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[1] This paper analyzes the relation between satellite-based measures of vegetation
greenness and climate by land cover type at a regional scale (2� � 2� grid boxes) between
1982 and 1999. We use the normalized difference vegetation index (NDVI) from the
Global Inventory Monitoring and Modeling Studies (GIMMS) data set to quantify
climate-induced changes in terrestrial vegetation. Climatic conditions are represented with
monthly data for land surface air temperature and precipitation. The relation between
NDVI and the climate variables is represented using a quadratic specification, which is
consistent with the notion of a physiological optimum. The effects of spatial heterogeneity
and unobserved variables are estimated with specifications and statistical techniques that
allow coefficients to vary among grid boxes. Using this methodology, we are able to
estimate statistically meaningful relations between NDVI and climate during spring,
summer, and autumn for forests between 40�N and 70�N in North America and Eurasia.
Of the variables examined, changes in temperature account for the largest fraction of the
change in NDVI between the early 1980s and the late 1990s. Changes in stratospheric
aerosol optical depth and precipitation have a smaller effect, while artifacts associated with
variations in solar zenith angle are negligible. These results indicate that temperature
changes between the early 1980s and the late 1990s are responsible for much of the
observed increase in satellite measures of northern forest greenness. INDEX TERMS: 1615

Global Change: Biogeochemical processes (4805); 1620 Global Change: Climate dynamics (3309); 1640

Global Change: Remote sensing; KEYWORDS: NDVI, climate, greening, temperature, statistical techniques

Citation: Zhou, L., R. K. Kaufmann, Y. Tian, R. B. Myneni, and C. J. Tucker, Relation between interannual variations in

satellite measures of northern forest greenness and climate between 1982 and 1999, J. Geophys. Res., 108(D1), 4004,

doi:10.1029/2002JD002510, 2003.

1. Introduction

[2] Human activities change the atmospheric concentra-
tion and distribution of greenhouse gases and aerosols, and
these changes may affect climate [IPCC, 2001]. The rate of
temperature change during the past 25 years is greater than
any previous period of the instrumental record. Warming is
greatest in the northern high latitudes, especially during
winter and spring [Hansen et al., 1999]. This warming is
associated with a reduction in the extent of sea ice and snow
cover, and an earlier disappearance of snow in spring
[Groisman et al., 1994; Vinnikov et al., 1999]. Precipitation
also increases in the middle to high latitudes [Easterling et
al., 2000].
[3] Anthropogenic changes in climate may affect terres-

trial ecosystems because climate and terrestrial ecosystems

are closely coupled. Higher temperatures in the northern
hemisphere may have increased the amplitude of the sea-
sonal CO2 cycle by about 30% since the early 1960s, which
suggests an increase in terrestrial vegetation [Keeling et al.,
1995, 1996; Randerson et al., 1999]. In the middle and high
latitudes, warmer and wetter weather may increase net
primary productivity by enhancing photosynthesis [Kramer,
1982; Larcher, 1983; Chapin and Shaver, 1996] or by
enhancing nutrient availability through accelerated decom-
position or mineralization [Melillo et al., 1993].
[4] Spatial and temporal patterns of terrestrial vegetation

have been closely linked with climate patterns [Schultz and
Halpert, 1993]. The vegetation’s response to climate change
has been detected from seasonal and interannual variations
in satellite measures of terrestrial vegetation [Goward and
Prince, 1995; Braswell et al., 1997]. Myneni et al. [1997]
argue that terrestrial vegetation between 45�N and 70�N
‘‘greened’’ between 1981 and 1991. Zhou et al. [2001]
found that this greening is tightly linked to changes in land
surface temperature during the past two decades, which was
reproduced from a biogeochemical model using observed
climate data [Lucht et al., 2002].
[5] This conclusion has an important socio-economic

implication—warmer temperature may enhance plant
growth in northern high latitudes and thereby affect the
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terrestrial carbon cycle [Myneni et al., 2002]. It may be
valid only at the continental scale. At the regional scale,
continental relations may need to account for differences in
vegetation types and lags in the relation between plant
growth and temperature induced by biogeochemical feed-
backs [Braswell et al., 1997]. Analyses of surface greenness
also must account for the effects of other factors that limit
plant growth. For example, precipitation may be a more
important factor than temperature in semiarid regions
[Myneni et al., 1996]. Nemani et al. [2002] suggest that
increased rainfall and humidity spurred plant growth in the
United States. In addition, artifacts associated with varia-
tions in aerosol optical depth and solar zenith angle may
contaminate the satellite measures of vegetation greenness.
[6] Few studies have estimated quantitatively the relation

between terrestrial vegetation and climate. To quantify the
effects of climate and other variables on interannual varia-
tions in satellite measures of vegetation at the regional scale,
we use statistical models to estimate the relation between
the normalized difference vegetation index (NDVI) and
climate by land cover type. To increase the reliability of
the results, we use statistical techniques that; (1) account for
the effects of unobserved variables and spatial heterogeneity
on the relation between NDVI and climate, (2) reduce
collinearity among explanatory variables, and (3) increase
the degrees of freedom [Hsiao, 1986]. To separate the effect
of climate on NDVI from possible artifacts in the satellite
measures, the equations specify changes in solar zenith
angle, which are associated with satellite drift and change-
over, and changes in stratospheric aerosols, which are
associated with volcanic eruptions.
[7] This paper has five sections. Section 2 describes how

we compile data on satellite-based measures of NDVI, solar
zenith angle, and stratospheric aerosol optical depth and
ground-based measures of temperature and precipitation.
The specifications used to estimate statistical models of the
relation between NDVI and climate are consistent with the
physiological mechanisms by which temperature and pre-
cipitation affect plant growth (section 3). For all forest land
cover types in North America and Eurasia, there is a
statistically meaningful relation among NDVI, climate,
stratospheric aerosol optical depth, and solar zenith angle
(section 4). Of these factors, temperature and stratospheric
aerosol optical depth have the greatest effect on NDVI; the
effect of changes in precipitation and solar zenith angle are
smaller. Based on these results, section 5 concludes that
changes in temperature account for the largest fraction of
NDVI changes between the early 1980s and the late 1990s.

2. Data Set

[8] We assemble satellite and ground based data from
1982 to 1999 to examine the relation between satellite-
based measures of vegetation greenness and climate by land
cover type at a regional scale. These data are attached to a
common spatial grid for North America and Eurasia
between 40�N and 70�N. This latitudinal band is defined
by (1) forest areas—where the nonvegetation effects of solar
zenith angle are smaller relative to sparsely vegetated and
barren regions [Kaufmann et al., 2000]; (2) high latitudes—
where temperature (and precipitation) probably are limiting
factors [Zhou et al., 2001]; and (3) quality of satellite data—

where cloud cover is sparser than tropical areas. The sample
period is defined by the availability of NDVI data (see
below).
[9] NDVI can be used to proxy changes in terrestrial

vegetation. NDVI is calculated from reflectances in channel
1 (0.58–0.68 mm) and channel 2 (0.73–1.1 mm), and is
defined as

NDVI ¼ Channel 2� Channel 1ð Þ
Channel 2þ Channel 1ð Þ : ð1Þ

NDVI measures the amount of energy absorbed by leaf
pigments such as chlorophyll. As such, NDVI is closely
correlated with the fraction of photosynthetically active
radiation absorbed by plant canopies and therefore leaf area,
leaf biomass, and potential photosynthesis [Asrar et al.,
1984; Myneni et al., 1995].
[10] We use the 15-day NDVI and solar zenith angle

(SZA) data set at 8 km resolution for the period January
1982 to December 1999 that is produced by the Global
Inventory Monitoring and Modeling Studies (GIMMS)
group from measurements of the advanced very high
resolution radiometer (AVHRR) onboard the NOAA 7,
NOAA 9, NOAA 11, and NOAA 14 satellites [Zhou et
al., 2001]. Data processing included improved navigation,
sensor calibration, and atmospheric corrections for strato-
spheric aerosols [Zhou et al., 2001]. Calibration based on
data from high clouds and the dark ocean [Vermote and
Kaufman, 1995] was first applied to the GIMMS reflectance
data, and was then improved by using a sensor degradation
correction method by Los [1998]. A time- and latitude-
varying atmospheric correction [Vermote and El Saleous,
1994] was applied to the GIMMS NDVI data from April
1982 to December 1984 and from June 1991 to December
1993 to remove the effects of stratospheric aerosols from the
El Chichon and Mt. Pinatubo eruptions. Such a correction
tends to raise values for NDVI and has the greatest effect in
the low latitudes.
[11] The raw AVHRR data include the effects of changes

in sensor sensitivity (calibration problem) and satellite
orbital drift, which changes Sun-target-sensor geometry.
The effects of orbital drift always are combined with the
effects of absorption and scattering due to ozone, water
vapor, Rayleigh scattering, atmospheric aerosols, and sur-
face anisotropy [Gutman, 1999]. Their effects on reflectance
in the visible and near-infrared wavelengths, which are used
to calculate NDVI and surface bidirectional effects, are
determined by properties of both the surface and atmos-
phere that vary over space and time. Although these effects
have been examined extensively, removing these nonvege-
tation effects from data with global coverage remains a
challenge because it involves the closure of a system of
radiance equations with many more unknowns than meas-
urable quantities.
[12] Nonvegetation effects are reduced by analyzing only

the maximum NDVI value within each 15-day interval,
which is termed compositing [Holben, 1986]. Compositing
the maximum value of NDVI reduces but does not elimi-
nate, residual atmospheric and bidirectional effects. The
quality of the GIMMS NDVI data set between 40�N and
70�N is assessed by Zhou et al. [2001]. Their analysis
indicates that the data are of satisfactory quality.
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[13] However, the GIMMS NDVI still may contain var-
iations due to orbital drift and incomplete corrections for
calibration loss and atmospheric effects. No explicit atmos-
pheric corrections are applied to the GIMMS data. Nor are
corrections made for changes in Sun-target-sensor geome-
try, the so-called SZA effect. This effect varies by latitude,
season and land cover [Gutman, 1999]. Theoretical and
empirical analyses indicate that the SZA effects on NDVI
decrease as SZA decreases and/or leaf area increases
[Huemmrich et al., 1999; Kaufmann et al., 2000]. This
implies that the SZA effect on forest NDVI should be small.
Nonetheless, changes in SZA may account for some portion
of the interannual variations in NDVI, especially at the
regional scale. To capture this potential effect, SZA is
included in the regression equations (see section 3).
[14] To reduce the SZA effect on NDVI and to exclude

artifacts introduced by variability in soil background, we
analyze relatively dense vegetated pixels only. We define
‘‘vegetated pixels’’ (Figure 1) as those with: (1) June to
August NDVI values greater than 0.1 in all years; and (2)
June to August average NDVI value greater than 0.3 for all
years. Winter season NDVI data (January, February, March,
November, December) are excluded to reduce nonvegeta-
tion effects, especially those associated with snow and low
solar elevation, which are typical in high latitudes. This
definition for vegetated pixels also ensures that data from
the same pixels are used in the entire analysis unlike Myneni
et al. [1997].
[15] To measure conditions experienced by terrestrial

vegetation, we use monthly data for land surface air temper-
ature and precipitation from 1982 to 1999. The temperature
data set is processed by the NASA Goddard Institute for
Space Studies (GISS) [Hansen et al., 1999] and has a
resolution of 2� � 2�. The temperature value reported for
each grid box is an average of measurements recorded at
stations in rural areas, small towns, and urban areas.
Measurements from urban stations are adjusted so their
long-term trend matches that of their rural neighbors. The
station data are collected by national meteorological serv-
ices and are reported by the Global Historical Climatology
Network of Peterson and Vose [1997]. Temperature data are
reported as anomalies relative to the 1951–1980 mean. The
precipitation data are from the NOAA Climate Prediction
Center and have a resolution of 2.5� � 2.5� [Xie and Arkin,
1997]. This data set is produced by merging measurements
from ground-based precipitation gauges, satellite estimates,
and numerical model predictions.
[16] Aerosol scattering affects reflectances in both the

visible and near-infrared channels. Increases in atmospheric
optical depth of tropospheric and stratospheric aerosols
reduce NDVI. Quantitative characteristics of tropospheric

aerosols are insufficient because they are spatially and
temporally variable [Gutman, 1999]. Stratospheric aerosols
associated with volcanic eruptions, however, tend to have
longitudinally homogeneous distributions within two
months of injection and decrease slowly with time. The
availability of stratospheric aerosol data makes it possible to
correct the GIMMS NDVI data for the effect of aerosols
associated with volcanic eruptions. The stratospheric aero-
sol optical depth (AOD) data we use are based on optical
extinction measurements from the Stratospheric Aerosol
and Gas Experiment (SAGE) satellite instruments [Sato et
al., 1993], and are reported as monthly values for zonal
means. That is, AOD varies by latitude, but is constant
across longitudes. We use these AOD data from 1982 to
1999 [Sato et al., 1993] to assess the effect of changes in
aerosol optical depth on the GIMMS NDVI time series that
may remain after corrections.
[17] We use a land cover classification map with an 8 km

resolution [DeFries et al., 1998] to identify vegetated pixels
by land cover type. This map is derived from AVHRR data
and identifies 13 land cover types in North America and
Eurasia (Table 1). Of the 13 land cover types, this statistical
analysis includes five (evergreen needleleaf forests—class
1; deciduous needleleaf forests—class 3; deciduous broad-
leaf forests—class 4; mixed forests—class 5; and wood-
lands—class 6). The remaining land cover types are
excluded because they are not present in the sample area
(evergreen broadleaf forests—class 2), are managed by
humans (croplands—class 11), or contain little vegetation
relative to forests (wooded grasslands/shrublands—class 7;
closed bushlands or shrublands—class 8; open shrubs—
class 9; grasses—class 10; bare—class 12; and mosses and
lichens—class 13).

Figure 1. Map of vegetated pixels used in this study. Vegetated pixels (solid) are identified as those
with (a) June to August NDVI composite values greater than 0.1 in all years; and (b) June to August
average NDVI value greater than 0.3 for all years, from 1982 to 1999.

Table 1. Distribution of Vegetated Pixels Between 40�N and

70�N for Each Land Cover Type in North America and Eurasia

Class
Land Cover Type

Description

North America Eurasia

Pixels Percent Pixels Percent

1 Evergreen needleleaf forests 50,989 34.9 68,394 21.5
2 Evergreen broadleaf forests 0 0.0 0 0.0
3 Deciduous needleleaf forests 0 0.0 30,779 9.7
4 Deciduous broadleaf forests 6846 4.7 18,060 5.7
5 Mixed forests 19,145 13.1 38,249 12.0
6 Woodlands 23,835 16.3 22,882 7.2
7 Wooded grasslands/shrubs 151 0.1 1057 0.3
8 Closed bushlands or shrublands 109 0.1 415 0.1
9 Open shrublands 512 0.4 638 0.2
10 Grasses 16,388 11.2 51,045 16.1
11 Croplands 18,657 12.8 63,800 20.1
12 Bare 0 0.0 4 0.0
13 Mosses and lichens 9408 6.4 22,698 7.10
Total 146,040 100.0 318,021 100.0

ZHOU ET AL.: SATELLITE MEASURES OF GREENNESS AND CLIMATE ACL 3 - 3



[18] We generate anomalies for the time series of NDVI,
SZA, AOD, and climate variables by subtracting the 18-
year averaged annual cycle [Zhou et al., 2001]. Anomalies
are less correlated across space [Hansen et al., 1999] and
therefore their use eliminates spatial trends that can create/
enhance correlations among data. That is, the R2 for
regression equations are lower than had levels been used.
As a result, specifying anomalies reduces the R2 for the
regression equations described in section 3.
[19] Due to the large number of vegetated pixels (tens of

millions), we aggregate observations over space and time.
An area-weighted average is used for spatial and temporal
aggregation. Because climate data, AOD, and NDVI are
reported at different spatial resolutions, we first generate
climate data at the 8 km resolution. Each grid of climate
data is considered to be a square cell with a single value for
climate. We interpolate the climate data from the original
large scale to the 8 km resolution of the GIMMS NDVI/
SZA data. That is, all vegetated pixels in a grid box are
assigned the same values for temperature and precipitation.
AOD data are processed similarly. NDVI, SZA, AOD, and
climate variables for vegetated pixels are then georefer-
enced to the 2� � 2� grid. In each grid box, the 8 km pixel
values for all data are classified by land cover type—Pixels
that belong to the same land cover type are averaged to
generate values for each land cover type.
[20] The data also are averaged temporally. Values for the

15-day composite of NDVI and SZA are averaged to
generate monthly values. Monthly data are then averaged
to generate seasonal values; spring (April, May), summer
(June, July, August), and autumn (September, October).
Unlike NDVI, climate data for winter months (January,
February, March) are included in the statistical models.

3. Modeling the Relation Between NDVI and
Climate

[21] The general relation between NDVI and climate is
modeled by

NDVI ¼ aþ b1Tempþ b2Temp2 þ b3Precþ b4Prec
2

þ b5SZAþ b6AODþ e; ð2Þ

in which NDVI, Temp, Prec, SZA, and AOD are the
seasonal anomaly for NDVI, temperature, precipitation,
solar zenith angle, and stratospheric aerosol optical depth,
respectively, a, b1–b6 are coefficients that are estimated
statistically, and e is the unexplained regression error.
[22] The relation between NDVI and the climate varia-

bles is represented using a quadratic specification. This
specification is consistent with the notion of a physiological
optimum—the maximum rate of net primary productivity
may occur at an intermediate temperature or precipitation.
This effect would be consistent with a positive value for the
regression coefficient associated with the linear value of the
climate variable (b1, b3) and a negative value associated
with the squared value of the climate variable (b2, b4).
Using a quadratic relation to represent the effect of a
physiological optimum is consistent with statistical models
for the effect of climate on crop yield [Kaufmann and Snell,
1997].

[23] Representing the effect of climate on NDVI with a
quadratic specification, instead of a simple linear function,
also is consistent with physiological studies. Warmer tem-
peratures increase the growth rates of most plants, partic-
ularly near the center of their climate ranges, provided water
and nutrients are available. Warming beyond a certain point
will reduce growth and may cause dieback [Gates, 1993]. In
addition, plants can shift their photosynthetic optimum
toward higher temperatures when they are grown under
warmer conditions. This results from a shift in the enzyme
systems that affect both photosynthesis and respiration.
Seasonal shifts in the optimal temperature are found in
some evergreen plants. These shifts in temperature optima
may be only a few degrees; nevertheless, they are effective
means of adjustment to changing climates [Larcher, 1983].
[24] Equation (2) does not impose an inverted U shape on

the relation between NDVI and climate. Four other relations
are possible. There is a positive relation between NDVI and
climate if the regression coefficients associated with the
linear and/or squared value of the climate variable is
positive and statistically significant. There is a negative
relation if the regression coefficients associated with the
linear and/or squared value of the climate variable is
negative and statistically significant. There is a U-shaped
relation if the regression coefficient associated with the
linear value of the climate variable is negative (and statisti-
cally significant) and the regression coefficient associated
with the squared value of the climate variable is positive
(and statistically significant). Finally, there is no relation
between NDVI and climate if the regression coefficients
associated with the linear and squared value of the climate
variables are not statistically significant. Their signs are
irrelevant if the regression coefficients are not statistically
significant.
[25] Equation (2) includes the variables SZA and AOD to

represent the effects of satellite orbital drift and changover,
and stratospheric aerosols that are not removed by the
GIMMS NDVI processing algorithms. It is not possible to
determine the sign on these regression coefficients (b5, b6) a
priori. Increases in stratospheric aerosol optical depth
reduce NDVI, but b6 will not be negative if the corrections
for the El Chichon and Mt. Pinatubo eruptions are too large.
By including SZA and AOD, the coefficients associated
with temperature and precipitation represent the effects of
climate that are not correlated with the effects of orbital
drift, satellite changeover, or aerosol optical depth.
[26] Using equation (2) to estimate the relation between

NDVI and climate from the 18 years of data for the 445 grid
boxes in North America and the 980 grid boxes in Eurasia
presents several difficulties. First, NDVI in any given
season may be determined by climate during an earlier
portion of the growing season. That is, NDVI during the
summer may be determined by temperature during both the
summer and spring. As a result, we expand equation (2) to
include the effect of climate variables during earlier portions
of the growing season. We include two previous seasons
(except for spring when we include spring and winter
climate variables only) to conserve degree of freedom for
the random coefficient model (see below).
[27] In addition, equation (2) assumes that the relation

between NDVI and climate for a given land cover type is
the same across all grid boxes. This assumption may not be

ACL 3 - 4 ZHOU ET AL.: SATELLITE MEASURES OF GREENNESS AND CLIMATE



consistent with physiological and ecological mechanisms.
Acclimatization and local selection may cause the effect of
temperature and/or precipitation on NDVI to differ between
the northern and southern portion of a species range. In
addition, unobserved variables that are not related to climate
or the other variables in equation (2) may cause the relation
between NDVI and climate to vary among grid boxes.
Differences in surface features such as elevation and slope
may cause the satellite to measure different reflectances in
channels 1 and/or 2 even if the vegetation is identical. These
effects are represented by allowing the regression coeffi-
cients to vary across grid boxes.
[28] The effects of temporal lags, spatial heterogeneity,

and unobserved variables can be represented several ways.
We can add the effect of lagged climate variables but keep
the relation between NDVI and climate the same across grid
boxes by

NDVIsit ¼ aþ
X�2

s¼0

bs1Tempsit þ bs2Tempsit
2 þ bs3Precsit

�

þ bs4Precsit
2 Þ þ bs5SZAsit þ bs6AODsit þ esit; ð3Þ

in which s represents season (winter, spring, summer,
autumn), i represents an individual grid box, and t is time.
Alternatively, we can represent the effect of unobserved
variables by allowing the intercepts to vary (ai) among grid
boxes by

NDVIsit ¼ ai þ
X�2

s¼0

bs1Tempsit þ bs2Tempsit
2 þ bs3Precsit

�

þ bs4Precsit
2 Þ þ bs5SZAsit þ bs6AODsit þ esit: ð4Þ

Finally, we can represent spatial heterogeneity by allowing
the coefficients (b1–b6) to vary among grid boxes by

NDVIsit ¼ ai þ
X�2

s¼0

bsi1Tempsit þ bsi2Tempsit
2 þ bsi3Precsit

�

þ bsi4Precsit
2 Þ þ bsi5SZAsit þ bsi6AODsit þ esit: ð5Þ

There is no way to choose among equations (3)–(5) a priori.
Instead, we use standard statistical procedures to choose the
equation that is consistent with the data, the proper
technique to estimate the equation, and the way to evaluate
results [Hsiao, 1986]. A flowchart for these procedures is
given in Figure 2.
[29] The procedure to choose among equations (3), (4),

and (5) is based on F tests which are presented in more
detailed in Appendix A. Once equation (3), (4), or (5) is
chosen, each requires a different estimation technique.
Equation (3) can be estimated using ordinary least squares
(OLS). In case of heteroscedasticity, weighted least squares
(WLS) can be used to eliminate the heteroscadasticity if its
cause is known. Possible causes include differences among
grid boxes concerning the number of vegetated pixels.
Otherwise, a heteroscedactic and autocorrelation consistent
(HAC) estimator is used. Equation (4) can be estimated
using either the fixed or the random effects estimator. If the
F tests indicate that both the intercepts and slopes vary

among grid boxes, we estimate equation (5) using the
random coefficient model (RCM).
[30] Finally, we test the results for the presence of

spurious regressions. Spurious regressions generate diag-
nostic statistics (e.g., t statistics for the b’s) that suggest a
statistically meaningful relation among variables when none
is present. To avoid such confusion, we use two Dickey–
Fuller (DF*r, DF*t ) tests and an augmented Dickey–Fuller
(ADF) test to test the null hypothesis of no cointegration
[Kao, 1999]. Simulation results suggest that the DF*r and
DF*t tests can be used for regression residuals with small
standard errors, and the ADF test is suited for regression
residuals with large standard errors. To evaluate the degree
to which the results are robust, we report all three tests.

4. Results

[31] We are able to estimate statistically meaningful
relations between NDVI and climate during spring, summer,
and autumn for all forest land cover types in North America
and Eurasia (Tables 2, 3, and 4). In each of the 27 regression
equations, one or more of the climate variables is statisti-
cally significant at p < 0.05 (Table 5). For only 12 climate
variables of the 144 tested, are both the linear and squared
term statistically insignificant (i.e. no relation between
NDVI and climate). Of the 51 cointegration tests, 50
statistics are significant, that is, the null hypothesis of no
cointegration is rejected. This implies that the variables in
the regressions probably cointegrate and the regression
results probably are not spurious. Nonetheless, this con-
clusion must be interpreted with caution. The tests devel-
oped by Kao [1999] are designed for fixed effects estimator.
As such, the tests are applicable to models estimated using
OLS because NDVI and the independent variables are
specified as anomalies, which is the same transformation
used to estimate the fixed effect estimator. The residual from

Figure 2. Flowchart of statistical methods.
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the random coefficient model also are tested for no cointe-
gration using the Kao statistics because no cointegration test
has been developed for this estimation technique. We
believe that the results are informative because in most
cases the test statistic strongly rejects the null hypothesis
( p < 0.001) and so the conclusions about cointegration
probably are robust.
[32] The F tests indicate that the relation between NDVI

and climate should be estimated using either equation (3)
(12 relations) or equation (5) (15 relations) (Tables 2–4).
The use of equation (3) as opposed to equation (4) is
consistent with the use of NDVI and climate anomalies
instead of levels. The anomalies are created with a trans-
formation similar to that used to calculate the fixed effects
estimator. This similarity implies that the intercepts vary

among all land cover types, even those for which the
relation between NDVI and climate is estimated using
equation (3). For all uses of equation (3), we report the
HAC estimate. In no case, do we choose the estimate
generated by weighted least squares. This indicates that
the OLS estimate of equation (3) generates an error term

Table 2. Regression Results for Equations (3), (4), or (5) for

Spring

Land Cover Types

1 3 4 5 6

North America
Regression coefficientsa

T (winter) .0052b – .0061b .0064b .0023b

T2 (winter) �.0006b – �.0004b �.0007b �.0006b

T (spring) .0079b – .0087b .0099b .0040b

T2 (spring) �.0007b – .0011b .0003 �.0005b

P (winter) �.0090b – �.0169b �.0086b �.0037b

P2 (winter) .0037b – .0380b �.0004 .0058b

P (spring) �.0041b – �.0020b �.0045b �.0021b

P2 (spring) .0026b – .0040b .0079b .0009
SZA .0006b – .0000 .0004b .0007b

AOD �.1605b – �.1677b �.1828b �.0901b

Diagnostic statisticsc

DF*r �38.83b – �52.26b �41.43b �41.81b

DFt* �4.55b – �17.45b �7.79b �11.64b

ADF �10.61b – �13.50b �9.84b �10.28b

R2 0.31 – 0.19 0.35 0.09
Degrees of freedom

1911 – 910 1246 714
Estimatord RCM – RCM RCM RCM

Eurasia
Regression coefficientsa

T (winter) .0020b .0008b .0051b .0032b .0005b

T2 (winter) �.0004b �.0003b �.0009b �.0006b �.0002b

T (spring) .0013b .0006b .0046b .0027b .0006b

T2 (spring) .0005b .0004b .0006b .0008b .0003b

P (winter) �.0035b �.0061b �.0067b �.0044b .0008
P2 (winter) .0004 .0246b .0046b .0050b .0015
P (spring) �.0046b �.0058b �.0020b �.0048b �.0040b

P2 (spring) �.0019b �.0009 �.0032 �.0029b .0015
SZA .0000 .0008b �.0003b .0000 .0008b

AOD �.1078b �.0699b �.1120b �.1163b �.0830b

Diagnostic statisticsc

DF*r �39.32b �36.84b �46.34b �46.97b �46.18b

DF*t �1.16 �5.67b �5.64b �4.38b �10.39b

ADF �8.40b �8.51b �10.29b �10.33b �10.31b

R2 0.15 0.12 0.19 0.17 0.06
Degrees of freedom

4004 1246 2149 2982 1274
Estimatord RCM RCM RCM RCM RCM

aT = temperature; P = precipitation; SZA = solar zenith angle; AOD =
stratospheric aerosol optical depth. These coefficients are estimated
regression coefficients, b1–b6, for equations (3)– (5).

bValues that exceed the critical values for a threshold of p < .05.
cDF*r, DFt*, and ADF are Dickey–Fuller tests and augmented Dickey–

Fuller test proposed by Kao [1999]. These tests are used to test whether the
regression is spurious. The null hypothesis is no cointegration.

dRCM = random coefficient model. See Appendix A and Figure 2 for
details.

Table 3. Regression Results for Equations (3), (4), or (5) for

Summer

Land Cover Types

1 3 4 5 6

North America
Regression coefficientsa

T (winter) .0021b – .0041b .0037b .0015b

T2 (winter) �.0005b – �.0010b �.0010b �.0006b

T (spring) .0005b – .0006b .0011b .0018b

T2 (spring) .0001 – .0001 .0001 .0000
T (summer) .0055b – .0001 .0004 .0059b

T2 (summer) .0012b – .0014b .0009b .0004b

P (winter) �.0016b – �.0009 .0000 �.0032b

P2 (winter) .0007 – �.0014b �.0002 .0008
P (spring) .0031b – .0020b .0023b .0008
P2 (spring) �.0009 – .0007 �.0059 .0043
P (summer) �.0051b – �.0007 �.0030b �.0026b

P2 (summer) �.0006 – �.0045b �.0058b �.0005
SZA �.0010b – �.0007b �.0009b �.0006b

AOD �.1545b – �.1996b �.1553b �.1751b

Diagnostic statisticsc

DF*r �50.14b – �49.11b �52.50b �56.09b

DF*t �8.56b – �12.26b �12.79b �12.38b

ADF �11.96b – �12.99b �13.54b �11.83b

R2 0.21 – 0.16 0.17 0.25
Degrees of freedom

1083 – 570 678 876
Estimatord RCM – RCM RCM RCM

Eurasia
Regression coefficientsa

T (winter) .0028b .0016b .0027b .0030b .0024b

T2 (winter) �.0005b �.0001 �.0004b �.0005b �.0002b

T (spring) �.0007b .0022b �.0011b �.0009b .0001
T2 (spring) .0005b .0000 .0004b .0005b .0002b

T (summer) .0078b .0106b .0050b .0067b .0106b

T2 (summer) �.0009b .0005 �.0009b �.0008b �.0010b

P (winter) .0004 �.0017 �.0007 �.0005 �.0012
P2 (winter) .0001 �.0114b �.0002 .0000 .0005
P (spring) .0088b .0019 .0095b .0073b .0081b

P2 (spring) �.0034b �.0008 �.0029b �.0026b �.0051b

P (summer) �.0036b �.0005 �.0020b �.0057b �.0024b

P2 (summer) �.0025b �.0087b �.0031b �.0026b �.0033b

SZA �.0009b �.0006b �.0007b �.0010b �.0006b

AOD �.1861b �.1250b �.2165b �.1817b �.1747b

Diagnostic statisticsc

DF*r �57.72b �39.66b �61.44b �54.00b �64.04b

DF*t �6.15b �3.85b �11.00b �6.46b �10.50b

ADF �11.99b �9.27b �13.27b �11.93b �13.73b

R2 0.24 0.24 0.17 0.23 0.23
Degrees of freedom

12,009 5961 7437 9453 9165
Estimatore HAC HAC HAC HAC HAC

aT = temperature; P = precipitation; SZA = solar zenith angle; AOD =
stratospheric aerosol optical depth. These coefficients are estimated
regression coefficients, b1–b6, for equations (3)– (5).

bValues that exceed the critical values for a threshold of p < .05.
cDF*r, DF*t, and ADF are Dickey–Fuller tests and augmented Dickey–

Fuller test proposed by Kao [1999]. These tests are used to test whether the
regression is spurious. The null hypothesis is no cointegration.

dRCM = random coefficient model. See Appendix A and Figure 2 for
details.

eHAC = heteroscedactic and autocorrelation model. See Appendix A and
Figure 2 for details.
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that does not have constant variance and that the cause of
this heteroscedasticity is not related to differences among
grid boxes regarding the number of pixels that belong to a
given land cover type.
[33] Of the 72 temperature variables in the 27 regression

equations, 25 temperature variables have an inverted U

shape relation with NDVI (Table 5). This shape is consistent
with the notion of a physiological optimum. The absolute
value of this optimum cannot be calculated from the
regression coefficients because the variables are specified
as anomalies rather than the levels. For the remaining 47
temperature variables, there are 29 positive relations
between NDVI and temperature. This positive relation is
consistent with the observation that temperature is a limiting
factor for many land cover types located between 40�N and
70�N. The number of negative relations between NDVI and
temperature is limited. Of these, most occur in the equations
for autumn NDVI. Six temperature variables have a U
shaped relation with NDVI. In these cases, the turning point
(i.e., trough) tends to be located near the sample maximum
or minimum value. This implies that the U shaped relation
may actually represent an asymptotic negative or positive
effect.
[34] The relation between NDVI and precipitation shows

a different mix of relations. Twenty-nine precipitation
variables have a negative effect on NDVI (Table 5). For
11 precipitation variables, there is no statistically mean-
ingful relation with NDVI. There is a U shaped relation and
a positive relation between NDVI and precipitation for 12
precipitation variables, respectively. There are 8 precipita-
tion variables for Eurasia that have an inverted U shaped
relation with NDVI while there are no inverted U shaped
relations in North America.
[35] For all land cover types and seasons, there is a

negative relation between NDVI and AOD. The statistical
significance of this relation indicates that the algorithm used
to process the GIMMS data set does not eliminate the
effects of the El Chichon and Mt. Pinatubo eruptions. The
negative sign indicates that the effect of aerosols on NDVI
is greater than that assumed by the GIMMS NDVI process-
ing algorithm.
[36] As noted in section 2, the processing algorithm does

not include corrections for changes in SZA. This omission
generates a statistically significant relation between NDVI
and SZA for most land cover types and seasons. The nature
of this relation varies among seasons. There is a positive
relation between NDVI and SZA during the spring and a

Table 4. Regression Results for Equations (3), (4), or (5) for

Autumn

Land Cover Types

1 3 4 5 6

North America
Regression coefficientsa

T (spring) �.0022b – �.0055b �.0046b �.0007
T2 (spring) �.0001 – .0003 �.0002 �.0002
T (summer) �.0027b – �.0035b �.0013 �.0013b

T2 (summer) .0010b – .0022b .0011b �.0001
T (autumn) .0036b – .0057b .0058b .0021b

T2 (autumn) �.0009b – .0003 .0003 �.0016b

P (spring) �.0005 – �.0035b �.0023b .0035b

P2 (spring) .0004 – .0016 .0001 .0006
P (summer) .0017b – .0070b .0030b .0027b

P2 (summer) �.0005 – �.0005 �.0001 �.0039b

P (autumn) �.0053b – �.0048b �.0060b �.0064b

P2 (autumn) .0002 – �.0004 �.0005 .0007b

SZA �.0030b – �.0028b �.0031b �.0030b

AOD �.2116b – �.2395b �.1691b �.2437b

Diagnostic statisticsc

DF*r �47.98b – �49.97b �57.92b �57.53b

DF*t �6.96b – �11.43b �14.77b �13.08b

ADF �12.80b – �10.98b �12.28b �11.63b

R2 0.33 – 0.33 0.31 0.31
Degrees of freedom

6375 – 3351 4017 4935
Estimatord HAC – HAC HAC HAC

Eurasia
Regression coefficientsa

T (spring) .0029b �.0025b �.0025b �.0033b �.0024b

T2 (spring) �.0006b �.0007b �.0007b .0001 .0000
T (summer) �.0009b �.0014b �.0014b .0005 .0022b

T2 (summer) .0006b .0075b .0075b .0038b .0005
T (autumn) .0058b .0049b .0049b .0049b .0046b

T2 (autumn) �.0008b .0007b .0007b �.0003 �.0003
P (spring) .0003 .0029b .0029b .0021b �.0004
P2 (spring) .0002 �.0055b �.0055b �.0035b �.0005
P (summer) .0068b .0065b .0065b .0015b .0020b

P2 (summer) �.0021b �.0006 �.0006 �.0007 �.0021
P (autumn) �.0027b �.0120b �.0120b �.0120b �.0191b

P2 (autumn) �.0016b .0021b .0021b �.0002 .0008
SZA �.0011b �.0032b �.0032b �.0037b �.0034b

AOD �.2236b �.2594b �.2594b �.2215b �.2863b

Diagnostic statisticsc

DF*r �67.28b �47.73b �64.15b �70.56b �74.44b

DF*t �9.64b �6.65b �12.47b �13.23b �15.23b

ADF �15.69b �12.50b �14.66b �16.21b �17.20b

R2 0.27 0.30 0.30 0.32 0.29
Degrees of freedom

7123 921 1224 9363 8427
Estimatore HAC RCM RCM HAC HAC

aT = temperature; P = precipitation; SZA = solar zenith angle; AOD =
stratospheric aerosol optical depth. These coefficients are estimated
regression coefficients, b1–b6, for equations (3)– (5).

bValues that exceed the critical values for a threshold of p < .05.
cDF*r, DF*t, and ADF are Dickey–Fuller tests and augmented Dickey–

Fuller test proposed by Kao [1999]. These tests are used to test whether the
regression is spurious. The null hypothesis is no cointegration.

dHAC = heteroscedactic and autocorrelation consistent. See Appendix A
and Figure 2 for details.

eHAC = heteroscedactic and autocorrelation consistent; RCM = random
coefficient model. See Appendix A and Figure 2 for details.

Table 5. Summary of Relation Between NDVI and Climate

Variables From Tables 2–4 for North America and Eurasiaa

Relation

Spring Summer Autumn Total

NA EA NA EA NA EA NA EA Total

Temperature
Inverted U 6 5 4 8 0 2 10 15 25
Positive 2 5 8 4 4 6 14 15 29
Negative 0 0 0 3 4 4 4 7 11
U Shaped 0 0 0 0 3 3 3 3 6
No relation 0 0 0 0 1 0 1 0 1
Total 8 10 12 15 12 15 32 40 72

Precipitation
Inverted U 0 0 0 4 0 4 0 8 8
Positive 0 0 4 0 4 4 8 4 12
Negative 2 6 6 6 6 3 14 15 29
U Shaped 6 3 0 0 1 2 7 5 12
No relation 0 1 2 5 1 2 3 8 11
Total 8 10 12 15 12 15 32 40 72

aNA = North America; EA = Eurasia.
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negative relation during the summer and autumn. The
reason for these seasonal differences is unknown.
[37] The presence of a statistically meaningful relation

among NDVI, climate, SZA, and AOD does not mean that
the NDVI data are ‘hopelessly contaminated’ by the
changes in SZA and AOD. By including these variables
in the regression equation, the statistical techniques are able
to quantify the effects of SZA and AOD that remain in the
GIMMS NDVI data set and thereby separate their effects
from the effects of climate. As indicated in the next section,
the effects of SZA are small compared with climate.

5. Discussion

[38] As first described by Zhou et al. [2001], NDVI
generally increases between the early 1980s and the late
1990s (Figures 3a, 3b, and 3c). Nevertheless, the direction
and magnitude of changes vary over space and time. In
Eurasia, spring, summer, and autumn values for NDVI
increase in a swath from central Europe through Siberia to
the Aldan plateau. In North America, changes in NDVI are
spatially fragmented and vary among seasons. The largest
increases occur during the spring and summer in the forests
of northwestern Canada and Alaska. These same areas show
slight declines during the autumn.
[39] To quantify the causes of these changes, we use the

regression equations to calculate the change in NDVI
associated with temperature, precipitation, SZA, and
AOD. The effect of each variable is isolated by simulating
the regression equations four times. For each simulation, we
change one variable consistent with the historical record
while holding the remaining three variables constant. To
avoid the effect of extreme values, we calculate the change
in the average NDVI between the 1982–1986 period (early
1980s) and the 1995–1999 period (late 1990s). For exam-
ple, the average anomaly in spring temperature for the grid
box in the central Alaska increases by about 2.5�C between
the 1982–1986 and 1995–1999 periods. The regression
coefficients associated with spring temperature for decidu-
ous broadleaf forests in North America are 0.0079 and
�0.0007. These values indicate that the 2.5�C increase in
temperature is associated with a 0.02 increase in NDVI.
Similar calculations are performed with precipitation, AOD,
and SZA to calculate the change in NDVI that is associated
with each of these variables for each land cover type and
season. The changes in NDVI associated with each of these
effects are weighted by the land cover type’s fraction of
vegetated pixels in that grid box. This allows us to identify
the change in NDVI that is associated with changes in
temperature, precipitation, AOD, and SZA across North
America and Eurasia for spring, summer, and autumn
(Figures 3a–3c).
[40] Of the four variables examined, changes in temper-

ature have the greatest explanatory power. Increases in
spring temperature have their greatest effect in northwest
Canada and central Alaska, where increases in NDVI that
are associated with higher temperatures are shown in red
(Figure 3a). Conversely, temperature changes reduce
autumn NDVI in central Alaska and northwest Canada
between the early 1980s and the late 1990s. Higher temper-
atures also account for some of the summer-time increase in
NDVI that stretches across the western portion of Eurasia.

[41] Of the remaining variables, changes in AOD have
the greatest effect. The effects of AOD tend to increase
NDVI between the early 1980s and late 1990s. This is
caused by the periods used for comparison and the timing of
volcanic eruptions (Figure 4b). El Chichon erupted in 1982,
and its fallout reduced satellite measures of NDVI during
the period we define as the early 1980s. Mt. Pinatubo
erupted in 1991 and most of its fallout had dissipated by
the period we define as the late 1990s, therefore measures of
NDVI for the late 1990s are relatively unaffected by
reductions in optical depths compared to those for the early
1980s. As a result, changes in the optical properties of the
atmosphere cause the GIMMS data set to overstate the
change in NDVI between the early 1980s and the late
1990s. But as illustrated in Figures 3a–3c, these changes
account for only some of the change in NDVI. Notice too
that the effect on NDVI is not constant across longitudes,
even though an individual latitudinal band has the same
value for AOD. The effects of AOD vary within latitudinal
bands due to differences among land cover types regarding
the effect of AOD on NDVI (b6) and changes in the mix of
land cover types in grid boxes along the same latitude.
[42] Changes in precipitation account for a relatively

small fraction of the change in NDVI. Its effects are
scattered across North America and Eurasia (Figures 3a–
3c). The observed changes in precipitation tend to decrease
NDVI between the early 1980s and late 1990s. These
decreases are associated with reductions in precipitation.
The small effect of precipitation does not imply that
precipitation is unimportant. Rather, it indicates that the
change in precipitation between the early 1980s and the late
1990s is relatively small (Figure 4d). This is consistent with
a small trend in precipitation relative to the increase in
surface temperature at higher latitudes of the northern
hemisphere (Figure 4e).
[43] Last, the effects of changes in SZA are nearly invisible

during the spring and autumn in both North America and
Eurasia (Figures 3a and 3b). The effects in Eurasia are small
during the autumn, but are slightly more pronounced during
the autumn in North America (Figure 4c).
[44] Consistent with the R2 of the equations in Tables 2–

4, temperature, precipitation, AOD, and SZA account for
10–33% of the spatial and temporal variations in NDVI
between 1982 and 1999. Although this percentage does not
affect the interpretation of the regression results, it leaves a
considerable fraction of the change in NDVI unexplained.
As such, this result contradicts Lucht et al. [2002], who
conclude that temperature is largely responsible for advan-
ces timing in the spring green-up, the delay in autumn
senescence, and the increase in maximum leaf area index
(LAI) observed in satellite images of the northern high
latitudes.
[45] The relatively large fraction of unexplained variation

may be associated with the use of anomalies. As described
in section 2, the use of anomalies eliminates spatial trends in
NDVI that are associated with temperature. That is, NDVI
increases as latitude decreases, and this increase correlates
strongly with the increase in temperature. But this source of
variation, and its correlation with temperature, (and hence a
larger R2) is eliminated by the use of anomalies. On the
other hand, Lucht et al. [2002] use anomalies and seem to
explain a larger fraction of the variation.
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[46] Alternatively, the relatively large fraction of unex-
plained variation may be associated with the temporal and
spatial scale of the analysis. At the continental scale,
temperature alone is able to account for 50–90% of the

variation in NDVI [Zhou et al., 2001]. Similarly, temper-
ature seems to account for a large fraction of variations in
LAI for the boreal zone as indicated by Figure 2 from Lucht
et al. [2002].

Figure 3a. Spatial patterns of (a) changes in observed NDVI, (b) changes in NDVI due to changes in
SZA, (c) changes in NDVI due to changes in AOD, (d) changes in NDVI due to changes in temperature, and
(e) changes in NDVI due to changes in precipitation, between 1995–1999 and 1982–1986 averages for
land cover types (classes 1–6 in Table 1) during spring. See color version of this figure at back of this issue.
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[47] To investigate the effect of the temporal and spatial
scale on the results of Lucht et al. [2002], we estimate the
relation between the satellite data and model simulations
using the following equation:

Satt ¼ aþ b*LPJt þ m t; ð6Þ

in which Sat are the LAI anomalies measured by the
satellite at time t and LPJ are the corresponding values

simulated by the model. Equation (6) is estimated with the
102 monthly observations and with 18 observations that
represent the interannual relation for the growing season
and individual months. If the model reproduces the satellite
record accurately, a = 0 (by definition, the use of anomalies
means a = 0) and b = 1.0. If b 6¼ 1.0, the model simulations
are biased. If b = 0, the model does not reproduce the
satellite data in a statistically meaningful fashion.

Figure 3b. Same as Figure 3a but for summer. See color version of this figure at back this issue.
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[48] Results indicate that the regression coefficients are
either biased or statistically significant for many months
and individual regions (Table 6). These results undermine
the conclusions about the effect of temperature on the
timing of autumn senescence shown in Figure 2 because
there is no statistically meaningful relation between model
output and LAI (b = 0) for September or October in three

of the four regression equations. Similarly, the effect of
temperature on the timing of spring green-up shown in
Figure 2 is clouded by the model’s bias for May (b > 1).
Finally, conclusions about the effect of temperature on
maximum value of LAI are undermined by the statistical
insignificance of regression coefficients for summer
August LAI in Northern Europe (b = 0), where changes

Figure 3c. Same as Figure 3a but for autumn. See color version of this figure at back of this issue.
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in the maximum value of NDVI are greatest [Zhou et al.,
2001].
[49] The reason for the relatively low R2 for the statistical

results reported here and the poor performance of the LPJ-
DVM at finer temporal and spatial scales may be the
omission of important explanatory variables—forest
regrowth and changes in land cover and land use. Agricul-
tural abandonment and a slow-down in forest harvest may
allow forest to regrow. Changes from barren lands or sparse
vegetation to dense vegetation also increase satellite-
observed vegetation greenness. These changes would cause
NDVI to increase regardless of changes in climate, AOD, or
SZA. The importance of forest regrowth is implied by

locations where NDVI increases significantly, but the
regression equations account for a small portion of the
change. This mismatch occurs in the purple areas of north-
east and midwest North America and Western Europe east
to the Urals. This area coincides with large populations,
which implies that human activities have an important effect
on land use and land cover.

6. Conclusion

[50] This paper uses satellite-based measures of vegeta-
tion greenness to quantify climate-induced changes in
terrestrial vegetation. We estimate statistically meaningful

Figure 4. Spatial average of (a) NDVI, (b) AOD, (c) SZA, (d) precipitation, and (e) temperature for
vegetated pixels between 40�N and 70�N from 1982 to 1999 in North America (solid line) and Eurasia
(dashed line).
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relations between NDVI and climate during spring, summer,
and autumn for forests between 40�N and 70�N in North
America and Eurasia by land cover type at a regional scale
(2� � 2� grid boxes) between 1982 and 1999. The results
indicate that temperature changes between the early 1980s
and the late 1990s are linked with much of the observed
increase in satellite measures of northern forest greenness.
But a statistical meaningful relation does not imply causa-
tion. Indeed, physical theory indicates that two directions of
causality are possible. There are ecological and physical
mechanisms by which climate can affect plant growth and
there are physical and ecological mechanisms by which
plant growth can affect climate.
[51] In mid and high latitudes, climate affects the pro-

ductivity of forest ecosystems directly through temperature
and precipitation [e.g., Chapin and Shaver, 1996]. In gen-
eral, warm temperatures and high rainfall increase rates of
plant photosynthesis because photosynthesis is enhanced by
higher temperatures and greater stomatal conductance
[Kramer, 1982].
[52] Climate affects the productivity of terrestrial ecosys-

tems indirectly through changes in nutrient availability.
Higher air temperatures tend to increase soil temperatures,
which accelerate the decomposition of organic matter and
nutrient release [Nadelhoffer et al., 1991] and therefore
productivity. The indirect effect of warming on nutrient
availability ultimately may drive the productivity response
of mid- and high-latitude forests because nutrients limit net
primary production over wide areas of these ecosystems
[McKendrick et al., 1978; Shaver and Chapin, 1980; Shaver
et al., 1986].
[53] Warming in high latitude forests also may affect

terrestrial productivity in the short term (from years to
decades) by changing the physiological function and the
morphology of the extant plant community, and in the long-
term (from decades to centuries) by changing species
composition [Schlesinger, 1997]. The direct, short-term
effects of warming on the extant plant community include
earlier leaf expansion [Chapin and Shaver, 1996] and shifts
in phenology [Myneni et al., 1997], as well as increases in
the rate of photosynthesis, shoot elongation, and leaf turn-
over [Chapin and Shaver, 1996]. In the longer term,
changing climate may affect productivity by altering species
composition. These effects probably are small due to the
relatively short 20-year sample period.

[54] Changes in the structure and function of terrestrial
ecosystems may influence the climate system via the
exchange of heat, moisture, trace gases, aerosols, and
momentum between land surfaces and the overlying air
[Pielke et al., 1998]. The effect of temperature and precip-
itation is created by the vegetation’s interception of total
radiative flux that reaches the Earth’s surface. This inter-
ception modifies the amount of available net radiant energy
via its effect on albedo, and changes the partitioning
between sensible and latent heat via its effect on canopy
transpiration and aerodynamic roughness.
[55] Consistent with these effects, modeling studies gen-

erally indicate that increases in vegetation lower temper-
ature and increase precipitation. Nobre et al. [1991] find that
replacing the tropical forests in the Amazon basin with
pasture increases temperature by about 2.5�K and reduces
precipitation by 2.5 percent. Changes in vegetation need not
be so extreme. Analyses indicate regional changes in LAI
generate regional changes in temperature and precipitation
that are consistent with the effects described above [Bou-
noua et al., 2000; Buermann et al., 2001]. Empirical studies
also indicate that vegetation affects temperature and precip-
itation. Schwartz and Karl [1990] find that the emergence of
leaves in the eastern US reduces daily surface maximum
temperatures by 1.5�C–3.5�C. Measurements of weather
variables in an intact forest and the pasture of a cattle ranch
indicate that maximum temperatures are greater in the
cleared area, especially during the dry season when the
lack of water slows transpiration [Bastable et al., 1993].
Because of the simultaneous relation between climate and
vegetation, future study will use statistical techniques that
can identify the presence and direction of causal relations.
[56] Warming-enhanced plant growth in northern forests

also may affect the terrestrial carbon cycle. Increased plant
growth is linked to changes in biomass [Myneni et al.,
2001], which suggests that climate induced increases in
NDVI may increase in terrestrial biomass (as opposed to
carbon stored in soils about which our analysis says
nothing), which could account for some of the missing
carbon. The possibility of a temperature mediated terrestrial
sink for carbon is consistent with a statistical analysis of the
time series for carbon uptake by the unknown carbon sink
(R. K. Kaufmann and J. H. Stock, Testify hypotheses about
the unknown carbon sinks: A time series anaysis, submitted
to Global Biogeochemical Cycles, 2002). They find that the

Table 6. Regression Results for Equation (6)

Monthly
Annual
Average

Month

5 6 7 8 9 10

Global b 0.49 1.02 2.99 1.08 0.64 0.91 0.46 1.28
b = 0 7.52 4.41 8.33 6.60 3.97 3.35 2.04 2.35
b = 1 7.83 �0.07 �5.54 �0.48 2.26 0.35 2.40 �0.51

North America b 0.45 0.66 2.30 0.59 0.48 0.97 0.28 0.86
b = 0 5.72 3.19 6.64 4.21 2.42 1.58 1.56 1.92
b = 1 6.91 1.65 �3.75 2.87 2.58 0.06 3.92 0.32

Northern Europe b 0.31 0.33 1.05 0.76 �0.14 0.43 0.32 0.78
b = 0 4.09 0.92 2.97 3.55 �0.58 0.34 1.23 1.68
b = 1 9.15 1.86 �0.14 1.14 4.73 0.45 2.59 0.48

Siberia b 0.52 0.82 2.21 0.79 0.60 0.55 0.20 1.04
b = 0 6.59 4.33 10.5 5.78 3.81 2.35 0.94 1.96
b = 1 6.09 0.95 �5.72 1.55 2.51 1.93 3.69 �0.08

Values that exceed the p < 0.05 threshold in bold.
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annual variations in the time series for the unknown carbon
sink are associated with annual variations in land surface
temperature in the northern hemisphere, as opposed to land
surface temperature in the southern hemisphere or sea
surface temperature in either hemisphere. They also find
that the time series for the unknown carbon sink is related to
summer temperature, as opposed to temperature in the
winter, spring, or autumn. This is consistent with our
finding that temperature has its greatest effect on NDVI in
North America and Eurasia during the summer (Figures 3a–
3c). Together, these results imply that changes in climate
may have stimulated the terrestrial vegetation in mid- to
high-latitude forests to increase their uptake of carbon and
that this increase may account for some of the missing
carbon.

Appendix A

A1. Specification Tests

[57] The procedure to chose among equations (3), (4),
and (5) is based on F tests that compare their residual sum
of squares (RSS). RSS is the sum of the squared errors from
the regression equation (

P
esit

2). We test the null hypothesis
that the slopes and intercepts are the same for each grid box
by calculating the following F statistic,

F3 ¼
RSS3 � RSS5ð Þ= N� 1ð ÞK½ 	
RSS5= NT� N K þ 1ð Þ½ 	 ; ðA1Þ

in which RSS3 is the residual sum of squares from equation
(3), RSS5 is the residual sum of squares for equation (5), N
is the number of grid boxes for a particular land cover type,
T is the number of observations per grid box (18), and K is
the number of regression coefficients. If the slopes and
intercepts differ significantly among grid boxes, equation
(5) will fit the data more closely than equation (3). Under
these conditions, RSS3 will be much larger than RSS5, the
value of the F statistic will exceed the critical value (p <
0.05), and we will reject the null hypothesis that the slopes
and intercepts are equal. Failure to reject this null indicates
that the intercept and slopes are the same across grid boxes
and that equation (3) can be used to estimate the relation
between NDVI and climate.
[58] Equation (3) is not appropriate if the null hypothesis

is rejected. In this case, we test whether differences in the
intercepts are responsible for the large residual sum of
squares for equation (3) relative to equation (5). To test
the null hypothesis that the intercepts differ among grid
boxes (i.e., the a’s differ), but the relations between NDVI
and the climate variables are the same (i.e., the b’s are the
same), we calculate the following F statistic,

F1 ¼
RSS4 � RSS5ð Þ= N� 1ð ÞK½ 	
RSS5= NT� N K þ 1ð Þ½ 	 ; ðA2Þ

in which RSS4 is the residual sum of squares from equation
(4). If the relations between NDVI and individual climate
variables vary among grid boxes, equation (5) will fit the
data more closely than equation (4). Under these conditions,
RSS4 will be much larger than RSS5, the value of the F
statistic will exceed the critical value (p <0.05), and we will
reject the null hypothesis that the slopes are equal. Rejecting
the null hypothesis indicates that the relation between NDVI

and climate should be estimated using equation (5). Failure
to reject this null (equation (A2)) combined with rejecting
the null hypothesis that the slopes and the intercepts are
the same across grid boxes (equation (A1)) indicates that the
intercepts vary among grid boxes but the slopes are the
same. Under these conditions, equation (4) can be used to
estimate the relation between NDVI and climate.
[59] Once equation (3), (4), or (5) is chosen, each requires

a different estimation technique. Equation (3) can be esti-
mated using ordinary least squares (OLS). The nature of the
data (time series for many grid boxes) implies that the
variance of the error term (e) may not be constant (i.e.
heteroscedactic). Heteroscedasticity does not bias the esti-
mates for the regression coefficients, but may reduce the
efficiency of the estimate. The loss of efficiency implies that
the standard errors associated with the regression coeffi-
cients are too large. This would cause us to understate the
statistical significance of the estimates for a and the b’s.
[60] The error term is tested for heteroscedasticity using a

test developed by Breusch and Pagan [1979]. The test
evaluates whether the absolute size of the error term from
equation (3) is related to the absolute size of the dependent
or independent variables. The R2 of this regression times the
number of observations (N * T) is used as a test statistic that
is distributed as a c2 with degrees of freedom equal to the
number of independent variables plus 1. This statistic tests
the null hypothesis that the variance of the error term is
constant. Values of the test statistic that exceed the critical
threshold (p < 0.05) indicate that the r squared of the
relation between the error term and the dependent and
independent variables is larger than would be expected
based on random chance. Such a result (i.e. rejecting the
null) indicates that the error term is heteroscedactic.
[61] The inefficiency associated with a heteroscedactic

error term can be alleviated two ways. Weighted least
squares can eliminate the heteroscadasticity if the cause of
heteroscadasticity is known. One possible cause for a
heteroscedactic error in equation (3) are differences among
grid boxes regarding the number of pixels associated with a
given land cover type. For example, the number of pixels
classified as evergreen needleleaf forests (class 1) per grid
box in Eurasia varies between 6 and 2,298. Boxes with
relatively few pixels may sample the relation between
NDVI and climate differently than the sample derived from
grid boxes with many pixels, and this difference may cause
the error from equation (3) to be heteroscedactic. To account
for this effect, we weight the observations by the number of
pixels per grid box. This regression result is termed the
weighted least squares estimator (WLS). The errors from the
WLS estimate are tested for heteroscedasticity using the test
developed by Breusch and Pagan [1979]. If the test
indicates that the WLS error term is heteroscedactic, we
use the procedure developed by Newey and West [1987] to
calculate a heteroscedasticity and autocorrelation consistent
covariance matrix. This matrix is used to calculate standard
errors that evaluate the statistical significance of the regres-
sion coefficients efficiently. This result for equation (3) is
termed the heteroscedactic and autocorrelation consistent
(HAC) estimate.
[62] If the F tests indicate that only the intercepts vary

among grid boxes, this specification (equation (4)) can be
estimated using either the fixed or the random effects
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estimator. These estimators differ according to the way in
which they weight the relation between NDVI and inde-
pendent variables within grid boxes relative to the way in
which they weight the relation between NDVI and inde-
pendent variables between grid boxes. The fixed effects
estimator examines the relation between NDVI and inde-
pendent variables within grid boxes only. To do so, the fixed
effects estimator subtracts the mean value for each variable
for each grid box. As a result, the mean value for each
variable for each grid box is zero. Under these conditions,
there is no variation among grid boxes. Without this
component of variation, the fixed effects estimator for the
b’s in equation (4) represents the relation between NDVI
and independent variables based on the relation that exists
within grid boxes only.
[63] To include information about the relation between

NDVI and independent variables that is contained in the
between group variation, the error term from equation (3)
can be decomposed into three components

NDVIsit ¼ aþ
X�2

s¼0

bs1Tempsit þ bs2Temp2sit þ bs3Precsit
�

þ bs4Prec
2
sitÞ þ bs5SZAit þ bs6AODit þ esi þ esr þ est; ðA3Þ

where esi is a time invariant component of the error term that
is associated with grid box i, esr is component of the error
term that varies over among individuals and across time (the
random component), and est is the component of the error
term that varies over time but is the same for all grid boxes
at any time. Using the esi component to represent
differences among grid boxes allows the random effects
estimator to include both the within and between group
variation in its estimate for the relation between NDVI and
climate. The between group relation between NDVI and the
explanatory variables is that which would be estimated from
variations in the 18 year mean value of NDVI and the
explanatory variables from each of the grid boxes. The
random effects estimator weights the within and between
group relations, using well defined statistical procedures
[Hsiao, 1986].
[64] The ability of the random effects estimator to use

both the within and between group relation between NDVI
and explanatory variables is based on the assumption that
there is no correlation between the intercepts for individual
grid boxes and the size of the explanatory variables (i.e.
climate variables). In other words, there is no relation
between a grid box’s temperature or precipitation anomalies
and its intercept. This assumption is tested to choose
between the fixed or random effects estimator. The fixed
effects estimator is appropriate if a test statistic developed
by Hausman [1978] or Mundlak [1978] rejects the null
hypothesis that there is no relation between the size of
explanatory variables and the intercepts for individual grid
boxes.
[65] If the F tests indicate that both the intercepts and

slopes vary among grid boxes (it makes no sense that the
intercepts are the same across grid boxes but the slopes
vary), we estimate equation (5) using the random coefficient
model. The random coefficient model is based on the
assumption that the value of bi for any grid box is equal

to a mean value for all grid boxes (b) plus or minus some
random error (li),

bi ¼ bþ li: ðA4Þ

[66] Swamy [1970] describes a method for estimating
both the mean value for b and its variance. Using this
technique, we can estimate the relation between NDVI and
climate while allowing this relation to vary among the grid
boxes. This estimate of equation (5) is termed the random
coefficient model (RCM).
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Figure 3a. Spatial patterns of (a) changes in observed NDVI, (b) changes in NDVI due to changes in
SZA, (c) changes in NDVI due to changes in AOD, (d) changes in NDVI due to changes in temperature,
and (e) changes in NDVI due to changes in precipitation, between 1995–1999 and 1982–1986 averages
for land cover types (classes 1–6 in Table 1) during spring.
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Figure 3b. Same as Figure 3a but for summer.
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Figure 3c. Same as Figure 3a but for autumn.
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