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China has experienced rapid urbanization and dramatic economic
growth since its reform process started in late 1978. In this article,
we present evidence for a significant urbanization effect on cli-
mate based on analysis of impacts of land-use changes on surface
temperature in southeast China, where rapid urbanization has
occurred. Our estimated warming of mean surface temperature of
0.05°C per decade attributable to urbanization is much larger than
previous estimates for other periods and locations. The spatial
pattern and magnitude of our estimate are consistent with those
of urbanization characterized by changes in the percentage of
urban population and in satellite-measured greenness.

Land-use changes from urbanization, creating an urban heat
island (UHI), have been suspected as partially being respon-

sible for the observed warming over land during the last few
decades because of (i) the observed decrease in the diurnal
temperature range (DTR) resulting from a larger increase or a
smaller decrease in minimum temperature relative to maximum
temperature and (ii) a lower rate of warming observed over the
past 20 years in the lower troposphere compared with the surface
(1). The area-weighted average warming effect of UHI over land
during the 20th century has been estimated to be �0.06°C per
century (1–4) globally and approximately 0.06�0.15°C per cen-
tury (5, 6) in the U.S. based on differences in temperature trends
between rural and urban stations. A much larger estimate of
0.27°C per century in the U.S. has been reported recently (7) by
comparing trends in observed and reanalysis surface tempera-
tures over the period from 1950 to 1999.

China has experienced rapid urbanization and dramatic eco-
nomic growth since its reform process started in late 1978. From
1978 to 2000, China’s gross domestic product grew at an average
annual rate of 9.5%, compared with 2.5% for developed coun-
tries and 5% for developing countries; the number of small towns
soared from 2,176 to 20,312, nearly double that of the world
average during this period; the number of cities increased
from 190 to 663; and the proportion of urban population rose
from 18% to 39% (see the Peopledaily article at http:��english.
peopledaily.com.cn�200111�27�eng20011127�85410.shtml and
the State Family Planning Commission of China web site at
www.sfpc.gov.cn�EN�enews20030320-1.htm). In this article, we
present evidence for a significant urbanization effect on climate
based on analysis of impacts of land-use changes on surface
temperature in southeast China, where most of China’s urban-
ization has occurred.

Data and Methods
The UHI effect has been estimated by comparing observed
temperatures in urban stations with those in their surrounding
rural stations, but such results largely depend on how rural versus
urban stations are classified and whether the data are homoge-
neous (7–9). Population data often are used to identify a station
as urban and rural, but such information generally is out-of-date,
and thus satellite measurements of night lights have been

substituted recently (8, 9). In situ observations suffer from
inhomogeneities caused by ‘‘nonclimatic’’ factors such as
changes in observation time, instrumentation, location (altitude
and latitude), and nonstandard siting (referred to as nonclimatic
effects hereafter) (9). These factors could introduce artifacts in
long-term observations and rural–urban differences and thus
may bias the estimate of UHI. For example, Peterson (9) found
no significant impact of UHI in the U.S. after the observed
temperature time series were adjusted for such inhomogeneities.
The lack of an UHI effect may be caused by micro- and
local-scale impacts overwhelming the mesoscale UHI. Industrial
sections of towns may well be significantly warmer than rural
sites are, but urban meteorological observations are more likely
to be made within cool ‘‘park islands’’ than in industrial regions
(9). Evidently, the UHI is more complex than usually considered.

Using rural–urban temperature differences to estimate the
impacts of urbanization on climate in China may be inappro-
priate for several reasons. First, most Chinese stations are
located in or near cities, with only a few in mountainous or
remote regions or on small islands. Although China is compa-
rable in size to the U.S., it has considerably fewer meteorological
stations, and each city generally has only one station. For
example, each of China’s two biggest cities, Beijing and Shang-
hai, has only one station available in the Chinese network. It is
impossible to find a corresponding rural station for most of the
urban ones, especially in eastern and southern China. Conse-
quently, if using the rural–urban difference to estimate the UHI,
one possibly is comparing temperature between two different
urban stations at regional scales or between two different regions
at large scales. Furthermore, adjusting spatial and temporal
homogeneities for in situ observations in China inadvertently
may sacrifice the UHI effect because the adjustments often are
performed by comparing a target station with its neighbors that
generally also are urban stations and are relatively far away.
Second, China’s rapid urbanization in the past two decades could
transfer a station from rural into urban in a very short period.
The continuous expansion in urban population and area makes
the classification of urban versus rural stations dynamic. Third,
Chinese cities have a much higher density of population and
urban buildings than do cities in most developed countries. Cities
in the U.S. extend many kilometers to suburban areas where
people reside and that can have as much vegetation as rural
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areas, whereas Chinese cities have a significantly higher density
of population, residential buildings, shopping malls, schools,
roads, etc., and much less vegetation than their neighboring rural
areas because people live within cities. These unique character-
istics could make the UHI effect more pronounced in China
than in other countries like the U.S. The first two sections of
Supporting Text, which is published as supporting information on
the PNAS web site, provide the details.

Kalnay and Cai (7) recently introduced a method to estimate
the impact of urbanization and other land-use changes on
climate by comparing trends in surface temperature recorded by
1,982 meteorological stations with those in the National Centers
for Environmental Prediction�National Center for Atmospheric
Research (NCEP�NCAR) Reanalysis (R-1) (10). The reanalysis
uses the most extensive observations available from a variety of
sources including ship, rawinsonde, pibal, aircraft, and satellite,
etc., to assimilate these data, with an assimilation system kept
unchanged, and has been widely used (10). The R-1 data are
influenced strongly by atmospheric vertical soundings of wind
and temperature, and surface temperatures are estimated from
the atmospheric values (surface observations of temperature,
moisture, and wind over land are not used) and thus are not
sensitive to changes in land surface (7, 10). Therefore, the
differences in surface temperature trends between the observed
and R-1 data are postulated to represent the impacts of urban-
ization and other land-use changes on climate (7).

This method assumes that the quality of R-1 surface air
temperatures is satisfactory. One known deficiency with R-1
data is its poor performance in the description of cloudiness and
surface moisture, which could bias the computation of the
surface energy budget and therefore surface air temperature (11,
12). Increased cloud cover is linked with the worldwide decline
in DTR, and increased soil moisture could reduce DTR through
enhanced evapotranspiration (11–13). Consequently, differ-
ences in clouds and soil moisture between observed and R-1 data
could contaminate the UHI estimate. The second deficiency
with R-1 data is its poor performance over mountainous regions
(7). The model of R-1 has a spatial resolution of 2.5° and thus
uses a land surface boundary that is smoother than reality. This
smoothing could introduce large biases in the model’s altitude or
land surface properties relative to the actual meteorological
stations and thus in the R-1 temperatures over mountainous
areas with varied topography. Trenberth (12) argues that the R-1
does not include effects of changing atmospheric composition
such as greenhouse gases and aerosols on radiative forcing.
However, the R-1 is able to capture the full strength of climate
trends in its observations because the reanalysis assimilates
atmospheric temperatures and other observations that are af-
fected by the greenhouse gases and aerosols (14). Peterson (9)
and Vose et al. (15) also pointed out that the lack of adjustments
for inhomogeneity caused by the nonclimatic effects in the
observational data may have introduced uncertainties in the
UHI estimate of Kalnay and Cai (7).

Here we adopt the method of Kalnay and Cai (7) to estimate
the impact of urbanization and other land-use changes on
climate in China but pay more attention to the aforementioned
problems. We use observed monthly mean daily maximum and
minimum land surface air temperatures at 671 meteorological
stations of the Chinese network for the period from January
1979 to December 1998, collected and processed by the National
Meteorological Center of the China Meteorological Adminis-
tration (16). We use the National Centers for Environmental
Prediction�Department of Energy (NCEP�DOE) Atmospheric
Model Intercomparison Project (AMIP)-II Reanalysis (R-2)
(11) covering 1979–present at spatial resolution of �1.9° instead
of R-1. R-2 data were provided by the National Oceanic and
Atmospheric Administration�Cooperative Institute for Re-
search in Environmental Sciences (NOAA�CIRES) Climate

Diagnostics Center (Boulder, CO) from www.cdc.noaa.gov. Al-
though based on the widely used R-1, the R-2 has improved its
quality by featuring newer physics and observed soil moisture
forcing and also by fixing known errors of R-1. For example, the
soil wetness evolution is treated completely differently in R-2
than in R-1, and a new cloudiness-relative humidity table is
generated to fix the errors in R-1. Consequently, the R-2 data
should more accurately characterize soil moisture, cloud, and
near surface temperature over land (11). To ensure the reliability
of R-2 data, we assess the performance of R-2 temperatures
relative to observational data and locate the regions and seasons
with the best consistency by considering China’s complex to-
pography and climate. To minimize the nonclimatic effects in the
observations, we use China’s original and homogeneity-adjusted
annual mean surface air temperature data (17) to assess the
magnitude of these effects across China and choose our study
region where such effects are minimal. Furthermore, we use
independent data sources from demography and remote sensing
to further confirm our results. Details about these procedures
can be found in the supporting information.

For each meteorological station, the maximum and minimum
temperatures in R-2 are interpolated to its location (longitude
and latitude) on the R-2 grid. We aggregate the R-2 data into
monthly mean values and calculate a monthly DTR by subtract-
ing the monthly mean minimums from the maximums for both
the observational and R-2 data. Monthly anomalies then are
calculated by removing the 20-year mean annual cycle. Linear
trends for both observed and R-2 data are estimated by using
ordinary least squares.

After carefully assessing the data quality, reliability, and
homogeneity for both observational and R-2 data, we focus our
study on 13 provinces and municipalities in southeast China
(20°N–36°N, 102°E–123°E) that consist of 194 spatially well
distributed stations, representing an area where most of China’s
urbanization has occurred (18, 19). This region has (i) the highest
meteorological station density; (ii) the most uniform station
distribution; (iii) the minimal nonclimatic effects; and (iv) the
best consistency between observations and R-2 data in China.
The details are described in the supporting information.

Fig. 1 shows time series of monthly temperature anomalies for
Shenzhen, a city with the fastest population growth in China
from �0.1 million in 1982 to �7 million in 2000. The R-2 data
are consistent with meteorological observations, with a corre-
lation coefficient of 0.78 and 0.85 for maximum and minimum
temperatures, respectively. The minimum temperature in the
meteorological data has a larger warming trend than the max-
imum does, and so DTR decreases (�0.62°C per decade). This
change is consistent with commonly reported UHI (20, 21),
which has the greatest effect on the minimum temperature. In
contrast, the R-2 DTR shows a small increase (0.09°C per
decade), suggesting a lower sensitivity to urbanization. There-
fore, the observed minus R-2 temperature trends can be largely
attributed to urbanization and other land-use changes (7, 14).

To estimate the overall trends over our study region, we
average all stations, giving each equal weight because of their
uniform distribution in space. Because the R-2 data show the
best quality relative to the observational data during winter
months (December–February), which is also the season when
the cloudiness and soil moisture effects on UHI are minimal both
for the R-2 and observations (see more in the supporting
information), results in the winter months are show below.

For further information on data, procedures, and results for
other seasons, see Supporting Text, Tables 1–3, and Figs. 6–15,
which are published as supporting information on the PNAS web
site.
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Results and Discussion
Trends for winter maximum and minimum temperatures and
DTR in the observations are shown in Fig. 2. On average, the
observed maximum and minimum temperatures increase by
0.352°C and 0.548°C per decade, respectively, and the DTR
decreases by 0.195°C per decade. The daily minimum rises faster
than the daily maximum, with the largest increase in the northern
and eastern areas of the study region. Consequently, the DTR
declines at a majority of stations, with the largest decrease in the
eastern and southern coastal areas where rapid urbanization has
occurred (18, 19).

Fig. 3 shows how much of the above observed temperature
changes can be attributed to urbanization and other land-use
changes. The average differences in maximum and minimum
temperature trends between observed and R-2 data are �0.016
and 0.116°C per decade, respectively. The difference in DTR
trend is �0.132°C per decade, which is 68% of the observed DTR
trend (�0.195°C per decade). The decrease of DTR is greatest
in the Yangtze and Pearl River deltas and generally is larger at
coastal stations. Note that most Chinese stations are located in
or near cities. The spatial pattern and magnitude of changes in
the DTR generally are consistent with several indicators for
urbanization (e.g., number of towns and cities, urban population,
rural–urban migrants, rural laborers transferred to nonagricul-
tural sectors, rural–urban income, and per capita gross domestic
product) (19). Consequently, we attribute most of the changes
shown in Fig. 3 to urbanization.

The DTR is particularly susceptible to urban effect (1). If
urbanization is responsible for the reduction in DTR, changes in
DTR (Fig. 3c) should be correlated with factors known to affect
urbanization. The percentage of urban population to the total
population (referred to as percentage urban hereafter) has been

used as the most important determinant of urbanization in China
(19). We use China’s fourth (1990) and fifth (2000) census data
(22) to measure the changes in percentage urban. The DTR
trends are aggregated to the provincial level because data at
station level are not available to us. Fig. 4a shows a statistically
significant negative correlation (�0.77, p � 0.01) between
changes in DTR and those in percentage urban. Areas with the
greatest increase in percentage urban have the largest reduction
in DTR.

Changes in satellite-measured greenness are another indicator
of urbanization. Vegetation greenness indices such as the nor-
malized difference vegetation index (NDVI) use red and near-
infrared solar radiation reflected back to sensors aboard satel-
lites to signal energy absorption by leaf pigments such as
chlorophyll (23). Reflectances for vegetated and urban surfaces
differ greatly, and so decreases in NDVI indicate the occurrence
of less vegetation. Such decreases should be most pronounced
and thus best seen during summer, when vegetation peaks, and
become smallest during winter, when the bare soil fraction is
largest because urban surfaces are similar to bare soil in their
reflectance spectrum. Therefore, we estimate summer NDVI
trends for each station with an 8-km resolution data set (23) from
1982 to 1998 as we did for the R-2 data.

The spatial pattern and magnitude of summer NDVI trends
(Fig. 5) are generally consistent with those in temperatures (Fig.
3) and land use in China. Satellite greenness decreases substan-

Fig. 1. Monthly temperature anomalies in the observational and R-2 data for
Shenzhen, a city with the fastest population growth in China, from January
1979 to December 1998: maximum (a), minimum (b), and DTR (c). A 3-month
smoothing is applied. The correlation coefficient between the two data sets
(without smoothing) is shown.

Fig. 2. Observed winter temperature trends (in °C per decade) over south-
east China from 1979 to 1998: maximum (a), minimum (b), and DTR (c).

9542 � www.pnas.org�cgi�doi�10.1073�pnas.0400357101 Zhou et al.



tially over the eastern and southern provinces but increases over
the important agricultural areas of northern and western prov-
inces (30°N–35°N). Variations in NDVI exhibit the greatest
association with the UHI effect for minimum temperature (see
Table 3), as shown in Gallo and Owen (8). The correlation
coefficients between changes in NDVI and the observed minus
R-2 minimum temperature trends are �0.30 (p � 0.01, sample �
194) at station level and �0.67 (p � 0.05, sample � 13; Fig. 4b)
at provincial level.

Use of remote sensing data for detecting urbanization gen-
erally requires fine-resolution (�1 km) imagery (24). Note that
the size of NDVI pixel (64 km2) used in this study is coarse
relative to that of most cities, especially in the agricultural region.
The observed NDVI changes may contain signals other than
urbanization, which could vary by station depending on its
location relative to the center of NDVI pixel. Hence, the
correlation at provincial level may be more representative of
urbanization than that at station level because the regional
average could reduce uncertainty.

Although a substantial conversion from arable land into
built-up areas was identified (25), the observed NDVI increase
in 30°N–35°N (Fig. 5) may reflect the climatic effects of both
urbanization and increased agricultural planting around the
cities, because a substantial rise in crop yield has been reported
attributable to increased irrigation and fertilizer application
from 1982 to 1999 (26) over this agricultural region. Such an

increase over urban areas coincides with the decline in maximum
and minimum temperatures (Fig. 3), suggesting a cooling urban
effect caused by enhanced evapotranspiration (4, 27). Appar-
ently, the UHI is very complicated and site-dependent.

We also calculate the correlation coefficients like Fig. 4 a and
b for other seasons and find that winter is the most reliable
season to estimate the UHI effect in China (see more in the
supporting information), consistent with (i) the relationship
between changes in DTR and those in percentage urban, (ii) the
relationship between trends in minimum temperature and those
in NDVI, and (iii) the seasonal variations of the R-2 data quality
relative to the observational data. Our results also are consistent
with the UHI mechanisms (20, 21). Urban and rural areas may
differ in cloud cover and rainfall, and this difference should be
largest in summer, especially for a marked monsoon climate
country like China. Therefore, the UHI should be expected more
visible in winter than in summer when both clouds�rainfall and
UHI decrease DTR and thus cannot be differentiated in the
observations.

The impact of urbanization on climate over our study region
is computed by using the observed minus R-2 trend for mean

Fig. 3. Observed minus R-2 winter temperature trends (in °C per decade) in
southeast China from 1979 to 1998: maximum (a), minimum (b), and DTR (c).

Fig. 4. Relationship for the DTR trends (in °C per decade; Fig. 3c) versus the
increases in percentage urban (a) and the minimum temperature trends (in °C
per decade; Fig. 3b) versus summer greenness trends (per decade; Fig. 5) at
provincial level (b). The correlation coefficients and their significance level are
shown. The dashed line represents a least-squares fit.

Fig. 5. Summer NDVI trends per decade from 1982 to 1998.
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winter surface temperature averaged from the maximum and
minimum values. Our estimated warming of mean surface
temperature of 0.05°C per decade is much larger than previous
estimates (1–7) for other periods and locations, including the
estimate of 0.027°C for the continental U.S. (7). A recent study
by Li et al. (28) finds that most temperature time series in China
are affected by UHI, and they estimated the UHI over our study
region of �0.011°C per decade based on analyses of the rural–
urban differences in annual mean temperature for the period of
1951–2001. Because the present analysis is from the winter
season over a period of rapid urbanization and for a country with
a much higher population density, we expect our results to give
higher values than those estimated in other locations and over
longer periods. Therefore, our estimates do not represent the
urbanization effect globally, nor do they represent the average of
all seasons over the past 100 years for which station temperature
data are available.

Some uncertainties may still remain in our estimates, such as
the previously discussed nonclimatic effects. To estimate such
effects over our study region, we use the original and homoge-
neity-adjusted annual mean temperature data (28) to compute

the difference in temperature trend before and after the adjust-
ments (see more in the supporting information). The regional
average difference is 0.002°C per decade, indicating a minimal
effect on our estimated UHI. Considering the complexity of the
UHI that involves many nonurban impacts, such as incomplete
adjustments of data inhomogeneity (9, 15), clouds (4, 13),
aerosols (29) (which are largest during spring), and changes in
solar radiation and insolation duration (30, 31), our results
should be interpreted as illustrative rather than definitive.
However, this study draws attention to an important issue that
requires further investigation. We need to better characterize the
system with observations and better describe and model the
complex processes involved. This article is a first step in the
development of a quantitative basis for assessing the conse-
quences from temperature of land-use change associated with
Chinese urbanization.

We are grateful to reviewers for their constructive suggestions that
have improved this manuscript significantly. This study was supported
by National Aeronautics and Space Administration Earth Science
Enterprise.
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Supporting Text

Chinese Meteorological Station Network

The Chinese observed land-surface air temperature data set includes measurements from

731 meteorological stations from 1951 to the present, as collected and processed by the

National Meteorological Center of the China Meteorological Administration (1, 2).

Because some stations were removed, the actual total number of stations in operation

today is 671, distributed among 31 provinces and municipalities. Fig. 6 shows the district

map of these provinces and municipalities, and Fig. 7 shows the location and topography

of these stations. In this study, we use the monthly mean daily maximum and minimum

temperature data (1) from the 610 stations that have a complete set of observations for the

period from January 1979 to December 1998.

China, with a population of ≈1.3 billion and an area of 9.6 × 106 km2, has a complex

topography. Its terrain descends gradually from west to east like a staircase, with the

towering Tibetan plateau called the “roof of the world” to the west and the flat and fertile

plains to the eastern coast of the Pacific Ocean. From north to south, the elevation drops

from 1,000–2,000 m of the Inner Mongolia Plateau to <200 m of southeast China. This

varied topography is associated with a large gradient in climate. China has a marked

continental monsoon climate, with cold and dry winters and hot and humid summers,

especially in southeast China. Northerly winds prevail in winter, whereas southerly winds

reign in summer. The warm and moist summer monsoons from the oceans bring abundant

rainfall and high temperatures to most of China. Annual precipitation varies greatly from

<50 mm in Northwest China to ≈3,000 mm in southern China (1).

Problems in Estimating UHI Effects by Using Observational Data

The UHI effect has been estimated by using in situ observations around the world, mostly

by comparing observed temperatures in urban stations with those from surrounding rural

stations (3, 4). The estimated UHI varies significantly by region, time, and method. In the



U.S., the estimated UHI varies from 0.06°C to 0.15°C per century, depending on whether

population data or satellite measurements of night lights are used to classify urban versus

rural stations (5, 6). In contrast, Peterson (4) finds that the UHI has no significant impact

on temperature in the U.S. after observed temperatures are adjusted for inhomogeneities

caused by “nonclimatic” factors such as changes in location (altitude and latitude),

observation time, instrumentation, and nonstandard siting. These nonclimatic factors

could introduce artifacts in long-term observations and rural–urban differences and thus

may bias the estimate of UHI. The lack of an UHI effect may be caused by micro- and

local-scale impacts overwhelming the mesoscale UHI. Industrial sections of towns may

well be significantly warmer than rural sites, but urban meteorological observations are

more likely to be made within cool “park islands” than industrial regions (4). Evidently,

the UHI is more complex than usually considered.

Using temperature differences between urban and rural stations to estimate the UHI effect

in China may be inappropriate (7) for several reasons. First, most Chinese stations are

located in or near cities, with only a few in mountainous or remote regions or on small

islands. For example, the China’s Fifth (2000) Census indicates that only 27% of Chinese

meteorological stations have a permanent urban population <10,000, and these stations

are located mostly in west China [Q. Li (China’s National Meteorological Center)

personal communication]. Although China is comparable in size to the U.S., it has

considerably fewer meteorological stations and each city generally has only one station.

For example, China’s two biggest cities, Beijing and Shanghai, each has only one station

available in the Chinese network. Kalnay and Cai (8) used nearly 2,000 meteorological

stations for the continental U.S. in their study. It is impossible to find a corresponding

rural station for most of the urban ones, especially in eastern and southern China.

Consequently, if using the rural–urban difference to estimate the UHI, one possibly is

comparing temperature between two different urban stations at regional scales or between

two different regions at large scales. For this reason, Li et al. (7) divided China into five

subregions and estimated their UHI effect separately. Furthermore, adjusting spatial and

temporal homogeneities for in situ observations in China may inadvertently sacrifice the

UHI effect because the adjustments often are performed by comparing a target station



with its neighbors that generally are also urban stations and relatively far away. Second,

China’s rapid urbanization in the past two decades could transfer a station from rural into

urban in a very short period. The continuous expansion in urban population and area

makes the classification of urban versus rural station dynamic. Third, Chinese cities have

a much higher density of population and urban buildings than do cities in most developed

countries. Cities in the U.S. extend many kilometers to suburban areas where people

reside and that can have as much vegetation as rural areas, whereas Chinese cities have a

significantly higher density of population, residential buildings, shopping malls, schools,

roads, etc., and much less vegetation than their neighboring rural areas do because people

live within cities. These unique characteristics could make the UHI effect more

pronounced in China than in other countries like the U.S.. For example, after the

homogeneity adjustments to China’s mean surface temperature, Li et al. (7) find that

most Chinese temperature time series are inevitably affected by UHI.

Homogeneity Assessment of Observational Data

The central problem with any long-term analysis of climate data is that inhomogeneities,

which are caused by several factors such as changes in location, observing practices,

instrumentation, and nonstandard siting (4, 9, 10), could introduce large biases in the data

and thus lead to inaccurate or erroneous conclusions. Several techniques have been

introduced to remove these factors (9). They generally compare a reference series against

a candidate time series to test for inhomogeneities. The reference series is created by

using neighbor stations to establish an ideal, completely homogenous series. The

candidate series then is adjusted by comparison with this reference series. Currently, the

Global Historical Climatology Network (GHCN) (11) and the U.S. Historical

Climatology Network (USHCN) (12) are two homogeneity-adjusted time series at large

scale for long-term climate analysis. However, the GHCN data set could not be used in

this study because most of the data between 1979 and 1998 are not available over China.

Recently, Li et al. (2) adopted the Easterling–Peterson (E-P) techniques (12) to test

Chinese meteorological observations for inhomogeneities in historical mean surface air



temperature series from 1951 to 2001. The results indicate that the time series have been

affected greatly by inhomogeneities due to the station relocation and other nonclimatic

effects. Based on the amplitude of changes in the first difference of the time series and

the monthly distribution features of surface air temperatures, discontinuities identified by

applying the E-P technique supported by China’s metadata, or by comparison with other

approaches, have been adjusted. The inhomogeneity testing detects most nonclimatic

changes and indicates that the adjusted data has been largely improved in its reliability

and could help decrease uncertainties in the study of observed climate change in China.

Here we cannot make the same adjustments to the maximum and minimum temperature

time series used in this study because the China’s National Meteorological Center does

not allow foreign scientists access to the required metadata. Instead, we use the latest

homogeneity-adjusted mean surface temperature data set of Li et al. (2) to assess the

magnitude of nonclimatic effects in China. Fig. 8 shows the total number of main

discontinuities in the annual mean air temperature for each station during the period

1951–2001 due to station relocations and other nonclimatic effects. Most discontinuities

are located in north and west China, with only fewer in southeast China, and some

stations have up to six discontinuities. Fig. 9 illustrates the long-term trends of annual

mean temperature before and after the adjustment. Significant adjustments are observed

in Qinghai, North China, Tibet, and Sichuan. Evidently, the homogeneity adjustments are

minimal in southeast China.

Quality Assessment of R-2 Data

Kalnay and Cai (8) estimate the impacts of urbanization and other land-use changes on

climate based on the difference in surface temperature trends between meteorological

observations at 1,982 surface stations in the continental U.S. and NCEP/NCAR

Reanalysis (R-1) (13). The R-1 uses the most extensive observations available from a

variety of sources including ship, rawinsonde, pibal, aircraft, and satellite, etc., to

assimilate these data with an assimilation system kept unchanged. The R-1 data are

strongly influenced by atmospheric vertical soundings of wind and temperature, and



surface temperatures are estimated from the atmospheric values (surface observations of

temperature, moisture, and wind over land are not used) and thus are insensitive to

changes in land surface (8). Therefore, the differences in surface temperature trends

between meteorological observations and R-1 are postulated to represent the impacts of

urbanization and other land-use changes on climate.

This method assumes that the quality of R-1 surface air temperatures is satisfactory. One

known deficiency with R-1 data is its poor performance in the description of cloudiness

and surface moisture, which could bias the computation of the surface energy budget and

thus surface air temperature (14, 15). Increased cloud cover is linked with the worldwide

decline in DTR, and increased soil moisture could reduce DTR through enhanced

evapotranspiration (14–16). Consequently, differences in clouds and soil moisture

between observed and R-1 data could contaminate the UHI estimate. The second

deficiency with R-1 data is its poor performance over mountainous regions (8). The

model of R-1 has a spatial resolution of 2.5° and thus uses a land-surface boundary that is

smoother than reality. This smoothing could introduce large biases in the model’s altitude

or land-surface properties relative to the actual meteorological stations and thus in the R-

1 temperatures over mountainous areas with varied topography. Vose et al. (10) and

Peterson (4) point out the lack of inhomogeneity adjustments in the observational data in

the study of Kalnay and Cai (8). Trenberth (15) argues that the R-1 does not include

effects of changing atmospheric composition such as greenhouse gases and aerosols on

radiative forcing, but Cai and Kalnay (17) have shown in their reply that the R-1 data are

able to capture the full strength of climate trends because the reanalysis assimilates

atmospheric temperatures and other observations that are affected by the greenhouse

gases and aerosols.

Here we adopt the method of Kalnay and Cai (8) to estimate the impact of urbanization

and other land-use changes on climate in China but pay more attention to the

aforementioned problems. We choose the NCEP/DOE AMIP-II Reanalysis (R-2) (14)

covering 1979–present at spatial resolution of ≈1.9° instead of R-1. Although based on

the widely used R-1, the R-2 has improved its quality by featuring newer physics and



observed soil moisture forcing and also by fixing known errors of R-1. For example, the

soil wetness evolution is treated completely differently in R-2 than in R-1, and a new

cloudiness-relative humidity table is generated to fix the errors in R-1. Consequently, the

R-2 should more accurately characterize soil moisture, cloud, and near surface

temperature over land (14).

One way to evaluate the accuracy of R-2 data is to compare the time series of monthly

maximum and minimum temperature anomalies with observed data. We calculate the

correlation coefficient between the two data sets for both maximum and minimum

temperatures for all stations. If the R-2 captures well the observed surface temperature

variations due to changes in weather systems, they should be highly correlated. Fig. 10

shows the spatial pattern of correlation coefficients between the R-2 and observed time

series of maximum and minimum temperatures. Evidently, the correlation coefficients are

greatest for southeast China, followed by north China, whereas west China has the

smallest correlation coefficients. This pattern corresponds with China’s topography. The

smallest correlation is observed at some stations in Tibet, Sichuan, and Yunnan

provinces, where the topography is highly variable. Similar results also are found for

several stations located on high mountains or islands in east China. These results suggest

that the quality of the R-2 data need to be checked before it can be used in climate

studies.

Choosing Our Study Region

To ensure the reliability of our analyses, we choose our study region carefully based on

the quality, reliability, and homogeneity of the observational and R-2 data as described

above. Our study region should have the smallest nonclimatic effects in the observations

and the highest correlation coefficients between the observed and R-2 data. It also should

include the area where most of China’s urbanization has occurred. China has experienced

a slow urbanization due to its special political, social, and economic circumstances before

its reforms in 1978 (18). Since then, its rapid urbanization has been very inhomogeneous



and occurred mainly in southern and eastern provinces, with the fastest economic growth

near the Yangtze and Pearl River deltas (19).

Evidently, these requirements are satisfied by southeast China. This region includes

twelve provinces (Anhui, Guangdong, Guangxi, Jiangsu, Jiangxi, Henan, Zhejiang,

Hubei, Hunan, Fujian, Guizhou, and Hainan) and two municipalities (Shanghai and

Chongqing). We eliminated the Hainan province from this study, which consists of

islands surrounded by oceans, and several stations located on mountains and small

islands in other provinces for two reasons. One is the difference in altitude and land-

surface properties between the coarse resolution R-2 data and the observations. The

second is that the size of some islands is smaller than that of NDVI pixels (64 km2),

which have observations only over land. Consequently, we focus our study on southeast

China (20°N–36°N, 102°E–123°E), consisting of 194 spatially well distributed stations

and representing an area where most of China’s urbanization has occurred (18). This

region has (i) the highest meteorological station density; (ii) the most uniform station

distribution; (iii) the minimal nonclimatic effects; and (iv) the best consistency between

the observed and R-2 data in China.

Following Kalnay and Cai (8), we also test the sensitivity of the R-2 data to urbanization

by comparing the annual mean temperature trends between urban and rural stations

classified based on population data. Because only cities with populations larger than

100,000 are available from the China’s Fourth (1990) Census (United Nations,

Population of Capital Cities and Cities of 100,000 and More Inhabitants: China,

available online from http://unstats.un.org/unsd/citydata/default.asp?cid = 157), we adopt

a threshold of 100,000 instead of 50,000 or less, a criterion that is often used to

differentiate between an urban or nonurban station (5, 6, 20, 21), to classify all 194

stations into two categories: 109 (rural) and 85 (urban). The annual mean temperature

trend (in °C per decade) and its standard deviation are 0.27 ± 0.23 for rural stations and

0.30 ± 0.21 for urban stations in the R-2 data. In the observations, the corresponding

values are 0.32 ± 0.21 and 0.39 ± 0.21, respectively. The rural–urban difference is

http://unstats.un.org/unsd/citydata/default.asp?cid


statistically significant at the 5% level for the observations (0.07) but insignificant for the

R-2 (0.03), indicating small sensitivity of the latter to UHI.

As discussed previously, using the rural–urban temperature difference may be

inappropriate to estimate the UHI in China. For example, the above estimated rural–urban

difference in the observational data may not represent the UHI effect because the

majority of urban stations classified above are located in the coastal provinces, whereas

most of the rural stations are located in the northwestern provinces. In other words, it

may represent the temperature differences between the two regions rather than the

differences between urban stations and their rural counterparts.

Seasonal Variations in Observed and R-2 Temperature Trends

Although the R-2 data are based on a better description of cloudiness and soil wetness,

some uncertainties may still remain regarding the complexity of China’s topography and

climate. We examine the consistency of R-2 and observational data over our study region

by season: winter (December–February), spring (March–May), summer (June–August),

and autumn (September–November). Fig. 11 shows the histogram for the correlation

coefficient between the R-2 and observed data for both maximum and minimum

temperatures by season. Evidently, the R-2 shows the best consistency with the

observational data during winter, followed by autumn, spring, and summer. The weakest

consistency in summer indicates that the R-2 temperatures may be still biased by its

incomplete cloud and soil moisture description. These results imply that the winter R-2

data will generate the most reliable estimate for the UHI effect.

The UHI effect in China is largest during spring based on analyses of in situ observations

by using the rural–urban differences [Q. Li, (China’s National Meteorological Center),

personal communication], but spring corresponds to the largest aerosol effect (22).

Therefore, we use the winter temperature data to estimate the urbanization effect on

climate in China. Winter is also the season when the effects of clouds and soil wetness

are smallest for observational data. Increased cloud cover has been linked with the



worldwide decline in DTR (16). Urban and rural areas may differ in cloud cover and

rainfall, and this difference should be largest in summer, especially in a marked monsoon

climate country like China. Therefore, the UHI should be expected to be more visible in

winter than in summer when both clouds/rainfall and UHI decrease DTR and thus cannot

be differentiated in the observations.

To estimate the magnitude of the nonclimatic effects over our study region, we use the

original and homogeneity-adjusted annual mean temperature data of Li et al. (2) to

compute the difference in temperature trends for the period of 1979–1998. Our estimate

is 0.002°C per decade, indicating the average nonclimatic effect over our study region is

small although the homogeneity adjustments could be large for a specific station. This

small effect may be, in part, attributed to two factors: (i) calibrations are made to most

Chinese stations when they are relocated; and (ii) the relocations will not produce large

differences in altitude and thus in temperatures due to the small variation in elevation

over our study region. These results suggest that using the unadjusted data in southeast

China will not introduce significant biases.

We also calculate temperature trends and their relation with changes in percentage urban

and NDVI for other seasons. Figs. 12–15 show the observed minus R-2 trends for

maximum, minimum, and DTR for spring, summer, autumn and annual mean. Table 1

lists seasonal and annual mean temperature trends for the observations, R-2, and their

differences. Evidently, the R-2 data for mean temperature has a much smaller trend

during summer than in other seasons, resulting in a significant observed minus R-2 mean

temperature trend. Table 2 lists the correlation coefficients between changes in

percentage urban and observed minus R-2 trends in seasonal and annual DTR trends

during the period of 1979–1998. The urban index (i.e., percentage urban) shows the

largest correlation with changes in the DTR in winter, followed by autumn, spring, and

summer. This ranking is consistent with that in the R-2 data quality in Fig. 11. Table 3

lists the correlation coefficients between summer NDVI trends and observed minus R-2

trends in seasonal and annual mean temperatures during the period of 1979–1998.



Variations in NDVI show the highest correlation with the minimum temperature, as

reported in Gallo and Owen (23).
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