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[1] This paper analyzes MODIS 1 km albedo kernels of 7
spectral bands over Northern Africa and the Arabian
Peninsula and through these kernels develops a new high
quality dataset that provides a simple statistical method to
scale up spectral and broadband albedos from pixel to
arbitrary coarse resolution grid square for use in climate
models. This dataset significantly improves characterization
of spatial and spectral variability and solar zenith angle
dependence of soil albedo relative to simple grid means
from MODIS data. The statistical method based on
minimum noise fraction rotation transforms is able to not
only successfully capture most of the MODIS albedo
variance but also to extract large-scale spatial structures of
albedo patterns from the original MODIS data while
improving the data quality and reducing the number of
parameters needed to represent the data. Citation: Zhou, L.,

R. E. Dickinson, and Y. Tian (2005), Derivation of a soil albedo

dataset from MODIS using principal component analysis:

Northern Africa and the Arabian Peninsula, Geophys. Res. Lett.,

32, L21407, doi:10.1029/2005GL024448.

1. Introduction

[2] Albedo determines the amount of solar radiation
absorbed by the Earth’s surface and thus surface fluxes
and climate [Dickinson et al., 1993]. Current climate models
generally represent the land surface albedo by two-stream
approximations for vegetated surfaces and by a limited
number of prescribed values for non-vegetated surfaces.
For example, the recently developed Common Land Model
[Zeng et al., 2002] and NCAR Community Land Model
[Bonan et al., 2002] specify bare soil albedos by 8 soil
colors globally from dark to light. Each soil color has
prescribed albedos that assume a near-infrared to visible
albedo ratio of 2 and are independent of solar zenith angle
(SZA).
[3] Such simple representation produces the largest

albedo biases over Northern Africa and the Arabian
Peninsula in climate models [Zhou et al., 2003; Oleson et
al., 2003; Tian et al., 2004]. Soils, sands, and rock are
typically classified as a single land cover type. However,
the solar shortwave diffuse albedos vary by a factor of about
2.5 from the darkest volcanic terrains to the brightest sand
sheets [Tsvetsinskaya et al., 2002]; the ratio of near-infrared
to visible albedos observed in MODIS over deserts is in
the range 1.6 to 2.7 [Zhou et al., 2003]; and soil albedos
increase significantly with SZA [Wang et al., 2005].
[4] Satellites provide information of global spatial sam-

pling at regular temporal intervals and thus can be used to

characterize the model albedo more accurately. Standard
treatments that use satellite data spatially average their
values from high-resolution pixels to lower-resolution model
grids. Can we characterize spectral and spatial variations and
SZA dependence of soil albedos with more detail than by
simple grid means from the latest MODIS albedo products
for use in coarse resolution climate models? To provide such
a characterization, this paper analyzes MODIS 1 km albedo
kernels of 7 spectral bands over Northern Africa and the
Arabian Peninsula and through these kernels develops a
new dataset that provides a simple economical way to
scale up albedos from pixel to arbitrary coarse resolution
grid square.

2. Data Processing and Methods

[5] We use the MODIS 1 km albedo product (MOD43B1,
Level V004) that consists of 7 spectral bands over our study
region for the period of 2000–2005. The MODIS albedo
algorithm adopts a semiempirical, kernel driven linear
Bidirectional Reflectance Distribution Function (BRDF)
model to best characterize the anisotropy of the global
surface. For each of the MODIS spectral bands, the BRDF
model relies on the weighted sum of three kernels that are
retrieved from the multidate multiangular cloud-free atmo-
spherically corrected surface reflectances. These kernels can
be used to compute direct beam albedos at any given SZA
and diffuse albedos based on simple cubic polynomials of
SZA [Schaaf et al., 2002]. Kernels for three broadband
albedos, 0.3–0.7 mm (visible), 0.7–5.0 mm (near-infrared),
and 0.3–5.0 mm (shortwave) as used in climate models can
be easily obtained through simple spectral to broadband
conversions [Liang et al., 1999].
[6] The MODIS albedos represent the best quality

retrieval possible over each 16-day period and quality
assurance values (QA) are attached to the data. The QA data
can be used to tell whether or not the data are of good quality.
To ensure the best quality used in this study, we average only
the pixels flagged with ‘‘good quality’’ QA (bits 0�7) in all
7 spectral bands over dust-free periods from November
through January between 2000 to 2005 to generate a
climatology of albedo kernels. Because vegetation is hetero-
geneous and varies seasonally, vegetated pixels are removed
from this study according to the MODIS 1 km land cover
map [Friedl et al., 2002]. The resulting 1 km image consists
of 13,653,383 barren pixels and each pixel has 21 kernels
(3 kernels by 7 spectral bands).
[7] Our objective is to generate a high quality albedo

dataset in a simple economical way that is useful for climate
models. The albedo measurements provided by MODIS
can be highly redundant because multispectral data bands
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are often highly correlated and MODIS BRDF kernels are
not orthogonal. They contain noise due to residual atmo-
spheric effects and uncertainties and errors from observa-
tions and retrievals. Consequently, MODIS data can be
made more useful with further statistical analysis. MODIS
data can be modeled statistically by dividing into spatial
patterns of large-scale, local-scale and noise. How such a
division is made depends on the spatial resolution needed
and how much detail one wants to characterize at such
resolution. For coarse resolution climate models that
typically have resolution from about 100–200 km, we
may regard some local-scale variations as noise that is
discarded to capture larger-scale albedo patterns.
[8] Here we use minimum noise fraction (MNF) rotation

transforms to extract spatial structures, segregate noise, and
reduce the dimensionality of the MODIS data using ENVI
[Research Systems, Inc., 2004]. The MNF transform is
essentially a sequence of two Principal Components Trans-
formations (PCTs). ENVI assumes that the data for each
pixel consists of signal and noise and that adjacent pixels
contain the same signal but different noise. Because the
noise of MODIS data is unknown over the study region, a
‘‘most homogeneous’’ subregion is chosen and a shift
difference is performed over this subregion by differencing
adjacent pixels to the right and above each pixel and
averaging the results to estimate a spectral noise covariance
matrix. The first PCT, based on the obtained noise matrix
and applied to the entire image, decorrelates and rescales the
data such that the transformed data has a noise with unit
variance. The second PCT rotates the noise-whitened data to
produce uncorrelated output bands by finding a new set of
orthogonal axes that have their origin at the data mean and
for which the data variance is maximized. The resulting
uncorrelated MNF bands are linear combinations of the
original spectral bands. The first MNF band contains the
largest percentage of data variance (referred to as eigen-
value) and the highest spatial coherence; the second MNF
band contains the second largest eigenvalue and second
highest coherence, and so on, and the last MNF band is

noise-dominated and has the least variance. Therefore,
inversion of the MNF transform using only the coherent
bands provides a noise-filtered dataset.
[9] Figure 1 shows the cumulative percentage of eigen-

values for the MNF transforms, with the first 4 (10) MNF
bands explaining 94.6% (99.5%) of the total variance of
MODIS data over the study region analyzed. Evidently,
the first several MNF bands are sufficient to represent the
large-scale spatial patterns of albedos in climate models.
Further analysis focuses on the first 7 MNF bands that
explain 98.5% of the total variance. The amplitudes of
these bands at 1 km are stored for further aggregation.
[10] We develop a new dataset for use in both regional

and global climate models that provides a set of grid mean
amplitudes by spatially averaging the 1 km MNF ampli-
tudes for each model (square) grid cell at spatial resolution
from 0.5� to 5� with an interval of 0.5�. For each
resolution, seven MNF composites, i.e., between MNF
band 1 to MNF band n, where n = 1, 2,. . ., 7, is
considered in this dataset to provide an option to choose
albedo patterns at various spatial scales. For example, one
can use all the 7 MNF bands to represent all the large-
scale albedo patterns or the first 3 MNF band to represent
only continental scale albedo structures depending on
spatial resolution and how much detail needed at such
resolution as previously discussed. Since the grid mean
amplitudes from the MNF data are anomalies relative to
the MNF band means (a single value per band), a simple
linear transformation (i.e., an inverse MNF transform) is
needed to generate kernels with the absolute values for the
MNF data that are used to calculate spectral and broad-
band albedos as done in MODIS [Schaaf et al., 2002].
Note that our dataset is derived for dry soil. A climate
model in addition would include a dependence of soil
albedo on soil moisture.
[11] We also create an alternative but similar dataset for

square grids at 10 km resolution that allows further
aggregation into any coarser model resolution. A 10 km
grid is fine enough to maintain the pixel information and
coarse enough to be easily scaled up to coarser resolution
model grids. Our statistics indicates that the grid mean
values aggregated from 1 km data differ little from those
aggregated from the 10 km data (see more discussion in
Section 3).
[12] We quantify the performance of our new dataset in

characterizing spectral and spatial variability and SZA
dependence of soil albedo at four coarse resolution
(square) grids of 50, 100, 150, and 200 km. For each
resolution, we create two grid means of 21 kernels for
each pixel following the above procedures, one from the
1 km MODIS data (referred to as the ‘‘MODIS based’’) and
the other from the 7 MNF bands (referred to as the ‘‘MNF
based’’), and calculate diffuse albedos and direct albedos at
SZA of 0�, 25�, 50�, 75� for 10 bands (7 MODIS spectral
bands plus 3 broadbands) as done in MODIS. The grid
mean albedos obtained directly from MODIS versus those
obtained from the 7 MNF bands are assessed using
ordinary least squares to quantify the proportion of the
total variance in MODIS data explained by the MNF
method (referred to as R2). For each band, seven R2 are
calculated for the MNF based albedos generated from the
MNF bands 1, 1–2, 1–3, 1–4, 1–5, 1–6, and 1–7,

Figure 1. Cumulative percentage of eigenvalues for the
MNF transforms. The percentage of eigenvalues for the
21 MNF bands is listed.
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respectively, which are denoted as R2(n), n = 1, 2,. . ., 7.
Here n is used as a threshold to represent how much detail
needed at a given resolution. As previously discussed, the
first several MNF bands have the highest spatial coherence
and represent the large-scale spatial patterns and thus R2

represents the spatially correlated variance and 1-R2 the
spatially uncorrelated variance. We assess the dependence
of R2 on spatial resolution and SZA. In total, there are
1400 values of R2 (4 resolutions by 10 bands by 7 MNF
composites by 4 direct albedos plus 1 diffuse albedo).

Direct albedos behave similarly to diffuse albedos and thus
are not shown for most cases here.

3. Results and Discussion

[13] Figures 2 and 3 show spatial patterns and scatter
plots of MODIS based and MNF based grid mean short-
wave diffuse albedos at 10 km resolution. Evidently, a few
MMF bands are able to capture most of the MODIS based
albedo variances at this (and lower) resolution but adding
more MNF bands captures yet more detailed albedo spatial
structures and thus increases R2. For example, the first MNF
band explains 86.7% of the MODIS variance and the first 7
MNF bands explain 99.9% of the variance at 10 km.
Figure 4 shows how R2 varies as a function of the number
of MNF bands, spatial resolution, and SZA for shortwave
diffuse albedo. It indicates that more correlated variance is
obtained by keeping more MNF bands or using a coarser
resolution grid. As expected, the relative contribution of
each MNF band to R2 significantly decreases as more
high-ranked MNF bands are included such that the con-
tribution after the MNF band 7 can be ignored (which is
why we use only the first 7 MNF bands). For the MNF
band 1 alone, R2 increases significantly as the resolution
becomes coarser but it varies little with resolution using
all 7 MNF bands because they characterize most of the
more local-scale albedo variations that are sensitive to
resolution. R2 decreases slightly as SZA increases but this
decrease is not very sensitive to resolution and the
number of MNF bands. The three kernels in MODIS
data have different magnitudes, with a larger value for the
isotropic kernels than that for the volumetric and geometric
kernels; thus normalizing these kernels will slightly increase
(decrease) the R2 values for larger (smaller) SZA because
both volumetric and geometric kernels determine the SZA
dependence of albedo.
[14] We list in Table 1 the R2 values of diffuse albedos for

the 7 MODIS spectral bands and 3 broadbands at two coarse
resolution grids of 50 and 200 km for 1 to 7 MNF bands.
The R2 shows a nonlinear relationship to the number of

Figure 2. Spatial distribution of grid mean shortwave
diffuse albedos obtained from MODIS and those obtained
from the MNF bands 1, 1–4, and 1–7, respectively, at
10 km resolution.

Figure 3. Scatter plots for MODIS based versus MNF
based grid mean shortwave diffuse albedos at 10 km
resolution. R2 represents the proportion of the total variance
in MODIS data explained by the MNF based method. There
are in total 151,520 grids.

Figure 4. R2 as a function of (left) the number of MNF
bands at resolution of 50, 100, 150, and 200 km, (middle)
spatial resolution for the MNF bands 1, 1–3, 1–5, and 1–7,
and (right) solar zenith angle for the MNF bands 1 and 1–7
at resolution of 50 and 200 km, for shortwave diffuse
albedos. R2 is defined as Figure 3.

L21407 ZHOU ET AL.: A NEW SOIL ALBEDO DATASET L21407

3 of 4



MNF bands as also seen in Figure 4. For example, R2 for the
shortwave albedo (band 10) at 50 km increases from 87.1%
for the first MNF band to 90.8% for the first 2 MNF bands
but only increases by about 0.5% from the first 6 MNF
bands to the first 7 MNF bands. For the fixed number of
MNF bands, R2 increases with decreasing resolution as also
shown in Figure 4. For example, if a single MNF band is
used, R2 for the shortwave albedo increases from 87.1% at
50 km to 89.3% at 200 km. In addition, the R2 values differ
somewhat among the 10 spectral and broad bands and
generally are larger for those with higher albedos. Since
the MODIS average spectral albedos generally increase with
wavelength, so do the R2 values.
[15] As previously mentioned, an intermediate dataset at

10 km is also generated to further scale up to any lower
resolution. The albedo biases produced from this dataset
relative to those directly from the 1 km data are negligible at
50, 100, 150, and 200 km resolutions. For example, the
largest albedo differences averaged over our study region
obtained using the MNF band 1 alone at 50 km resolution
are �10�4 (1.5, 2.8, 4.6, 5.5, 6.3, 6.5, 6.0, 2.8, 5.7, 4.3),
respectively, for the 10 spectral and broad bands shown in
Table 1.
[16] These results indicate that the MNF based specifi-

cation of MODIS albedo kernels can significantly im-
prove characterization of spatial and spectral variability
and SZA dependence of albedo beyond the simple soil
class related albedo scheme currently used in climate
models. Such improvements are more pronounced for
higher albedos, more MNF bands, and lower spatial
resolution. For coarser resolution models, fewer MNF
bands are needed.

[17] A compromise must be made between how much
detailed information is wanted versus how many MNF
bands are retained.
[18] Evidently, this study also provides a statistical

method that is able to not only successfully capture most
of the MODIS albedo variance but also to extract large-
scale spatial patterns from the MODIS albedos while
improving data quality and reducing the number of param-
eters needed to represent the data. The MNF bands can be
also used to predict soil albedos for MODIS pixels with
vegetation cover or missing data. For vegetated pixels,
MODIS observations contain the contribution from both
vegetation and its underlying soil while radiation models
need to know the soil albedo as a boundary condition.
Because vegetation is sparsely distributed over semi-arid
regions, it can be treated as a disturbance on the large-
scale patterns and these patterns can be used to interpolate
soil albedos for vegetated pixels or ones with missing data.
[19] Since current climate models use only grid mean

values of albedos while subgrid variability is not consid-
ered, reproducing grid means of albedos will be of greatest
priority to modelers as done in this study. However, a
corresponding dataset of grid variance for each model grid
cell is also attached to our new dataset for possible use in
describing the subgrid variability. Our further work will
explore some possible applications of this variability in
climate models.
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Table 1. R2 for Diffuse Albedos at Resolution of 50 km and

200 km

MODIS Number of MNFc

Banda ab 1 2 3 4 5 6 7

50 km
1 0.14 3748 8360 9467 9675 9667 9702 9992
2 0.24 5924 8667 9438 9948 9969 9967 9991
3 0.36 7922 8466 9013 9789 9896 9899 9983
4 0.44 8916 9295 9387 9947 9950 9968 9978
5 0.52 9649 9737 9876 9973 9974 9984 9986
6 0.56 9347 9404 9913 9980 9983 9984 9988
7 0.50 8370 8398 9659 9980 9980 9982 9993
8 0.23 6619 8494 9277 9847 9881 9886 9993
9 0.46 9084 9258 9603 9982 9982 9986 9992
10 0.34 8710 9079 9451 9919 9930 9943 9991

200 km
1 0.14 4316 8264 9527 9702 9691 9703 9993
2 0.24 6424 8689 9542 9957 9972 9971 9993
3 0.35 8260 8642 9229 9839 9913 9911 9986
4 0.44 9155 9437 9546 9956 9960 9973 9983
5 0.52 9703 9769 9912 9980 9981 9989 9991
6 0.56 9417 9455 9938 9987 9988 9990 9992
7 0.50 8512 8528 9753 9984 9984 9986 9995
8 0.23 7092 8559 9410 9871 9896 9895 9995
9 0.45 9226 9350 9713 9986 9987 9989 9994
10 0.34 8930 9191 9586 9937 9945 9951 9993
aSpectral/broad bands (mm): 1: 0.459–0.479, 2: 0.545–0.565, 3: 0.62–

0.67, 4: 0.841–0.876, 5: 1.23–1.25, 6: 1.628–1.652, 7: 2.105–2.155, 8:
0.3–0.7, 9: 0.7–5.0, 10: 0.3–5.0.

bGrid mean albedo, a, over our study region.
cR2 values are multipled by 10000.
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