rate ranges 0.45–0.73 °C/decade, with 
a diurnal range of 0.28 °C/decade and a 24-h average of 
0.59  °C/decade. As stated previously, the leading EOF 
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Fig. 2   The diurnal cycle of 
linear trend (°C/decade) of 
T2m (left y-axis, in red) for the 
period 1979–2018, along with 
the diurnal cycle of climato-
logical T2m (°C, right y-axis, 
in black), for the 21 surface 
stations labeled in Fig. 1a. The 
T2m trends are statistically 
significant at p ≤ 0.05 (in red). 
The daily mean, as well as the 
maximum and minimum (in 
parentheses) of the hourly T2m 
trend, are listed on the top of 
each panel. The vertical line in 
each panel indicates the local 
solar noon
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modes can capture the large-scale features shared among 
all individual stations. The reconstructed T2mtrend from 
EOF1 (Fig. 3b), which can explain 79.6% of the total data 
variance from the original 21 stations, resembles Fig. 3a but 
in a slightly smaller magnitude. The hourly warming rate 
ranges 0.38–0.60 °C/decade, with a 24-h average of 0.50 °C/
decade. The climatology of T2m reaches the minimum of 
18.7 °C at 03 UTC and the maximum of 30.0 °C at 12 UTC, 
while the warming trend maximizes at 05 UTC in the early 
morning and minimizes at 15 UTC around the sunsets. Like 
individual stations (Fig. 2), the diurnal cycle of station 
mean warming rate generally depends inversely on that of 
the climatological T2m value, but with a lag of few hours. 
Previous studies (e.g., Seidel et al. 2005) showed that the 
diurnal cycle of temperature peaks a few hours after local 
solar noon at the surface. Note that local solar time in Saudi 
Arabia = UTC + 3 h.

Figure 4a shows interannual variations of station mean 
time series of T2m anomalies at 00 and 12 UTC from 1979 

to 2018 averaged over the 21 surface stations in the DS3505. 
T2m at both UTC times exhibits a persistent and statistically 
significant (p < 0.001) upward trend and similar interannual 
variability. The warming trend is 0.60 °C/decade at 00 UTC, 
and 0.57 °C/decade at 12 UTC, indicating stronger warming 
rates at nighttime than daytime. Note that the T2mtrend differ-
ence between 00 and 12 UTC is not large because both UTC 
times do not correspond to the times with the maximum/
minimum warming rates.

There are no warming trends reported at hourly time 
scales over the AP in the literature. Despite some seasonal 
and spatial variations in magnitude, warming has been con-
sistently observed across stations and seasons in Saudi Ara-
bia (Rehman and Al-Hadhrami 2012; Almazroui et al. 2012, 
2014; Alghamdi and Moore 2014; Athar 2014; Krishna 
2014; Tarawneh and Chowdhury 2018). Here several recent 
studies that reported daily mean, Tmax, and Tmin trends in 
Saudi Arabia are used to partially validate the results in 
Figs. 2 and 3. Krishna (2014) analyzed annual mean T2m 
trends for the period 1984–2013 for 4 stations representing 
4 different climatic zones of Saudi Arabia, and estimated 
significant warming trends of 0.52–0.69, 0.31–0.62, and 
0.48–0.71 °C/decade for the daily mean, Tmax, and Tmin. 
Alghamdi and Moore (2014) compared warming trends 
over the period 1985–2010 at two weather stations (urban 
vs. rural) in Riyadh city, Saudi Arabia. The rural station 
showed a warming trend of 0.69 and 0.83 °C/decade for the 
Tmax and Tmin, respectively. The corresponding values for 
the urban station are 0.45 and 0.68 °C/decade. Tarawneh 
and Chowdhury (2018) calculated T2m changes during the 
period 1984–2013 for three stations representing the central, 
northern and southwest regions of Saudi Arabia, and docu-
mented the overall warming rates of 0.58–1.25 °C/decade 
in summer and 0.43–0.66 °C/decade in winter. To compare 
with these previous estimates, the annual mean Tmax, Tmin, 
and DTR trends for the 21 surface stations in the DS3503 
were estimated. Their station mean trends (Table 3) are 
found to be 0.56, 0.72, and − 0.16 °C/decade, respectively, 
and all are statistically significant (p < 0.05), indicating a 
stronger warming rate in Tmin than Tmax and thus a decline 
in DTR. Evidently, the T2m trends shown in Figs. 2 and 3 
and Table 3 are in the range of recent observation-based 
estimates over the AP.

3.2 � Temperature trends in radiosonde observations

Figure 5 shows the vertical profile of temperature trends 
from 850 to 100 hPa during the period 1979–2018 for the 
8 radiosonde stations in the RICH. Note that the RICH 
data below 850 hPa are not analyzed due to poor qual-
ity as done by others (e.g., Thorne et al. 2011). Despite 
some differences, all stations show generally consistent 
results: cooling trends above 200 hPa and warming trends 

Fig. 3   Same as Fig. 2 but for the station mean: a original T2m, and b 
reconstructed T2m using the first EOF, which explains 79.6% of the 
total data variance. The vertical line in each panel indicates the sta-
tion mean local solar noon
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downward in the troposphere. Among the 144 trends (9 
pressure levels * 2 UTC times * 8 stations), 77 are statis-
tically significant at p < 0.05, and so are all the trends in 
the lowest three layers (500, 700, and 850 hPa). The larg-
est warming trend is 0.65 °C/decade at 850 hPa and the 
biggest cooling rate is – 0.34 °C/decade at 100 hPa. The 
trends at 00 and 12 UTC differ slightly in the free atmos-
phere but stronger warming is mostly seen at 00 UTC than 
12 UTC in the lower troposphere. In general, there are two 

warming maxima in the profile, a strong one at 850 hPa 
and a very weaker one centered at 200–300 hPa.

Like the surface observations, the station mean results 
are examined to focus on the large-scale warming features. 
Figure 6a shows the vertical trend profile of station mean 
temperature averaged over the 8 radiosonde stations in the 
RICH at 00 and 12 UTC for 100–850 hPa. The trend is nega-
tive above 200 hPa but is positive and increases downward in 
the entire troposphere, with a maximum of 0.43 °C/decade 

Fig. 4   Interannual variations 
in station mean T2m anoma-
lies (°C) at 00 and 12 UTC 
averaged over the 21 surface 
stations labeled in Fig. 1a from: 
a DS3505 (1979–2018), b 
ERA5-land (1981–2018), and c 
MERRA-2 (1980–2018). Linear 
trend (°C/decade) plus one 
standard deviation, along with 
its significance level (p value), 
are shown

Table 3   Station means of the climatology (°C) and trends (°C/decade) of daily maximum T2m, minimum T2m, and DTR averaged over the 21 
surface stations (Fig. 1a) from the DS3505 (1979–2018), ERA5-land (1981–2018), and MERRA-2 (1980–2018)

Tmax maximum T2m, Tmin minimum T2m, DTR diurnal temperature rang of T2m. Trends (°C /decade) in bold and italics are statistically signif-
cant at the 5% level

dataset Tmax Tmin DTR

climatology Trend climatology Trend climatology Trend

DS3505 30.1 0.56 18.6 0.72 11.5 − 0.16
ERA5-land 30.1 0.42 17.0 0.44 13.0 − 0.02
MERRA-2 31.6 0.37 17.5 0.39 14.1 − 0.02
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at 850 hPa. Among the 18 trends (9 pressure levels * 2 UTC 
times), 13 are statistically significant at p < 0.05, including 
the lowest three layers (500, 700, and 850 hPa). The cor-
responding mean T2mtrend, for the 8 radiosonde stations, 
0.68 °C/decade (00 UTC) and 0.48 °C/decade (12 UTC) 
from the DS3505, is also plotted in Fig. 6a. Figure 6b shows 
the reconstructed warming profile based on EOF analysis 
to capture the large-scale features shared among all indi-
vidual radiosonde stations. The first EOF explains 54.3% 
(00 UTC) and 49.8% (12 UTC) of the total data variance 
from the original 8 stations. The vertical profile in Fig. 6b 
is very similar to that in Fig. 6a. Again, the station mean 
profiles exhibit two warming maxima (i.e., R-shaped): a 
very weaker top-heavy one centered at 250 hPa and a strong 
bottom-heavy one maximizing at the surface. The former 
represents the well-known warming profile peaking in the 
tropical upper troposphere associated with the positive water 
vapor feedback in a warming climate (Held and Soden 2000; 

IPCC 2007, 2013). The latter represents the signal of DA 
that maximizes at the surface and decreases with height as 
also documented by multiple satellite measurements (Wei 
et al. 2017a).

The warming trend is consistently larger at 00 UTC than 
12 UTC in the lower troposphere and this day-night warm-
ing difference increases with pressure and maximizes at the 
surface (Fig. 6). This diurnal warming asymmetry is small 
between 500–700 hPa and become more evident for the lay-
ers > 700 hPa. As the station mean PBLH at 12 UTC over 
the AP is ~ 2.1 km (Table 4), it is reasonable to believe that 
the diurnal signal of DA is limited to the lower troposphere 
below 700 hPa. The free atmosphere in the tropics has rela-
tively small diurnal variations because the atmosphere is 
dynamically well mixed (Sherwood et al. 2005; Byrne and 
O’Gorman 2016, 2018). For example, Seidel et al. (2005) 
analyzed the amplitude and phase of the climatological diur-
nal cycle of upper-air temperatures based on four-times-daily 

Fig. 5   The vertical profile of linear trend (°C/decade) of atmospheric air temperature at 00 (in red) and 12 UTC (in blue) during the period 
1979–2018 for the 8 radiosonde stations labeled in Fig. 1a in the RICH dataset. The trends are statistically significant at p < 0.05 (in circle)
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radiosonde data from 53 stations and found that the ampli-
tude of the annual-average diurnal cycle (half the DTR) 
is largest (1 to 4 °C) at the surface, decreases with height 
quickly, and becomes very small (< 0.4 °C) at 700 hPa and 
above. Brocard et al. (2013) analyzed the phase and ampli-
tude of the diurnal temperature cycle based on 53 years of 
radiosonde measurements from a station in Switzerland and 
showed a strongly decreasing amplitude with height from 

about 3 °C at the surface to 0.2 °C at 700 hPa and above. 
These results suggest that the diurnal warming asymmetry 
may exist mainly in the lower troposphere (> 700 hPa) and 
at the surface.

There are no radiosonde-based diurnal warming trends 
reported previously in the AP. One key question is whether 
the warming profiles in Figs. 5 and 6 are robust? Histori-
cally there were some disagreements on the tropospheric 
warming rates observed and modeled, particularly in the 
tropics. Thorne et  al. (2011) comprehensively assessed 
recent homogenized radiosonde and satellite observing sys-
tems and model results and reported an overall agreement 
between modeled and observed throughout the tropospheric 
column because of considerable progresses made recently 
in treating uncertainties in both. Also, among the several 
radiosonde datasets used, the RICH showed the best match 
with satellite observations. The large-scale warming profile 
in the tropics (Fig.8 in Thorne et al. 2011) highlighted the 
cooling in the stratosphere, the overall warming through 
the entire troposphere, and the largest warming in the upper 
troposphere centered at 200–300 hPa, consistent with the 
estimates in the middle and upper troposphere (Fig. 6) in 
this study. It differs largely in the lower troposphere from 
the bottom-heavy warming profile over the AP, because it 
is averaged from the entire tropical regions dominated by 
oceans and the latter is from the moisture-limited deserts 
only. The bottom-heavy profile associated with DA was also 
documented by comparing the warming profile between 
rainforests and deserts using multiple satellite datasets (Wei 

Fig. 6   Same as Fig.  5 but for the station mean: a original tempera-
ture, and b reconstructed temperature using the first EOF, which 
explains 54.3% (00 UTC) and 49.8% (12 UTC) of the data variance. 
The corresponding station mean T2mtrend at 00 and 12 UTC from the 
DS3505 are also shown at the bottom of the plot

Table 4   Statistical results for 
the multiple linear regression in 
Eq. (2)

PBLH and PBLH_RI0.25 are defined in Table 5. N is the sample size of the regression for the ERA5-land 
and MERRA-2 data over the study domain, consisting of spatial (grid box) and diurnal (hourly or 6-hourly) 
temporal scales. N* is the effective degree of freedom after considering the spatial correlation between grid 
boxes. F_pval denotes the statistical significance (p value) of the F-test. The partial regression coefficents, 
β1, β2, and β3, are standardized and so can be compared to determine the relative contribution to T2mtrend. 
The values in bold and italics are statistically signifcant at p = 0.01 and p = 0.05, respecively

Scale PBLH type T2mtrend = β0 + β1*1/PBLHclimate + β2 * DLRtrend + β3 * DSRtrend

N (N*) β1 β2 β3 R2
adjusted F_pval

ERA5
Spatial + diurnal PBLH 21,144 (3299) 0.22 0.85 0.22 0.58  < 0.01

PBLH_RI0.25 21,144 (3863) 0.22 0.81 0.21 0.58  < 0.01
Spatial PBLH 881 0.02 1.15 0.52 0.73  < 0.01

PBLH_RI0.25 881 0.11 1.10 0.48 0.74  < 0.01
Diurnal PBLH 24 2.53 1.70 0.06 0.95  < 0.01

PBLH_RI0.25 24 2.05 1.24 0.03 0.89  < 0.01
MERRA-2
Spatial + diurnal PBLH 17,304 (2690) 0.00 0.74 0.26 0.56  < 0.01

PBLH_RI0.25 2884 0.05 0.72 0.29 0.60  < 0.01
Spatial PBLH 721 0.06 0.72 0.37 0.66  < 0.01

PBLH_RI0.25 721 − 0.02 0.75 0.37 0.68  < 0.01
diurnal PBLH 24 0.75 0.06 0.30 0.99  < 0.01

PBLH_RI0.25 4 – – – – –



3144	 L. Zhou 

1 3

et al. (2017a). Similar bottom-heavy warming profiles are 
also reported over Armenia with a dry highland continental 
climate (Gevorgyan 2014).

3.3 � Temperature trends in ERA5 and MERRA‑2

It is essential that the reanalyses can capture some major 
T2m features observed before being used for analysis. Fig-
ure 4a shows interannual variations of station mean T2m 
anomalies at 00 and 12 UTC for 1979–2018 averaged over 
the 21 surface stations from the DS3505. The corresponding 
station mean T2m anomalies calculated from the ERA5-
land and MERRA-2 are shown in Fig. 4b, c. Both reanaly-
ses show warming trends that are statistically significant 
(p < 0.0001) at both UTC times. For the ERA5, the warming 
trend is 0.44 °C/decade at 00 UTC and 0.41 °C/decade at 
12 UTC. The corresponding values for the MERRA-2 are 
0.39 °C/decade and 0.36 °C/decade, respectively. Evidently, 
the reanalyese capture well the major observed features of 
interannual variability and overall warming trends, but have 
a cooling bias, compared to the observed warming rate of 
0.60 °C/decade at 00 UTC and 0.57 °C/decade at 12 UTC. 
As discussed previously, the surface warming rate difference 
(00 vs. 12 UTC) is not large because both UTC times do not 
correspond to the times with the maximum/minimum warm-
ing rate in T2m (Figs. 2 and 3).

The spatial patterns of T2m trend at 00 and 12 UTC from 
the ERA5-land (1981–2018) and MERRA-2 (1980–2018) 
over the SDAP and surrounding areas are shown in Fig. 7 to 
illustrate the large-scale warming patterns of DA and so the 
warming in the AP can be put in a proper context. Signifi-
cant warming (p < 0.05) is widespread at both UTC times 
and the strongest trends at ~ 0.5 °C/decade are seen over a 
broad contiguous swath of land covering the entire Sahara 
and Arabian deserts. The warming is larger at 00 UTC than 
12 UTC. These warming features are similar in the ERA5-
land and MERRA-2. Again, the reanalyses have a systematic 
cooling bias in the warming rates but capture well the essen-
tial spatial features of DA (Zhou et al. 2015, 2016).

Figure 8 shows the diurnal cycle of T2mtrend and cli-
matological T2m from the ERA5-land (1981–2018) and 
MERRA-2 (1980–2018), at the station and regional mean 
levels over the AP. All hourly trends are statistically sig-
nificant at p < 0.05. For the station mean T2m from the 
ERA5-land (Fig.  8a), the hourly warming trend ranges 
0.41–0.45 °C/decade, with a diurnal range of 0.04 °C/dec-
ade and a 24-h average of 0.43 °C/decade. The climatology 
of T2m has a minimum value of 17.4 °C at 02 UTC and a 
maximum value of 29.8 °C at 11 UTC, while the warm-
ing trend maximizes at 21 UTC and minimizes at 14 UTC. 
Similar diurnal features are seen for the regional mean T2m 
(Fig. 8c). For the station mean T2m from the MERRA-2 
(Fig. 8b), the warming trend ranges 0.36–0.39 °C/decade, 

with a diurnal range of 0.03 °C/decade and a 24-h average 
of 0.38 °C/decade; the climatology of T2m has a minimum 
value of 17.9 °C at 02 UTC and a maximum value of 31.4 °C 
at 11 UTC, while the warming trend maximizes at 00 UTC 
and minimizes at 08 UTC. The regional mean plot (Fig. 8d) 
shows similar features to the station mean plot except the 
minimum warming trend at 09 UTC.

Clearly, the reanalyses (Fig.  8) underestimate the 
observed warming rates (Fig. 3a), particularly the maxi-
mum warming rate and the diurnal asymmetry of warm-
ing. The observed climatology of T2m reaches the mini-
mum of 18.7 °C at 03 UTC and the maximum of 30.0 °C 
at 12 UTC, while the warming trend maximizes at 05 UTC 
and minimizes at 15 UTC. The reanalysis climatology in 
T2m reproduces the observed diurnal range but differs by 
1–2 h in the minimum and maximum values than observed. 
Like the observations (Fig. 3), the reanalysis warming rate 
is generally in opposite phase with the climatological T2m 
values, indicating that the largest warming at nighttime and 
the smallest warming at daytime. However, the reanalyses 
differ by several hours in the maximum/minimum from 
the observations and from each other. These discrepancies 
are likely due to the differences in spatial resolution (point 
measurements versus coarse-resolution grid averaged data) 
and reanalysis deficiencies in modeling the surface radia-
tive forcing, surface energy partitioning, and PBL mixing 
(Sect. 3.5).

To compare with recent T2m trend estimates available 
over the AP (e.g., Alghamdi and Moore 2014; Krishna 2014; 
Tarawneh and Chowdhury 2018), the annual mean clima-
tology and trends of daily Tmax, Tmin, and DTR in the two 
reanalyses were calculated for the 21 surface stations in the 
AP (Table 3). Interestingly, the station mean reanalysis cli-
matology is comparable to the observed values. The station 
mean trends for the Tmax, Tmin, and DTR are 0.42, 0.44, and 
− 0.02 °C/decade, for the ERA5-land, and 0.37, 0.39, and 
-0.02 °C/decade for the MERRA-2, respectively. The cor-
responding observed trends are 0.56, 0.72, and − 0.16 °C/
decade, for the DS3505. Note that all the trends except these 
for the reanalysis DTR are statistically significant (p < 0.05). 
As discussed previously, the reanalyses capture the observed 
diurnal cycle of T2m warming and larger warming trends in 
Tmin than Tmax, but largely underestimate the warming rates, 
particularly at nighttime, and the magnitude of the diurnal 
asymmetry of warming. Also, the reanalysis DTR trend is 
substantially smaller than observed. These reanalysis biases 
are more pronounced in the MERRA-2 than the ERA5.

Figure  9 shows the vertical profile of temperature 
trend at 00 and 12 UTC from the ERA5 (1979–2018) and 
MERRA-2 (1980–2018), along with the corresponding 
T2m trends at the surface. The reanalyses show cool-
ing in the stratosphere above 200  hPa and increasing 
warming through the entire troposphere, and two evident 
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Fig. 7   Spatial patterns of linear trend (°C /decade) of T2m from ERA5-land (1981–2018) and MERRA-2 (1980–2018) over North Africa and 
the Arabian Peninsula: (a, c) at 00 UTC, and (b, d) at 12 UTC. Stippling indicates regions where the trend is statistically significant at p < 0.05
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warming maxima in the vertical profile, one in the UT 
around 250 hPa, and the other near the surface. Overall, 
the reanalysis profile (Fig.  9) exhibits broadly similar 
vertical warming patterns (i.e., R-shaped) as observed 
(Fig. 6) over the AP. However, the observations (Fig. 6) 
show small warming differences between 00 and 12 UTC 
above 700 hPa, and stronger warming rate at 00 UTC 
than 12 UTC downward, while the reanalyses exhibit 
stronger warming at 12 UTC than 00 UTC between 500 
and 850 hPa and a transition to the opposite below 900 hPa 
to the surface. Also, compared to the observations, the 
reanalysis generally has warming biases in the middle 
and upper troposphere and cooling biases in the lowest 
tropospheric layers, which are particularly evident in the 
MERRA-2.

3.4 � Possible drivers of the diurnal and vertical 
warming features

The warming rate of T2m depends on surface radiative forc-
ing and various response and feedback processes. At the 
global scale, T2m has generally increased more over drier 
regions and faster at nighttime than daytime in a warming 
climate, and this spatial and diurnal variability has been 
mostly explained by large-scale greenhouse effects and local 
to regional changes in cloud cover, precipitation, soil mois-
ture, and vegetation (IPCC 2007, 2013; Zhou et al. 2007, 
2009, 2010; Dirmeyer et al. 2013; Lindvall and Svensson 
2015; Davy and Esau 2016; Wei et al. 2017b). For exam-
ple, drier regions with less soil moisture and vegetation are 
associated with higher Bowen ratios and tend to experience 

Fig. 8.   The diurnal cycle of linear trend (°C/decade) of T2m (left 
y-axis), along with the diurnal cycle of climatological T2m (°C, right 
y-axis, in black), from the ERA5-land (1981–2018) and MERRA-2 
(1980–2018): (a, b) station mean averaged over the 21 surface sta-
tions labeled in Fig. 1a, and (c, d) regional mean averaged over the 
rectangle domain depicted in Fig. 1a. The T2m trends are statistically 

significant at p < 0.05 (in red). The daily mean, along with the maxi-
mum and minimum (in parentheses), of the 24-hourly values for the 
T2m trend (left) and the T2m climatology (right) are listed in each 
panel. The vertical line in each panel indicates the station or regional 
mean local solar noon.
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larger warming rates due to less local evaporative cooling. 
These factors affect T2m differently by altering the land 
surface energy and hydrological balances over different 
regions, but their effects on surface warming are limited 
over the extremely dry and mostly cloud-free deserts. Land 
use change such as urbanization in the AP could affect the 
diurnal warming asymmetry. Urbanization generally creates 
urban heat island in most cities, but urban areas often exhibit 
cooler temperatures at day (urban cool island) and warmer 
temperatures at night than suburbs over deserts (Bounoua 
et al. 2009; Lazzarini et al. 2013, 2015). However, observa-
tional studies (Almazroui et al. 2013; Alghamdi and Moore 
2014) showed that urbanization lessened the warming rate in 
urban areas compared to surrounding rural areas but has not 
substantially contributed to the large-scale warming trends 
observed throughout Saudi Arabia.

Large-scale warming and moistening in response to 
increasing GHGs have been widely used to explain surface 
and atmospheric warming (IPCC 2007, 2013). Increased 
DLR in a warming climate associated with this global-
scale greenhouse effect has been proposed as the primary 
surface radiative forcing for the DA over the SDAP (Zhou 
et al. 2015, 2016; Cook and Vizy 2015; Zhou 2016; Evan 
et al. 2015; Wei et al. 2017a). In addition, the AP is one of 
significant dust sources in the world, and changes in DSR 
associated with dust aerosols can affect local temperature by 
modifying the radiative forcing via direct effects and feed-
back of desert dust (Islam and Almazroui, 2012). It is very 
likely that the radiative forcing associated with changes in 
DLR and DSR may be the main drivers for the overall sur-
face warming and its spatial and diurnal variations associ-
ated with the DA.

Besides the radiative forcing at the surface, the diurnal 
cycle of T2m warming is also tightly connected to the extent 
of turbulent mixing in the PBL, which is described by the 
PBLH (McNider et al. 2012; Dirmeyer et al. 2013; Davy 
and Esau 2014a, b, 2016; Svensson and Lindvall 2015; Wei 
et al. 2017b). As the lowest part of the atmosphere, the PBL 
controls and in turn, responds to the diurnal evolution of 
near-surface thermodynamic variables through turbulent 
exchanges of momentum, heat and moisture in the coupled 
land–atmosphere interface (Wei et al. 2017b). Recent stud-
ies highlighted that the PBLH modulates the T2m response 
to surface forcing and is a strong predictor of the strength 
of T2mtrend (McNider et al. 2012; Dirmeyer et al. 2013; 
Davy and Esau 2014a, b, 2016; Wei et al. 2017b). Davy 
et al. (2017) proposed a PBL-response mechanism that for 
a given forcing, the surface warming rate depends inversely 
on the PBLH and so is stronger for a shallower PBLH. It is 
interpreted as the forcing efficacy determined by the effec-
tive heat capacity of the atmosphere, which is defined by the 
PBLH. This mechanism helps to explain why the nighttime 
has warmed more rapidly than the daytime in observations 
across different regions. Its effect is expected to be most 
pronounced in regions such as the SDAP where there is a 
strong diurnal cycle in the PBLH, with an extremely shallow 
SBL forming at night. Hence it is possible that the diurnal 
and vertical warming features associated with the DA may 
be also tied to the diurnal evolution of PBLH over the AP.

Figure 10 shows the station and regional mean diurnal 
cycle of climatological PBLH and T2m over the AP from the 
ERA5 and MERRA-2, respectively. In general, the diurnal 
phase of PBLH follows closely that of T2m, but with a delay 
of ~ 1 h, and the PBLH differs little between the station and 
regional mean results for each reanalysis. The PBL is deep-
est in the late afternoon at 12 UTC after the T2m reaches 
the daily maximum at 11 UTC. It is shallowest in the early 
morning at 03–04 UTC, 1–2 h after the T2m reaches the 
daily minimum at 02 UTC. Combined with the relationship 

Fig. 9   The vertical profile of linear trend (°C /decade) of atmos-
pheric air temperature and surface T2m at 00 (in red) and 12 UTC 
(in blue) from the ERA5 (1979–2018) and MERRA-2 (1980–2018): 
(a, b) station mean for the 8 radiosonde stations labeled in Fig. 1a, 
and (c, d) regional mean for the rectangle domain depicted in Fig. 1a. 
The trends are statistically significant at p < 0.05 (in circle). The cor-
responding station mean T2m trends (°C/decade) are also plotted. For 
comparison purpose, the station mean profiles observed in Fig. 6a are 
also shown
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between T2mtrend and climatological T2m shown in 
Figs. 3 and 8, Fig. 10 supports generally the PBL-response 
mechanism that the diurnal cycle of surface warming rate 
depends inversely on the climatological PBLH and DA has 
a distinct diurnal asymmetry—a stronger warming rate for 
a shallower PBLH. To check this further, Fig. 11 shows the 
histogram of T2mtrend as a function of PBLHclimate from 
the ERA5-land (1981–2018) and MERRA-2 (1980–2018). 
The PBLH for all grids over the rectangle study domain are 
divided evenly into 10 bins based on a PBLH interval of 
350 m in the ERA5 and 300 m in the MERRA2. Evidently, 

T2mtrend decreases with increasing PBLHclimate, indicating 
an inverse relationship between T2mtrend and PBLHclimate.

However, the T2mtrend demonstrates some level of spati-
otemporal heterogeneity and so do the PBLHclimate and sur-
face radiative forcing over the AP. It is difficult to establish 
the main drivers of T2mtrend simply based on the station and 
regional mean diurnal cycle shown above, without consider-
ing the confounding impacts of radiative forcings and PBLH. 
Next, a multiple regression model (Eq. 2) is used to explore 
the empirical relationships between the diurnal and spatial 
variance in T2mtrend and three major contributing variables, 

Fig. 10.   The diurnal cycle of climatological PBLH (m, left y-axis, in 
red) and T2m (°C, right y-axis, in black) from the ERA5-land (1981–
2018) and MERRA-2 (1980–2018): (a, b) station mean for the 21 
surface stations labeled in Fig.  1a, and (c, d) regional mean for the 
rectangle domain depicted in Fig. 1a. The daily mean, along with the 

maximum and minimum (in parentheses), of the 24-hourly values for 
the PBLH (left) and the T2m climatology (right) are listed in each 
panel. The vertical line in each panel indicates the station or regional 
mean local solar noon.
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DLRtrend, DSRtrend, and PBLHclimate in the reanalyses. Note 
that a similar analysis cannot be done for the observations 
due to the lack of surface radiative forcing data. The mag-
nitude of the standardized partial regression coefficients β1 
through β3 tell the relative contribution of the three variables 
to T2mtrend and the sign of these coefficients tells the direc-
tion of their impacts on T2mtrend.

Table 4 lists the statistical results for the regression 
model by considering the diurnal and/or spatial variations 
in T2mtrend for three cases: (i) the diurnal data over all the 
land grids within the study domain (i.e., the diurnal + spatial 
variation), (ii) the diurnal mean data over all the land grids 
within the study domain (i.e., the spatial variation), and 
(iii) the spatial mean diurnal data averaged over all the land 
grids within the study domain (i.e., the diurnal variation). 
The different cases are used to seprate the contributions of 
the diurnal and spatial variations in the regrssion. Also, two 
types of PBLH are conisdered: (i) the PBLH provided by the 
reanalysis and (ii) the PBLH diagnosed from the reanalysis 
using the Ri method (i.e., PBLH_RI0.25). It is expected that 
PBLHclimate matters most in the diurnal domain and DLRtrend 
and DSRtrend dominate in the spatial domain.

In the ERA5, when the reanalysis-derived PBLH is used, 
the regression coefficients for case (i) are 0.22, 0.85, and 
0.22, for 1/PBLHclimte, DLRtrend, and DSRtrend, respectively, 
and are all statistically significant (p < 0.0001), indicating 
that the radiative forcing of DLR has the dominant impact 
(positive) on T2mtrend, followed by 1/PBLHclimate (positive) 
and DSRtrend (positive). For case (ii), the radiative forcing 

of DLR has the dominant impact (positive) on T2mtrend, fol-
lowed by DSRtrend (positive), while PBLHclimate has a neg-
ligible effect. For case (iii), 1/PBLHclimate has the dominant 
impact (positive) on T2mtrend, followed by DLRtrend (posi-
tive), while DSRtrend is negligible. When the PBLH_RI0.25 
is used, the regression results are nearly identical to these 
based on the reanalysis-derived PBLH. In the MERRA2, 
the results for all three cases agree mostly with those in the 
ERA5, except that the impact of PBLHclimte is weaker and 
the effect of DSRtrend is slightly stronger. The F test indicates 
that the overall regression model is statistically significant 
(p < 0.0001) for all cases in Table 4. The R2

adjusted value 
shows that 56%-99% of the data variance in T2mtrend can be 
explained by the regression model. These statistical results 
suggest that the radiative forcing of DLR has the dominant 
effect on T2mtrend in the spatial domain and PBLHclimate 
could have the most control of the strength of the tempera-
ture response to the forcing in the diurnal domain.

The multiple regression results are generally consistent 
in the sign, magnitude, and significance of the three regres-
sion coefficients between the two reanalyses. However, the 
diurnal timing of maximum and minimum warming in T2m 
differs between observed and reanalyzed. Also the reanal-
ysis vertical profile shows some warming/cooling biases, 
and the PBLHclimate has a less important role in explaining 
T2mtrend in the MERRA-2 than in the ERA5. It is reasonable 
to assume that the free atmosphere (and the DLR forcing 
as well) in the tropics has relatively smaller diurnal varia-
tions than the PBLH because it is dynamically well mixed 

Fig. 11.   The histogram of hourly T2m trend (°C /decade, y-axis) 
plus one standard deviation (STD) as a function of climatological 
hourly PBLH (m, x-axis) from (a) ERA5-land (1981–2018) and (b) 

MERRA-2 (1980–2018). All the PBLHs over the land grids with the 
rectangle domain depicted in Fig. 1a are divided evenly into 10 bins 
based on a PBLH interval of 350 m in ERA5 and 300 m in MERRA2.
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(Sherwood et al. 2005; Byrne and O’Gorman 2016, 2018). 
Hence the reanalysis diurnal and vertical discrepancies may 
be tied more to the systematic biases in PBLH as described 
next.

3.5 � Uncertainties in PBLH

A key question is whether the reanalysis PBLH diurnal cycle 
is reliable? So far, there are only two papers reported the 
diurnal cycle of PBLH over the AP in the literature. Abdel-
Aal and Shonoda (2014) analyzed hourly meteorological 
data for the period 2009–2012 at Qurayyat Province in Saudi 
Arabia and showed a strong seasonal variation in PBLH, 
ranging 1.4–1.9 km for the deepest CBL and 100–300 m 
for the shallowest SBL. Li (2012) used a high-resolution 
mesoscale model to simulate the diurnal and seasonal cycle 
of PBLH for three representative sites in Saudi Arabia and 
found a large seasonal variation of 0.6–3.8 km for the deep-
est CBL and 50–250 m for the shallowest SBL. However, 
these two studies also documented large diurnal, seasonal 
and spatial variations in the phase and magnitude of PBLH 
in the AP due to differences in local conditions. Hence, the 
estimated PBLHs from these two papers are inadequate to 
validate the reanalysis results in Fig. 10. One major fea-
ture in Fig. 10 is the systematic higher PBLH values in the 

MERRA-2 than the ERA5 at every hour in a range from a 
few hundred meters to over 1 km. The station-mean PBLH 
ranges 131–2211 m (790–2564 m), with a daily mean of 
763 m (1554 m), in the ERA5 (MERRA-2). In particular, 
the MERRA-2 nocturnal PBLH is much larger than any esti-
mates reported over the AP (Abdel-Aal and Shonoda 2014; 
Li 2019) and previous studies have documented that the 
MERRA-2 PBLH is biased high (e.g., Salmun et al. 2018; 
Ding et al. 2019).

It is difficult to judge the reliability of the reanalysis 
PBLH data because different methods are used to estimate 
the PBLH. Next, the PBLH is diagnosed using the same RI 
method for comparison among all three datasets. Table 5 
lists the PBLH_Ri0.25 for the 8 radiosonde stations. In gen-
eral, the reanalysis derived PBLH in the ERA5 is broadly 
comparable with PBLH_Ri0.25 at 00 and 12 UTC estimated 
from the IGRA2 and ERA5 profiles. This is expected as 
the RI method was also used in the ERA5 PBLH esti-
mates although some adjustments were applied to this 
method (C3S 2017). The reanalysis derived PBLH in the 
MERRA-2 are broadly comparable with PBLH_Ri0.25 at 
12 UTC, but systematically higher than the PBLH_Ri0.25 
at 00 UTC estimated from the IGRA2 and MERRA-2 pro-
files. For example, the station mean PBLH_Ri0.25 at 12 
UTC is 2090 m in IGRA2, 2238 m in ERA5 and 2665 m 

Table 5   PBLH (m) for the 8 
radiosonde stations from the 
IRGA2, ERA5 and MERRA-2 
datasets

PBLH referes to the PBLH provided by the reanalysis. PBLH_RI0.25 referes to the PBLH diagnosed 
directly from the atmopsheric profiles using the bulk Richardson (Ri) number method (Eq.  1), with the 
threshold value of Z(Ri = 0.25)

WMO code IGRA2 ERA5 MERRA-2

PBLH_RI0.25 PBLH PBLH_RI0.25 PBLH PBLH_RI0.25

00 UTC​
 ISM00040179 84.3 106.7 20.1 432.5 21.5
 KUM00040582 127.4 167.4 36.6 844.5 31.8
 SAM00040373 100.6 134.5 21.7 1142.1 22.2
 SAM00040375 87.5 127.5 16.1 563.5 9.5
 SAM00040394 88.6 137.9 22.3 1252.3 12.1
 SAM00040430 122.7 110.0 17.6 889.1 18.5
 SAM00040437 104.8 130.0 20.1 1330.7 19.6
 SAM00041024 101.7 116.7 26.5 335.6 22.4
 Station mean 102.2 128.8 22.6 848.8 19.7

12 UTC​
 ISM00040179 1199.3 1137.7 1075.8 1575.7 1570.7
 KUM00040582 1784.4 2033.2 1885.0 2263.4 2147.5
 SAM00040373 2275.5 2096.3 2226.9 2393.7 2380.4
 SAM00040375 2131.4 2115.7 2395.7 2642.9 2870.0
 SAM00040394 2793.8 2626.2 2809.3 2978.7 3022.2
 SAM00040430 2774.0 2847.4 3136.5 3223.7 3600.8
 SAM00040437 2520.9 2506.1 2720.2 2772.4 2851.0
 SAM00041024 1240.3 1313.6 1650.5 2524.9 2877.5
 Station mean 2089.9 2084.5 2237.5 2546.9 2665.0
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in MERRA-2, indicating a mean overestimate of 148 m 
in the ERA5 and 575 m in the MERRA-2. The station 
mean PBLH_Ri0.25 at 00 UTC is 102 m in IGRA2, 23 m 
in ERA5 and 20 m in MERRA-2, which are generally 
consistent with the reanalysis-derived PBLH of 129 m 
in ERA5 but much lower than 849 m in the MERRA-2. 
The reanalysis PBLH_Ri0.25 at 00 UTC may be underesti-
mated comparing to the IGRA2-based estimates due to the 
coarse vertical resolution of data used and the difficulties 
in estimating the nocturnal shallow SBL over the deserts 
(see more discussion later). Nevertheless, the reanalysis 
derived PBLH in the MERRA2 is systematically overesti-
mated as also indicated by previous estimates over deserts 
(e.g., McGrath‐Spangler et al. 2015; Wei et al. 2017b).

To examine this further, Fig. 12 shows the scatter plots 
of climatological PBLH between reanalysis-derived versus 
PBLH_Ri0.25 from the ERA5 (1979–2018) and MERRA-2 
(1980–2018) by including all land grids within the study 
domain. For the ERA5, the correlation coefficient R = 0.97 
is statistically significant (p < 0.0001) for a sample size of 
21,144, indicating very good performance in the PBLH 
provided by the ERA5. For the MERRA-2, the correspond-
ing R = 0.83 is also statistically significant (p < 0.0001) for 
a sample size of 2,884, indicating a good performance in 
the PBLH provided by the MERRA-2 as well. However, 
the MERRA-2 has much lower R, mainly due to significant 
overestimates of the PBLH at 00 UTC and 18 UTC than 

PBLH_Ri0.25, indicating systematic positive biases in the 
MERRA-2 PBLH at nighttime.

The reanalysis PBLH is a model-based estimate and so is 
prone to biases due to model deficiencies. Modeling tests by 
McGrath-Spangler and Molod (2014) and McGrath‐Span-
gler et al. (2015) showed large differences in the PBLH esti-
mated by the two methods used in the ERA5 and MERRA-2, 
with maximum discrepancies in the nocturnal depth by as 
much as 1 km over northern Africa, which are similar to 
the results in Fig. 10. In numerical models, PBLH biases 
could manifest themselves as biases in surface warming and 
lapse rates in the troposphere (McGrath-Spangler and Den-
ning 2010; Svensson and Lindvall 2015; Wei et al. 2017b). 
Therefore, the major PBLH biases in the reanalysis could 
explain, at least partially, some of the afore-mentioned sur-
face and atmospheric temperature trend biases in the mag-
nitude and phase. Next, two examples are used to establish 
this possibility.

The first example is related to the reanalysis biases in 
the vertical warming profile (Fig. 9). The reanalyses gener-
ally have warming biases in the middle and upper tropo-
sphere and cooling biases in the lowest tropospheric lay-
ers, and a faster warming rate at daytime than nighttime at 
500–900 hPa, particularly in the MERRA-2. It is well known 
that the Earth is mainly warmed bottom up, as most solar 
radiation is absorbed at the surface and this energy is trans-
mitted through the rest of the atmosphere via PBL processes. 
Over the desert, sensible heat dominates and drives the PBL 

Fig. 12.   Scatter plots of climatological hourly PBLH (m) derived 
by the reanalysis (x-axis) and diagnosed using the Richard num-
ber method, referred to as PBLH_Ri0.25 (m, y-axis), from the ERA5 
(1979–2018) and MERRA-2 (1980–2018) over all land grids within 

the rectangle domain depicted in Fig. 1a. The correlation coefficient 
R, its statistical significance (p value) and sample size (n) are listed 
on the top in each panel.
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growth and there are strong correlations between PBLH and 
surface temperatures (Wei et al. 2017b). Differences in tur-
bulent mixing result in different vertical redistributions of 
heat, which controls the vertical temperature profile or the 
lapse rate in the atmosphere. During the daytime, when the 
PBLH is higher, the vertical turbulent mixing is stronger and 
deeper and so more surface sensible heat can be transferred 
into upper atmospheric layers, leading to a cooler surface 
and warmer atmosphere. During the nighttime, when the 
PBLH is higher, the downgradient turbulent diffusion is 
stronger and so more sensible heat will be transferred down-
ward into lower atmospheric layers and the ground, lead-
ing to a warmer surface and a cooler atmosphere. The net 
effect of higher PBLH is to create a smaller DTR, a warmer 
(cooler) middle and upper troposphere (lower troposphere 
and land surface), and a warmer (cooler) daytime at day-
time (nighttime) because the daytime impacts dominates. 
This appears to explain well the warming and cooling biases 
in the reanalysis, particularly the MERRA-2 because of its 
biased high PBLH. McGrath-Spangler and Molod (2014) 
indicated that the bulk Richardson number method better 
represented the PBLH over the Sahara than the other meth-
ods. This is also supported by the PBLH_RI0.25 estimated 
in Table 5, implying that the PBLH is more realistic in the 
ERA5 than in the MERRA-2 over the AP. As expected, the 
warming rates near the surface and in the atmosphere in the 
ERA5 are closer to those observed than the MERRA-2.

The second example is related to the reanalysis warm-
ing biases in T2m at nighttime when the reanalysis PBLH 
differs most. As shown previously, the reanalyses substan-
tially underestimate nighttime warming and thus the diur-
nal warming asymmetry. For example, the station mean 
maximum warming rate is 0.73 °C/decade for the observa-
tions, 0.45 °C/decade for the ERA5, and 0.39 °C/decade for 
the MERRA-2. The biased high PBLH in the MERRA-2 
will, according to the PBL-response mechanism, result in 
a biased low warming rate as shown in Fig. 8. Similar find-
ings of overestimated PBLH under stable stratification and 
consequentially underestimated temperature trends are also 
reported in other observational and modeling studies (Seidel 
et al. 2012; McNider et al. 2012; Davy and Esau 2016; Davy 
et al. 2017).

Accurate modeling of PBL processes is important in 
describing land–atmosphere interactions and the diurnal 
and vertical temperatures. PBLH is one key measure of the 
strength of these processes but lacks a unified definition and 
different PBLH estimation methods can produce substan-
tially different values, even for the same atmospheric pro-
file (e.g., Seidel et al. 2010; McGrath-Spangler and Molod 
2014). For example, McGrath-Spangler and Molod (2014) 
compared seven PBLH estimation methods in the Goddard 
Earth Observing System (GEOS-5) atmospheric general cir-
culation model over land and identified the largest variations 

in the nocturnal PBLH. McGrath-Spangler et al. (2015) 
further quantified the impacts of different PBLH estimates 
within the GEOS-5 model on the turbulent length scale and 
the simulated climate, and found that near-surface variables 
such as wind, temperature and humidity were sensitive to 
the PBLH differences and such sensitivity was spatially and 
temporally heterogeneous. Unfortunately, current numerical 
models have difficulties and large uncertainties in represent-
ing key PBL processes, particularly in extreme and com-
plex PBL conditions such as the SDAP (Cuesta et al. 2009; 
Garcia-Carreras et al. 2015; Holtslag et al. 2013; Wei et al. 
2017b; Ao et al. 2017). For example, Garcia-Carreras et al. 
(2015) detailed a very complicated picture of the vertical 
structure and diurnal evolution of the Saharan PBL using 
aircraft and radiosonde measurements and a large-eddy 
simulation model; Gamo (1996) showed that the thick CBL 
often has a weakly stable and nearly neutral stratification 
in the Sahara in the whole; Flamant et al. (2007) found that 
the Saharan residual layer can be maintained for a whole 
day sometimes. The subtle vertical structure of the Saha-
ran PBL, particularly the small temperature inversion and 
deep near-neutral residual layer, and its diurnal evolution, 
add further challenges for PBL modeling (Cuesta et al. 
2009; Couvreux et al. 2014). These complex PBL features 
are identified in the Sahara, and possibly apply to the AP 
and other hot deserts as well. For example, Ao et al. (2017) 
analyzed the diurnal variation of PBLH from two intense 
observation periods of experiments in summer of the Badain 
Jaran Desert and found that the deep CBL showed a diurnal 
variation of three- to five-layer structure in clear days and 
five-layer structure often around sunset or sunrise. Hence, 
the deficiencies and uncertainties in the reanalysis PBL pro-
cesses can result in temperature biases and the timing differ-
ences in maximum and minimum warming.

The surface and atmospheric temperature changes in 
response to external forcings are a result of complex interac-
tions among the atmosphere, PBL and land surface. Consid-
ering the complexity of turbulent mixing and the challenges 
in observing and modeling the PBL processes, it is very 
difficult to attribute the reanalysis biases in the fully coupled 
land–atmosphere system. For example, one major reanalysis 
bias discussed previously is the systematic underestimation 
of DTR and nighttime temperature trend in T2m. Although 
the ERA5 has more realistic PBLH than the MERRA-2, this 
systematic bias is smaller but still there. This is a long-stand-
ing issue in reanalysis and numerical models despite inten-
sive attribution studies on this topic (e.g., Vose et al. 2005; 
Zhou et al. 2007, 2009, 2010; IPCC 2007, 2013; Christensen 
et al. 2008; Boberg and Christensen 2012; Lewis and Karoly 
2013; Wei et al. 2017a, b; Du et al. 2018; Davy 2018). In 
addition, other non-PBL processes may modulate the diur-
nal and vertical features of DA as well. For example, the 
reanalysis data represents a mean over the model grid-box 
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on the order of hundreds of squared kilometers, while the 
station data come from point measurements by instruments 
over standard grass plots. Also, the surface elevation dif-
fers largely between the station sites and the model grids 
(Table 2). As the focus of the present study is the detection 
of DA in the context of AP, further attribution, however, is 
beyond the scope of this study.

4 � Conclusions

This paper presents a comprehensive analysis of hourly sur-
face observations, radiosonde temperature measurements, 
and two latest state-of-the-art reanalysis products (ERA5 
and MERRA-2) for the period 1979–2018 to understand 
the diurnal cycle and vertical structure of DA over the AP. 
The diurnal cycle of T2m, PBLH, and surface fluxes and 
the atmospheric warming profiles from near surface (2 m) 
to 100 hPa are analyzed. Observational and reanalysis data 
show consistently that DA is a bottom-heavy warming pro-
file with a distinct diurnal asymmetry, which maximizes near 
the surface and decreases quickly with height and is limited 
to the lower troposphere and surface. The main findings are 
summarized as follows:

1.	 Observed and reanalysis data reveal consistent warm-
ing trends in T2m that are statistically significant for all 
stations and during every hour of day. The station mean 
surface warming rates in T2m are 0.59 °C/decade, with 
a strong diurnal range of 0.45–0.73 °C/decade for the 
observations. The corresponding values are 0.43 °C/dec-
ade, with a weak diurnal range of 0.41–0.45 °C /decade, 
for the ERA5, and 0.38 °C/decade, with a weaker diur-
nal range of 0.36–0.39 °C /decade for the MERRA-2. 
The reanalysis data capture well the overall warming and 
interannual variability but underestimate the warming 
rates and the diurnal asymmetry of warming.

2.	 Observed and reanalysis T2m data show the diurnal 
asymmetry of warming associated with PBLH over the 
AP. In general, the diurnal cycle of surface warming rate 
depends, to some extent, inversely on the magnitude of 
climatological PBLH, which follows closely the diurnal 
cycle of T2m, but differ by several hours in the diurnal 
phase. The surface observations show the largest/small-
est warming mostly around the transitions between day 
and night, while the reanalysis data indicate the largest/
smallest warming at nighttime/daytime.

3.	 Both surface and radiosonde observations indicate that 
DA is a bottom-heavy warming profile limited to the 
lower troposphere and surface, and has a distinct diurnal 
asymmetry that maximizes near the surface, decreases 
with height, and is mostly invisible above 700 hPa. The 

reanalysis data capture this vertical warming profile but 
exhibit some biases.

4.	 The diurnal and vertical warming features could be, 
at least partially explained by a PBL-response mecha-
nism (Davy et al. 2017): for a given forcing, the surface 
warming rate depends inversely on the PBLH and so is 
stronger for a shallower PBLH. The diurnal phase and 
the magnitude of PBLH over the AP generally deter-
mines the diurnal warming asymmetry and its vertical 
structure.

5.	 The major PBLH biases in the reanalysis could cause, 
at least partially, some of the surface and atmospheric 
temperature trend biases in the magnitude and phase. In 
particular, the PBLH estimated from the MERRA-2 is 
systematically higher than that from the ERA5, which 
could help to explain some of the warming biases in the 
middle and upper troposphere and cooling biases in the 
lowest tropospheric layers.

These results suggest that besides the surface radiative 
forcing, the PBL turbulent mixing may play an important 
role in modulating the diurnal and vertical structure of DA 
over the AP. The reported warming trends and results of 
PBLH are in good agreement with theory and previous 
findings in the literature. While other factors may have 
also asymmetrically affect the diurnal temperature trends, 
this study concentrates on the PBLH as the PBL-response 
mechanism is expected to maximize over the SDAP with 
the world’s deepest daytime PBL and shallowest nocturnal 
PBL (Davy et al. 2017). The role of PBL is to amplify the 
diurnal surface warming stronger for a shallower PBLH over 
the deserts through heat redistributing via turbulent mixing.

To the best of my knowledge, this work is the very first 
comprehensive study to examine the diurnal and vertical 
variations of warming trends over the AP and establish their 
relationships with the PBLH. It highlights the importance 
and need for accurate descriptions of the PBL processes with 
respect to the turbulent mixing in order to better characterize 
the temperature diurnal cycle changes in reanalysis prod-
ucts and numerical models (Wei et al. 2017b). However, the 
interactive mechanisms between near-surface temperatures 
and PBL processes are very complex and it has been very 
challenging to establish cause and effect for a fully coupled 
land–atmosphere system. The present work links the diurnal 
cycle warming rate to PBLH in a statistical framework but 
there are large uncertainties in observational and reanalysis 
PBLH estimates. Further attribution studies are needed to 
confirm its findings by conducting carefully defined mod-
eling sensitivity experiments.

The reported findings have important implications as DA 
may accelerate over the arid and semi-arid regions in the 
context of global warming and has the strongest impacts 
on the SDAP (Zhou 2016). Climate change is an important 



3154	 L. Zhou 

1 3

factor for sustainable water resource management and is 
an essential component for strategic water resource man-
agement in arid and semi-arid countries (Tarawneh and 
Chowdhury 2018). The long, hot and dry weather, along 
with extreme temperatures, impose a significant strain on 
water resources as warming enhances evaporation from 
open reservoirs and domestic water demand. The climate of 
the AP is extremely arid, with high temperature variability, 
low annual rainfall, no natural perennial flow and limited 
groundwater reserves (Attada et al. 2018). As a result, the 
AP is extremely sensitive to climate fluctuations and is also 
highly vulnerable to climate change impacts (Almazroui 
et al. 2013; Attada et al. 2018). Understanding and predict-
ing the AP climate can be beneficial for practical purposes 
in many different sectors, including water resources, agri-
culture, power generation, biodiversity, tourism, ecosystems, 
migration and food security (Almazroui et al. 2012, 2014).

Acknowledgements  L.Z. was supported by National Science Founda-
tion (NSF AGS-1952745 and AGS-1535426).

References

Abdel-Aal M, Shonoda E (2014) Environmental assessment for 
Qurayyat province in northern Saudi Arabia, Part I- determination 
of atmospheric stability & boundary layers. Journal of Selçuk Uni-
versity Natural and Applied Science (Online ISSN: 2147–3781), 
777–787

Ahmed BYM (1997) Climate classification of Saudi Arabia: Aan appli-
cation of factor-cluster analysis. GeoJournal 41(1):69–84

Alghamdi AS, Moore TW (2014) Analysis and comparison of trends 
in extreme temperature indices in Riyadh City, Kingdom of Saudi 
Arabia, 1985–2010. J Climatol 2014(1):1–10

Almazroui M, Islam MN, Athar H, Jones PD, Rahman MA (2012) 
Recent climate change in the Arabian Peninsula: annual rainfall 
and temperature analysis of Saudi Arabia for 1978–2009. Int J 
Climatol 32:953–966. https​://doi.org/10.1002/joc.3446

Almazroui M, Islam MN, Jones PD (2013) Urbanization effects on the 
air temperature rise in Saudi Arabia. Clim Change 120:109–122. 
https​://doi.org/10.1007/s1058​4-013-0796-2

Almazroui M, Islam MN, Dambul R, Jones PD (2014) Trends of tem-
perature extremes in Saudi Arabia. Int J Climatol 34:808–826

Ao CO, Waliser DE, Chan SK, Li J-L, Tian B, Xie F, Mannucci 
AJ (2012) Planetary boundary layer heights from GPS radio 
occultation refractivity and humidity profiles. J Geophys Res 
117:D16117. https​://doi.org/10.1029/2012J​D0175​98

Ao Y, Li J, Li Z, Lyu S, Jiang C, Wang M (2017) Relation between 
the atmospheric boundary layer and impact factors under 
severe surface thermal conditions. Adv Meteorol. https​://doi.
org/10.1155/2017/83524​61 ((Gale Academic OneFile))

Athar H (2014) Trends in observed extreme climate indices in Saudi 
Arabia during 1979–2008. Int J Climatol 34(5):1561–1574

Attada R, Dasari HP, Chowdary JS, Yadav RK, Omar K, Ibrahim 
H (2018) Surface air temperature variability over the Arabian 
Peninsula and its links to circulation patterns. Int J Climatol 
2019(39):445–464

Bjornsson H, Venegas SA (1997) A manual for EOF and SVD analyses 
of climatic data, Feb. 1997, 52 pages. CCGCR Report No. 97–1.

Boberg F, Christensen JH (2012) Overestimation of Mediterranean 
summer temperature projections due to model deficiencies. Nat 
Clim Change 2(433–436):2012. https​://doi.org/10.1038/NCLIM​
ATE14​54

Bounoua L, Safia A, Masek J, Peters-Lidard C, Imhoff M (2009) 
Impact of urban growth on surface climate: a case study in 
Oran, Algeria. J Appl Meteorol 48(2):217–231

Brocard E, Jeannet P, Begert M, Levrat G, Philipona R, Romanens G, 
Scherrer SC (2013) Upper air temperature trends above Switzer-
land 1959–2011. J Geophys Res Atmos 118:4303–4317. https​
://doi.org/10.1002/jgrd.50438​

Byrne MP, O’Gorman PA (2018) Trends in continental temperature 
and humidity directly linked to ocean warming. Proc Natl Acad 
Sci. https​://doi.org/10.1073/pnas.17223​12115​

Byrne MP, O’Gorman PA (2016) Understanding decreases in land 
relative humidity with global warming: Conceptual model 
and GCM simulations. J Climate 29:9045–9061. https​://doi.
org/10.1175/JCLI-D-16-0351.1

Chowdhury S, Al-Zahrani M (2013) Implications of climate 
change on water resources in Saudi Arabia. Arab J Sci Eng 
38:1959–1971

Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) 
On the need for bias correction of regional climate change pro-
jections of temperature and precipitation. Geophys Res Lett 
35:L20709. https​://doi.org/10.1029/2008G​L0356​94

Cook KH, Vizy EK (2015) Detection and analysis of an amplified 
warming of the Sahara desert. J Clim 28(16):6560–6580

Copernicus Climate Change Service (C3S) (2017) ERA5: Fifth gen-
eration of ECMWF atmospheric reanalyses of the global cli-
mate. Copernicus Climate Change Service Climate Data Store 
(CDS), date of access. https​://cds.clima​te.coper​nicus​.eu/cdsap​
p#!/home

Copernicus Climate Change Service (C3S) (2019) C3S ERA5-Land 
reanalysis. Copernicus Climate Change Service, date of access. 
https​://cds.clima​te.coper​nicus​.eu/cdsap​p#!/home

Couvreux F, Guichard F, Gounou A, Bouniol D, Peyrillé P, Köhler M 
(2014) Modelling of the thermodynamical diurnal cycle in the 
lower atmosphere: a joint evaluation of four contrasted regimes 
in the tropics over land. Bound Layer Meteor 150:185–214. https​
://doi.org/10.1007/s1054​6-013-9862-6

Cuesta J, Marsham JH, Parker DJ, Flamant C (2009) Dynamical 
mechanisms controlling the vertical redistribution of dust and 
the thermodynamic structure of the west Saharan atmospheric 
boundary layer during summer. Atmos Sci Lett 10:34–42. https​
://doi.org/10.1002/asl.207

Davy R, Esau I (2014a) Surface air temperature variability in global 
climate models. Atmos Sci Lett 15:13–20. https​://doi.org/10.1002/
asl2.456

Davy R, Esau I (2014b) Global climate models’ bias in surface tem-
perature trends and variability. Environ Res Lett 9:114024. https​
://doi.org/10.1088/1748-9326/9/11/11402​4

Davy R (2018) The climatology of the atmospheric boundary layer in 
contemporary global climate models. J Clim 31:9151–9173. https​
://doi.org/10.1175/JCLI-D-17-0498.1

Davy R, Esau I (2016) Differences in the efficacy of climate forcings 
explained by variations in atmospheric boundary layer depth. Nat 
Commun 7:11690. https​://doi.org/10.1038/ncomm​s1169​0

Davy R, Esau I, Chernokulsky A, Outten S, Zilitinkevich S (2017) 
Diurnal asymmetry to the observed global warming. Int. J. Cli-
matol. https​://doi.org/10.1002/joc.4688

Ding F, Iredell LF, Theobald M, Shen S, Ostrenga D, Wei JC, Meyer 
DJ, Planetary Boundary Layer Height from AIRS, MERRA-2, 
and GPS Radio Occultation Data Products at NASA GES DISC, 
and Insights from Their Profiles Intercomparison. American 
Geophysical Union, Fall Meeting 2019, abstract #A11T-2835, 
December 2019

https://doi.org/10.1002/joc.3446
https://doi.org/10.1007/s10584-013-0796-2
https://doi.org/10.1029/2012JD017598
https://doi.org/10.1155/2017/8352461
https://doi.org/10.1155/2017/8352461
https://doi.org/10.1038/NCLIMATE1454
https://doi.org/10.1038/NCLIMATE1454
https://doi.org/10.1002/jgrd.50438
https://doi.org/10.1002/jgrd.50438
https://doi.org/10.1073/pnas.1722312115
https://doi.org/10.1175/JCLI-D-16-0351.1
https://doi.org/10.1175/JCLI-D-16-0351.1
https://doi.org/10.1029/2008GL035694
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://doi.org/10.1007/s10546-013-9862-6
https://doi.org/10.1007/s10546-013-9862-6
https://doi.org/10.1002/asl.207
https://doi.org/10.1002/asl.207
https://doi.org/10.1002/asl2.456
https://doi.org/10.1002/asl2.456
https://doi.org/10.1088/1748-9326/9/11/114024
https://doi.org/10.1088/1748-9326/9/11/114024
https://doi.org/10.1175/JCLI-D-17-0498.1
https://doi.org/10.1175/JCLI-D-17-0498.1
https://doi.org/10.1038/ncomms11690
https://doi.org/10.1002/joc.4688


3155Diurnal asymmetry of desert amplification and its possible connections to planetary boundary…

1 3

Dirmeyer PA, Jin Y, Singh B, Yan X (2013) Trends in land-atmosphere 
interactions from CMIP5 simulations. J Hydrometeorol. https​://
doi.org/10.1175/JHM-D-12-0107.1

Du J, Wang K, Wang J, Jiang S, Zhou C (2018) Diurnal cycle of sur-
face air temperature within china in current reanalyses: evaluation 
and diagnostics. J Clim 31:4585–4603. https​://doi.org/10.1175/
JCLI-D-17-0773.1

Durre I, Vose RS, Wuertz DB (2006) Overview of the integrated global 
radiosonde archive. J Clim 19:53–68. https​://doi.org/10.1175/
JCLI3​594.1

Evan AT, Flamant C, Lavaysse C, Kocha C, Saci A (2015) Water 
vapor–forced greenhouse warming over the Sahara desert and the 
recent recovery from the Sahelian drought. J Clim 28:108–123. 
https​://doi.org/10.1175/JCLI-D-14-00039​.1

Flamant C, Chaboureau J-P, Parker DJ, Taylor CM, Cammas J‐P, 
Bock O, Timouk F, Pelon J (2007) Airborne observations of the 
impact of a convective system on the planetary boundary layer 
thermodynamics and aerosol distribution in the inter-tropical 
discontinuity region of the West African Monsoon. Q J R Mete-
orol Soc 133(626)A:1175–1189

Free M, Seidel DJ, Angel JK, Lanzante J, Durre I, Peterson TC 
(2005) Radiosonde atmospheric temperature products for 
assessing climate (RATPAC): a new dataset of large-area 
anomaly time series. J Geophys Res 110:D22101. https​://doi.
org/10.1029/2005J​D0061​69

Gamo M (1996) Thickness of the dry convection and large-scale sub-
sidence above deserts. Bound-Layer Meteorol 79(3):265–278

Garcia-Carreras L, Parker DJ, Marsham JH, Rosenberg PD, Brooks 
IM, Lock AP, Marenco F, McQuaid JB, Hobby M (2015) The 
turbulent structure and diurnal growth of the Saharan atmos-
pheric boundary layer. J Atmos Sci 72:693–713. https​://doi.
org/10.1175/JAS-D-13-0384.1

Gelaro R et al (2017) The modern-era retrospective analysis for 
research and applications, version 2 (MERRA-2). J Climate 
30:5419–5454. https​://doi.org/10.1175/JCLI-D-16-0758.1

Gertler C, O’Gorman P (2019) Changing available energy for extra-
tropical cyclones and associated convection in Northern Hemi-
sphere summer. Proc Natl Acad Sci 116:4105–4110

Gevorgyan, A., Surface and tropospheric temperature trends in 
Armenia, Int J Climatol 34: 3559–3573 (2014). https://rmets.
onlinelibrary.wiley.com/doi/epdf/https​://doi.org/10.1002/
joc.3928

Haimberger L (2007) Homogenization of radiosonde temperature 
time series using innovation statistics. J Clim 20:1377–1403

Haimberger L, Tavolato C, Sperka S (2008) Towards elimination of 
the warm bias in historic radiosonde temperature records—some 
new results from a comprehensive intercomparison of upper air 
data. J Clim 21:4587–4606

Haimberger L, Tavolato C, Sperka S (2012) Homogenization of the 
global radiosonde dataset through combined comparison with 
reanalysis background series and neighboring stations. J Clim 
25:8108–8131

Hassan I, Ghumman AR, Hashmi HN (2016) Global warming and 
temperature changes for Saudi Arabia. J Biodivers Environ Sci 
6663(81):2222–3045

Held IM, Soden BJ (2000) Water vapor feedback and global warming. 
Annu Rev Energy Environ 25:441–475. https​://doi.org/10.1146/
annur​ev.energ​y.25.1.441

Holtslag AAM, Svensson G, Baas P, Basu S, Beare B, Beljaars ACM, 
Bosveld FC, Cuxart J, Lindvall J, Steeneveld GJ, Tjernström M, 
Van De Wiel BJH (2013) Stable atmospheric boundary layers and 
diurnal cycles—challenges for weather and climate models. Bull 
Am Meteorol Soc. https​://doi.org/10.1175/BAMS-D-11-00187​.1

Huang J, Yu H, Guan X, Wang G, Guo R (2016) Accelerated dryland 
expansion under climate change. Nat Clim Change 6:166–171

IPCC (2007) Climate change 2007: the physical science basis, the 
contribution of Working Group I to the Fourth Assessment 
Report of the IPCC. Cambridge University Press, Cambridge 
((978-0-521-88009-1))

IPCC (2013) Climate change 2013: the physical science basis, the 
contribution of Working Group I to the Fifth Assessment Report 
of the Intergovernmental Panel on Climate Change. Cambridge 
University Press, Cambridge ((978-1-107-05799-1)

Islam MN, Almazroui M (2012) Direct effects and feedback of desert 
dust on the climate of the Arabian Peninsula during the wet sea-
son: a regional climate model study. Clim Dyn 39:2239–2250. 
https​://doi.org/10.1007/s0038​2-012-1293-4

Knippertz P, Todd MC (2012) Mineral dust aerosols over the Sahara: 
Meteorological controls on emission and transport and impli-
cations for modeling. Rev Geophys 50, RG1007. https​://doi.
org/10.1029/2011R​G0003​62.

Krishna LV (2014) Long-term temperature trends in four different cli-
matic zones of Saudi Arabia. Int J Appl Sci Technol 4(5):233–242

Lazzarini M, Molini A, Marpu PR, Ouarda TBMJ, Ghedira H (2015) 
Urban climate modifications in hot desert cities: the role of 
land cover, local climate, and seasonality. Geophys Res Lett 
42:9980–9989. https​://doi.org/10.1002/2015G​L0665​34

Lazzarini M, Marpu PR, Ghedira H (2013) Temperature-land cover 
interactions: The inversion of urban heat island phenomenon in 
desert city areas. Remote Sens Environ 130:136–152

Lewis S, Karoly D (2013) Evaluation of Historical Diurnal Tem-
perature Range Trends in CMIP5 Models. J Clim 26(22), 9077–
9089. Retrieved April 30, 2020. www.jstor​.org/stabl​e/26192​971

Li W (2012) Study of diurnal cycle variability of planetary boundary 
layer characteristics over the Red Sea and Arabian Peninsula, in 
Earth Science Program. King Abdullah University of Science 
and Technology, Thuwal, Kingdom of Saudi Arabia

Li J, Chu Y, Li X, Dong Y (2020) Long-term trends of global maxi-
mum atmospheric mixed layer heights derived from radiosonde 
measurements. Geophys Res Lett 15:034054

Lindvall J, Svensson G (2015) The diurnal temperature range in the 
CMIP5 models. Clim Dyn 44:405–421. https​://doi.org/10.1007/
s0038​2-014-2144-2.

Marsham JH et al (2013) Meteorology and dust in the central Sahara: 
observations from Fennec supersite-1 during the June 2011 
intensive observation period. J Geophys Res Atmos 118:4069–
4089. https​://doi.org/10.1002/jgrd.50211​

McGrath-Spangler EL, Denning AS (2010) Impact of entrainment 
from overshooting thermals on land-atmosphere interactions dur-
ing summer 1999. Tellus B 62:441–454. https​://doi.org/10.111
1/j.1600-0889.2010.00482​.x

McGrath-Spangler EL, Molod A (2014) Comparison of GEOS-5 
AGCM planetary boundary layer depths computed with vari-
ous definitions. Atmos Chem Phys 14:6717–6727. https​://doi.
org/10.5194/acp-14-6717-2014

McGrath-Spangler EL, Molod A, Ott LE, Pawson S (2015) Impact 
of planetary boundary layer turbulence on model climate and 
tracer transport. Atmos Chem Phys 15:7269–7286. https​://doi.
org/10.5194/acp-15-7269-2015

McNider RT, Steeneveld GJ, Holtslag AAM, Pielke RA Sr, Mackaro 
S, Pour-Biazar A, Walters J, Nair U, Christy J (2012) Response 
and sensitivity of the nocturnal boundary layer over land to 
added longwave radiative forcing. J Geophys Res 117:D14106

Messager C, Parker D, Reitebuch O, Agusti-Panareda A, Taylor CM, 
Cuesta J (2010) Structure and dynamics of the Saharan atmos-
pheric boundary layer during the West African monsoon onset: 
Observations and analyses from the research flights of 14 and 
17 July 2006, Q J R Meteorol Soc 107–124

Patlakas P, Stathopoulos C, Flocas H, Kalogeri C, Kallos G (2019) 
Regional climatic features of the Arabian Peninsula. Atmos-
phere 10:220

https://doi.org/10.1175/JHM-D-12-0107.1
https://doi.org/10.1175/JHM-D-12-0107.1
https://doi.org/10.1175/JCLI-D-17-0773.1
https://doi.org/10.1175/JCLI-D-17-0773.1
https://doi.org/10.1175/JCLI3594.1
https://doi.org/10.1175/JCLI3594.1
https://doi.org/10.1175/JCLI-D-14-00039.1
https://doi.org/10.1029/2005JD006169
https://doi.org/10.1029/2005JD006169
https://doi.org/10.1175/JAS-D-13-0384.1
https://doi.org/10.1175/JAS-D-13-0384.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1002/joc.3928
https://doi.org/10.1002/joc.3928
https://doi.org/10.1146/annurev.energy.25.1.441
https://doi.org/10.1146/annurev.energy.25.1.441
https://doi.org/10.1175/BAMS-D-11-00187.1
https://doi.org/10.1007/s00382-012-1293-4
https://doi.org/10.1029/2011RG000362
https://doi.org/10.1029/2011RG000362
https://doi.org/10.1002/2015GL066534
http://www.jstor.org/stable/26192971
https://doi.org/10.1007/s00382-014-2144-2
https://doi.org/10.1007/s00382-014-2144-2
https://doi.org/10.1002/jgrd.50211
https://doi.org/10.1111/j.1600-0889.2010.00482.x
https://doi.org/10.1111/j.1600-0889.2010.00482.x
https://doi.org/10.5194/acp-14-6717-2014
https://doi.org/10.5194/acp-14-6717-2014
https://doi.org/10.5194/acp-15-7269-2015
https://doi.org/10.5194/acp-15-7269-2015


3156	 L. Zhou 

1 3

Rehman S, Al-Hadhrami LM (2012) Extreme temperature trends on the 
west coast of Saudi Arabia. Atmos Clim Sci 2:351–361

Ruppert JH (2016) Diurnal timescale feedbacks in the tropical cumu-
lus regime. J Adv Model Earth Syst 8:1483–1500. https​://doi.
org/10.1002/2016M​S0007​13

Salmun H, Molod A, Collow A (2018) The use of MERRA-2 near 
surface meteorology to understand the behavior of observed 
planetary boundary layer heights over the US Great Plains. 
American Geophysical Union, Fall Meeting 2018, abstract 
#A13M-2638

Seidel DJ, Free M, Wang J (2005) Diurnal cycle of upper-air tem-
perature estimated from radiosondes. J Geophys Res 110:D09102. 
https​://doi.org/10.1029/2004J​D0055​26

Seidel DJ, Zhang Y, Beljaars A, Golaz J-C, Jacobson AR, Medei-
ros B (2012) Climatology of the planetary boundary layer 
over the continental United States and Europe. J Geophys Res 
117:D17106. https​://doi.org/10.1029/2012J​D0181​43

Seidel DJ, Ao CO, Li K (2010) Estimating climatological planetary 
boundary layer heights from radiosonde observations: comparison 
of methods and uncertainty analysis. J Geophys Res 115:D16113

Serreze MC, Barry RG (2011) Processes and impacts of arctic ampli-
fication: a research synthesis. Global Planet Change 77:85–96. 
https​://doi.org/10.1016/j.glopl​acha.2011.03.004

Sherwood SC, Lanzante JR, Meyer CL (2005) Radiosonde daytime 
biases and late 20th century warming. Science 309:1556–1559. 
https​://doi.org/10.1126/scien​ce.11156​40

Smith A, Lott N, Vose R (2011) The integrated surface database: 
Recent developments and partnerships. Bull Am Meteorol Soc 
92:704–708

Stull RB (1988) An introduction to boundary layer meteorology. Klu-
wer, Dordrecht, Holland, p 680

Svensson G, Lindvall J (2015) Evaluation of near-surface variables and 
the vertical structure of the boundary layer in CMIP5 models. J 
Clim 28:5233–5253. https​://doi.org/10.1175/JCLI-D-14-00596​.1

Tarawneh QY, Chowdhury S (2018) Trends of climate change in Saudi 
Arabia: implications on water resources. Climate 6:8

Thomas N, Nigam S (2018) Twentieth-century climate change 
over Africa: seasonal hydroclimate trends and Sahara Desert 
expansion. J Clim 31:3349–3370. https​://doi.org/10.1175/
JCLI-D-17-0187.1

Thorne PW, Lanzante JR, Peterson TC, Seidel DJ, Shine KP (2011) 
Tropospheric temperature trends: history of an ongoing contro-
versy. WIREs Clim Change 2(1):66–88. https​://doi.org/10.1002/
wcc.80

Vinnikov K, Robok A, Basist A (2002) Diurnal and seasonal cycles of 
trends of surface air temperature. J Geophys Res 107(D22):4641. 
https​://doi.org/10.1029/2001J​D0020​07

Vizy EK, Cook KH (2017) Seasonality of the observed amplified 
Sahara warming trend and implications for Sahel rainfall. J Clim. 
https​://doi.org/10.1175/JCLI-D-16-0687.1

Vogelezang DHP, Holtslag AAM (1996) Evaluation and model impacts 
of alternative boundary-layer height formulation. Boundary Layer 
Meteorol 81:245–269. https​://doi.org/10.1007/BF024​30331​

Vose RS, Easterling DR, Gleason B (2005) Maximum and minimum 
temperature trends for the globe: an update through 2004. Geo-
phys Res Lett 32:L23822. https​://doi.org/10.1029/2005G​L0243​79

Wang X, Wang K (2016) Homogenized variability of radiosonde-
derived atmospheric boundary layer height over the global land 
surface from 1973 to 2014. J Clim 29:6893–6908. https​://doi.
org/10.1175/JCLI-D-15-0766.1

Wei N, Zhou L, Dai Y (2017a) Observational evidence for desert 
amplification using multiple satellite datasets. Sci Rep 7:2043. 
https​://doi.org/10.1038/s4159​8-017-02064​-w

Wei N, Zhou L, Dai Y (2017b) Evaluation of simulated climatological 
diurnal temperature range in cmip5 models from the perspective 
of planetary boundary layer turbulent mixing. Clim Dyn 49(1):1–
22. https​://doi.org/10.1007/s0038​2-016-3323-0

Wu GX, Liu Y, Zhu X, Li W, Ren R, Duan A, Liang X (2009) Multi-
scale forcing and the formation of subtropical desert and mon-
soon. Ann Geophys 27:3631–3644

Yang GY, Slingo J (2001) The diurnal cycle in the tropics. Mon 
Weather Rev 129:784–801

Zhang YH, Seidel DJ, Zhang SD (2013) Trends in planetary boundary 
layer height over Europe. J Clim 26:10071–10076

Zhou L (2016) Desert amplification in a warming climate. Sci Rep 6, 
31065; https​://doi.org/10.1038/srep3​1065.

Zhou L, Chen H, Dai Y (2015) Stronger warming amplification 
over drier ecoregions observed since 1979. Environ Res Lett 
10:064012. https​://doi.org/10.1088/1748-9326/10/6/06401​2

Zhou L, Chen H, Hua W, Dai Y, Wei N (2016) Mechanisms for stronger 
warming over drier ecoregions observed since 1979. Clim Dyn. 
https​://doi.org/10.1007/s0038​2-016-3007-9

Zhou L, Dai A, Dai Y, Vose RS, Zou C-Z, Tian Y, Chen H (2009) 
Spatial dependence of diurnal temperature range trends on pre-
cipitation from 1950 to 2004. Clim Dyn 32:429–440. https​://doi.
org/10.1007/s0038​2-008-0387-5

Zhou L, Dickinson RE, Tian Y, Vose RS (2007) Impact of vegeta-
tion removal and soil aridation on diurnal temperature range in 
a semiarid region—application to the Sahel. Proc Natl Acad Sci 
USA 104(46):17937–17942

Zhou L, Dickinson RE, Dai A, Dirmeyer P (2010) Detection and attri-
bution of anthropogenic forcing to diurnal temperature range 
changes from 1950 to 1999: comparing multi-model simula-
tions with observations. Clim Dyn 35:1289–1307. https​://doi.
org/10.1007/s0038​2-009-0644-2

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/2016MS000713
https://doi.org/10.1002/2016MS000713
https://doi.org/10.1029/2004JD005526
https://doi.org/10.1029/2012JD018143
https://doi.org/10.1016/j.gloplacha.2011.03.004
https://doi.org/10.1126/science.1115640
https://doi.org/10.1175/JCLI-D-14-00596.1
https://doi.org/10.1175/JCLI-D-17-0187.1
https://doi.org/10.1175/JCLI-D-17-0187.1
https://doi.org/10.1002/wcc.80
https://doi.org/10.1002/wcc.80
https://doi.org/10.1029/2001JD002007
https://doi.org/10.1175/JCLI-D-16-0687.1
https://doi.org/10.1007/BF02430331
https://doi.org/10.1029/2005GL024379
https://doi.org/10.1175/JCLI-D-15-0766.1
https://doi.org/10.1175/JCLI-D-15-0766.1
https://doi.org/10.1038/s41598-017-02064-w
https://doi.org/10.1007/s00382-016-3323-0
https://doi.org/10.1038/srep31065
https://doi.org/10.1088/1748-9326/10/6/064012
https://doi.org/10.1007/s00382-016-3007-9
https://doi.org/10.1007/s00382-008-0387-5
https://doi.org/10.1007/s00382-008-0387-5
https://doi.org/10.1007/s00382-009-0644-2
https://doi.org/10.1007/s00382-009-0644-2

	Diurnal asymmetry of desert amplification and its possible connections to planetary boundary layer height: a case study for the Arabian Peninsula
	Abstract
	1 Introduction
	2 Data and methods
	2.1 Study region
	2.2 Observational and reanalysis data
	2.2.1 Integrated global daily radiosonde data
	2.2.2 Integrated global hourly surface observations
	2.2.3 High-resolution reanalysis products

	2.3 Data processing and methods
	2.3.1 Data processing for near surface and atmospheric air temperatures
	2.3.2 Data processing for other variables
	2.3.3 Creating climatological PBLH
	2.3.4 Multiple linear regression analysis
	2.3.5 Obtaining large-scale features


	3 Results and discussion
	3.1 Hourly T2m trends in surface observations
	3.2 Temperature trends in radiosonde observations
	3.3 Temperature trends in ERA5 and MERRA-2
	3.4 Possible drivers of the diurnal and vertical warming features
	3.5 Uncertainties in PBLH

	4 Conclusions
	Acknowledgements 
	References




