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ABSTRACT: This paper uses the empirical orthogonal function (EOF) anal-
ysis to decompose satellite-derived nighttime land surface temperature (LST)
for the period of 2003–11 into spatial patterns of different scales and thus to
identify whether (i) there is a pattern of LST change associated with the de-
velopment of wind farms and (ii) the warming effect over wind farms reported
previously is an artifact of varied surface topography. Spatial pattern and time
series analysis methods are also used to supplement and compare with the EOF
results. Two equal-sized regions with similar topography in west-central Texas
are chosen to represent the wind farm region (WFR) and nonwind farm region
(NWFR), respectively. Results indicate that the nighttime warming effect seen
in the first mode (EOF1) in WFR very likely represents the wind farm impacts
due to its spatial coupling with the wind turbines, which are generally built on
topographic high ground. The time series associated with the EOF1 mode in
WFR also shows a persistent upward trend over wind farms from 2003 to 2011,
corresponding to the increase of operating wind turbines with time. Also, the
wind farm pixels show a warming effect that differs statistically significantly
from their upwind high-elevation pixels and their downwind nonwind farm
pixels at similar elevations, and this warming effect decreases with elevation. In
contrast, NWFR shows a decrease in LSTwith increasing surface elevation and
no warming effects over high-elevation ridges, indicating that the presence of
wind farms in WFR has changed the LST–elevation relationship shown in
NWFR. The elevation impacts on Moderate Resolution Imaging Spectroradi-
ometer (MODIS) LST, if any, are much smaller and statistically insignificant
than the strong and persistent signal of wind farm impacts. These results pro-
vide further observational evidence of the warming effect of wind farms re-
ported previously.

KEYWORDS: Wind farm impact; Empirical orthogonal function; Land
surface temperature

1. Introduction
Climate change is one of the most serious environmental issues of our time.

Wind power as an alternative clean energy source to fossil fuels supports envi-
ronmental sustainability and possibly provides part of the solution to our energy
security problem (Pacala and Socolow 2004; NRC 2007; Pryor and Barthelmie
2011). The use of wind power in the United States and other countries like China,
Germany, Spain, and India has experienced continuous growth in recent years.
Wind energy currently amounts to ;3% of U.S. electricity generation (AWEA
2012; U.S. DOE 2012) and could supply up to 20% of the total U.S. electricity by
2030 (U.S. DOE 2008). To generate this substantial amount of energy, wind farms
would have to install a huge number of wind turbines over a continental-scale area
(Wang and Prinn 2010; Fiedler and Bukovsky 2011).

Wind power depends on weather and climate, and wind farms, if large enough,
might also modify the weather and climate, at least in their immediate vicinity.
While converting wind’s kinetic energy into electrical power, wind turbines modify
surface fluxes of heat, momentum, moisture, and CO2 exchanges in the atmo-
spheric boundary layer (ABL) (Rajewski et al. 2013) and enhance turbulence in
their rotor wakes, thus increasing the vertical mixing within ABL (Baidya Roy and
Traiteur 2010). The net effect should be small and local for a limited number
of wind turbines but may become noticeable if hundreds or thousands of wind
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turbines are installed over a particular region. During the past few years a growing
number of numerical simulations using global and regional models with hypo-
thetical wind farms have generally agreed that wind farms can affect local to
regional weather and climate (e.g., Keith et al. 2004; Kirk-Davidoff and Keith
2008; Wang and Prinn 2010; Fiedler and Bukovsky 2011; Fitch et al. 2013).
However, these studies are primarily in the model domain, with limitations and
uncertainties due to the use of simple subgrid-scale wind turbine parameteriza-
tions and the lack of observations for validation.

Increasing scientific and public interests in assessing environmental conse-
quences of wind farms highlight the need to understand the detailed processes of
observed meteorological fields at wind farm/turbine scales (Rajewski et al. 2013)
and to develop the modeling capability to characterize wind turbine–atmosphere
interactions in numerical models. Doing so requires high-resolution observations
(in both space and time) over operating wind farms. However, the general structure
and functioning of wind farms, wind turbine parameters, and meteorological ob-
servations within wind farms are proprietary and thus not available to the public.
Furthermore, most wind farms are not within the synoptic weather observational
network, which makes the use of conventional meteorological data challenging.

The availability of high-resolution remote sensing data provides an observa-
tional approach to detect, quantify, and attribute wind farm impacts with spatial
detail. Satellite-derived land surface temperature (LST) measures the temperature
of Earth’s surface thermal emission. LST has a stronger day–night variation than
surface air temperatures from daily weather reports and thus is more sensitive to
changes in surface conditions (Jin and Dickinson 2002; Imhoff et al. 2010). Zhou
et al. (Zhou et al. 2012) find a nighttime warming effect over large wind farms in
west-central Texas using winter and summer mean LSTs derived from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS). Zhou et al. (Zhou et al.
2013) provides further observational evidence of this warming effect by analyzing
diurnal and seasonal variations of MODIS LST anomalies with more observations
under different quality controls.

The wind turbines in the study region of Zhou et al. (Zhou et al. 2012; Zhou et al.
2013) are generally built on mountain ridges that overlap with the reported warming
effect. This raises a critical question of whether this warming effect is an artifact
of topography. Mountains affect climate by changing the patterns of temperature,
wind circulation, and precipitation (Minder et al. 2010). While variations in ele-
vation, terrain slope, and aspect angles can interact with satellite viewing geometry
to cause biases in retrieved LSTs (Lipton and Ward 1997; Liu et al. 2009), only the
elevation effect and zenith angle changes were corrected in the routine retrieval in
the MODIS LSTs (Wan and Li 1997; Wan 2006). Hence, some residual topo-
graphic effects may still exist in the MODIS LSTs. Furthermore, using satellite
data to detect and quantify wind farm impacts is still in the exploratory stage. LST
variations over an operational wind farm contain not only the local wind turbine
effect but also the variability controlled by surface properties (Zhang et al. 2010;
Imhoff et al. 2010) and large-scale meteorological conditions (Zhou et al. 2012).
Separating the local versus regional- to large-scale variability of the MODIS LSTs
is crucial to uncovering the wind farm effect. To identify and quantify the wind
farm impacts, Zhou et al. (Zhou et al. 2012) simply use the areal mean LST dif-
ferences (i) between two periods and (ii) between wind farm pixels and nearby
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nonwind farm pixels, while the topographic effect on LST has to be assessed at
the pixel level. In addition, LSTs also contain uncertainties due to residual at-
mospheric effects and errors from observations and retrievals (Wan 2006).
Therefore, considering the significant implications of this finding, it is necessary to
use other approaches to verify that the reported warming effect over wind farms is
not an artifact of varied surface topography.

Here we use an empirical orthogonal function (EOF) analysis to explore the
structure of LST variability fromMODIS, identify the spatial patterns of variability
(EOF modes) and their time variations (EOF time series), and give a measure of the
‘‘importance’’ of each pattern. We choose EOF analysis for its potential to evaluate
the spatial pattern of LST changes. EOF determines a set of orthogonal functions
that characterizes the covariability of time series for a set of grid points. The degree
of spatial covariability may help uncover underlying processes of changes detected
by using satellite data (e.g., Zhou et al. 2001). Pixels with strong spatial covariance
reflect similar year-to-year LST changes. If changes in LST are due to variations of
surface topography, we would expect to see a high degree of spatial covariability
over regions with similar elevations. If LST variations are dominated by a ran-
domly distributed (in space) effect such as data noise, we would expect pixels to
show differences in LST variations that lack spatial coherence. If changes in LST
are due to the presence of operational wind turbines, we would expect a high
degree of spatial covariability over pixels with wind turbines. However, we realize
that MODIS time series might be too short to draw any definite conclusions based
on EOF analysis alone. Therefore, the approaches of spatial pattern and time series
analysis in Zhou et al. (Zhou et al. 2012; Zhou et al. 2013) are also used to sup-
plement and compare with the EOF results but with an emphasis on the topographic
effect at pixel level, which was not done previously.

The objective of this paper is threefold. First, it aims to find whether the EOF
approach can decompose the LSTs into spatial patterns of different scales and thus
help to identify whether there is a pattern associated with the development of wind
farms. Second, it serves as a detailed analysis to examine whether the warming
effect over wind farms reported by Zhou et al. (Zhou et al. 2012) is primarily due to
varied topography at pixel level. Third, it explores EOF as a different approach to
verify whether the results of Zhou et al. (Zhou et al. 2012) are robust.

2. Data and methods

2.1. Study region

We choose two equal-sized regions in west-central Texas that are close to each
other and share similar topography in terms of elevation, slope, and orientation of
terrain features, one with wind farms and the other without wind farms, which are
referred to as the wind farm region (WFR) and the nonwind farm region (NWFR),
respectively. The WFR (32.18–32.98N, 1018–99.88W; Figure 1) had 2358 wind
turbines installed by 2011, with;90% completed by 2008. The wind turbines are
identified geographically based on the database of the Federal Aviation Admin-
istration (FAA) (Zhou et al. 2012) and verified via Google Earth (Zhou et al.
2013). As there are several other wind farms near WFR, it is impossible to find an
NWFR without any wind turbines. Instead, we identify a region (30.58–31.38N,
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100.98–99.78W; Figure 1) to the south of WFR as NWFR that has 99 wind tur-
bines built in and after 2009. The presence of these 99 wind turbines is expected
to have a very limited impact on LST in NWFR because (i) the total number of
wind turbines is small and (ii) most of the wind turbines are likely operating only
in the last 1–2 years of the study period. WFR consists of four of the world’s
largest wind farms and has the highest concentration of wind turbines in west-
central Texas. Particularly, the majority of the wind turbines were built between
2005 and 2008, which makes it possible to use ;10 years of MODIS data. For
other wind farms near WFR, most wind turbines were installed recently, making it
too short to investigate their impacts on LSTs.

2.2. Data processing

The collection-5 MODIS 8-day-average 1-km LST images are aggregated spa-
tially and temporally into seasonal [December–February (DJF) and June–August
(JJA)] and annual (ANN) means and anomalies at 0.018 resolution for the period

Figure 1. Elevation (m) map of west-central Texas that contains WFR (upper box)
and NWFR (lower box) at spatial resolution of 30 arc-s (~1.0 km). Cluster
pixels in black with a plus symbol are wind turbines: 2358 in WFR (32.18–
32.98N, 1018–99.88W) and 99 (the inner rectangle) in NWFR (30.58–31.38N,
100.98–99.78W). The pixels in black with a plus symbol outside the inner
rectangle in NWFR are AWFPs.
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of 2003–11, as done by Zhou et al. (Zhou et al. 2013). The MODIS LST data have
been proven to be of high quality in a variety of studies (Wan 2006). The LST
images consist of four acquisitions (;1030 and;1330 local solar time at daytime
and ;2230 and ;0130 local solar time at nighttime) and have quality assurance
(QA) values for each image. For simplicity, we will not consider daytime LSTs and
QA information of MODIS LSTs in the present analysis because the impacts of
wind farms on LST (i) are too small to be detected at daytime and (ii) differ only
slightly under different QA controls (Zhou et al. 2013). We also combine the two
LSTs at;2230 and;0130 local solar time to produce one average nighttime LST
to reduce data uncertainties/noise and only consider the MODIS LSTs with a whole
year of data (Zhou et al. 2012). Furthermore, we show primarily the results of JJA
at nighttime when the wind farm impacts are largest but also supplement our
analysis with some results in DJF and ANN. DJF represents the season with the
least wind farm impact. In total, there are nine images (from 2003 to 2011) for
every season (DJF, JJA, and ANN) in each study region (WFR and NWFR) and
each image has 9600 pixels (120 columns 3 80 lines).

The wind turbines in WFR are generally built on mountain ridges, with an
average elevation of 749.1 6 21.4m based on the wind turbine site elevation data
of FAA (Figure 1). The 99 wind turbines in NWFR are also located in mountain
ridges (Figure 1). The global 30 arc-s elevation dataset (GTOPO30) global digital
elevation map with a horizontal grid spacing of 30 arc-s (;1.0 km) was down-
loaded online (from http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/
gtopo30_info). We reproject the elevation data into the 0.018 pixels as done for the
MODIS LSTs. In total, there are 890 pixels with at least one wind turbine, referred
to as wind farm pixels (WFPs), in WFR and 51 WFPs in NWFR at the 0.018
resolution (Figure 1). We plan to compare the LST changes of WFPs between
WFR and NWFR, but the sample size of the latter is too small and so we artifi-
cially designate some pixels as ‘‘wind farms’’ in NWFR following the elevation
histogram of real wind farms in WFR (Figure 2a). Among the 9600 pixels, we
choose 2276 with an elevation greater than 712m (.76th percentile) in WFR and
1920 with an elevation greater than 731m (.80th percentile) in NWFR as high-
elevation pixels. These pixels generally represent the site elevations of wind tur-
bines as 734 out of 890WFPs (i.e., 82.5%) belong to the 2276 high-elevation pixels
in WFR. Note that the wind turbines in WFR were mostly built over ridges whose
elevations are higher than their surroundings across the study region, not only over
the highest ridge pixels in the northwestern WFR (Figure 1). The 76th and 80th
percentile thresholds are chosen so that two groups of pixels defined in the next
paragraph will have a similar number of pixels and a similar elevation distribution
as the real wind farm pixels.

To resemble the real wind turbines over high elevations, we randomly choose
849 pixels from the 1920 high-elevation pixels in NWFR. To differentiate these
pixels from real WFPs, we refer to these 849 pixels plus 51 WFPs (in total
890 pixels) as artificial wind farm pixels (AWFPs) in NWFR (Figure 1). These
849 pixels are chosen randomly instead from a particular area because it is difficult
to justify the choice of one area over another. The presence of wind turbines will
have an effect on their downwind pixels. For WFR, we further choose 898 pixels
from the 2276 high-elevation pixels that are located in the upwind direction of wind
farms (i.e., in the east and south of WFPs) to exclude the downwind effect of WFPs.
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We refer to these 898 pixels as upwind wind farm pixels (UWFPs). Note that we
would prefer to choose exactly 890 UWFPs to match the 890 WFPs but there are
several pixels with the same elevation. At the 0.018 resolution, the average eleva-
tion is 738.36 27.5m for WFPs, 737.36 15.9m for AWFPs, and 741.66 19.4m
for UWFPs. WFR has a larger standard deviation because of its broader elevation
range than NWFR. The elevation histogram of WFPs, AWFPs, and UWFPs is
shown in Figure 2a.

Figure 2. (a) Histogram of surface elevation for all of the pixels and UWFPs, WFPs, and
AWFPs and (b) time series of regionalmean JJA nighttime LST anomalies (8C)
averaged over the entire study region in WFR and NWFR for the period of
2003–11.
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To quantify the wind farm impact, Zhou et al. (Zhou et al. 2012) compared the
LSTs of 890 WFPs with 1538 nearby nonwind farm pixels for WFR. For NWFR,
we randomly choose 1538 pixels around the 890 AWFPs following the elevation
histogram of the 1538 pixels in WFR as their corresponding nearby nonwind farm
pixels. At the 0.018 resolution, the average elevation for these 1538 pixels is
661.2 6 55.6 m in WFR and 661.7 6 14.8 m in NWFR.

2.3. Methods

The LST variations consist of two components: the background regional- or
large-scale variability signal (referred to as regional interannual variability) and the
subregional-scale variability. The former is much larger than the latter in magni-
tude and is irrelevant to wind farms. Particularly, the two study regions are small
and close to each other, and thus their pixels should share a similar background
signal. Figure 2b shows the regional mean JJA nighttime LST anomalies averaged
over the entire domain inWFR and NWFR, respectively, for the period of 2003–11.
The study regions exhibit strong year-to-year variations, with the coldest year in
2007 and the warmest year in 2011 when the historic Texas drought occurred
(Karl et al. 2012). Evidently, WFR and NWFR have gone through similar me-
teorological conditions from 2003 to 2011 and have been getting warmer since
2007. Because our analysis is interested in the variability on spatial scales smaller
than regional, we remove this background regional interannual variability signal
from the MODIS LSTanomalies created in section 2.2 for each LST image. In other
words, we subtract the same regional mean LSTanomaly (one value per image) from
the MODIS LST anomaly for every pixel in each year to emphasize the pixel-level
LST spatial variability. Note that the resulting LST change represents a change
relative to the regional mean value and is denoted as DLST.

Three different methods are used to quantify the topographic effect on LSTs
over our study regions. The first method (method I) applies a simple EOF analysis
to the MODIS DLSTs. The EOF method has been extensively used to analyze the
spatial and temporal variability of geophysical fields by decomposing the data into
a set of orthogonal basis functions (Bjornsson and Venegas 1997). Its goal is to
express the signal in terms of a relatively small number of EOFs to describe as
much of the original information as possible. The EOF modes show the spatial
structure of the major factors that can account for the temporal variations, which
represent spatial variability or ‘‘modes of variability.’’ The EOF time series tells
us how the amplitude of each EOF mode varies with time. The first few EOFs may
explain the majority of the data variance and thus the inversion of the EOF trans-
form using only the first few EOFs provides a noise-filtered dataset.

Note that, even though the EOF method breaks the data into modes of variability,
these modes are primarily data modes and not necessarily ‘‘physical modes,’’ and
whether they are physical is a matter of subjective interpretation (Bjornsson and
Venegas 1997). The first EOF mode would explain more than 94% of the total
DLST variance in WFR and NWFR if one simply performed the EOF analysis
using the MODIS LST anomalies. For this case, EOF1 would represent primarily
the climatology of DLSTand its time series would represent the regional mean LST
anomalies from 2003 to 2011 (as shown in Figure 2b). This explains why we remove
the background regional interannual variability signal from the MODIS LST
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anomalies as described above. One similar example for doing so is the removal
of the seasonal cycle of meteorological data before performing EOF analysis, as
this signal dominates everything else (Bjornsson and Venegas 1997).

The second and third methods (methods II and III) are adopted from the spatial
pattern and time series analyses over WFR in Zhou et al. (Zhou et al. 2012; Zhou
et al. 2013) but are used here as a new analysis of topographic effects on LST to
primarily supplement and compare with the EOF results over both WFR and
NWFR given the short record of the MODIS data. Method II simply calculates the
DLST differences at pixel level between two periods, 2009–11 and 2003–05 (the
last 3 years versus the first 3 years of data), and examines their spatial coupling
with wind turbines. This method is reasonable as there are only 111 wind turbines
in 2003 but 2358 in 2011 over WFR. Note that the DLST differences between two
individual years (2010 minus 2003) are also examined in Zhou et al. (Zhou et al.
2012) but will not be used here, as the results are similar to the differences between
the two periods. Method III quantifies the areal mean DLST differences between
WFPs (AWFPs) and their nearby nonwind farm pixels in WFR (NWFR) from 2003
to 2011, as done in urban heat island studies (Zhou et al. 2012). Zhou et al.
(Zhou et al. 2013) used three different approaches to quantify DLST but ob-
tained consistent results. Here we simply use one of the approaches, the total trend
(trend per year3 8 years of intervals) estimated from the least squares fitting, as the
number of operational wind turbines has increased with time since 2003.

3. Results and discussion
To understand how LST changes with varied elevation, we examine the spatial

patterns of the surface elevation and the JJA nighttime LST climatology over WFR
and NWFR. As expected, LST drops with elevation increase (Liu et al. 2009;
Minder et al. 2010) and so the valleys and plains are generally warmer than the
ridges and the lowest temperatures are observed in the highest elevations (figures
omitted for brevity). The spatial correlation coefficient between elevation and LST
is20.6 for WFR and20.46 for NWFR, which are statistically significant given the
large size of samples (p � 0.05; n 5 9600 pixels). The correlation is not close to
1 as spatial variations in land surface properties other than surface elevation (e.g.,
vegetation amount and type) also play a role in determining the climatology of LST.

The first three EOF modes explain more than 66.6% of the total DLST variance
for both regions: 29.1%, 22.4%, and 15.1% for WFR and 34.6%, 18.4%, and 13.8%
for NWFR. For WFR, there is a strong spatial coupling in EOF1 between positive
DLSTs and WFPs (Figure 3a), and the corresponding time series (more discussion
below) shows a persistent upward trend from 2003 to 2011. Positive DLSTs are
also seen in lower-elevation plain pixels in the northeastern part of WFR, but they
are much weaker in magnitude and spatially smaller than those in WFPs. For
NWFR, there is a weak spatial coupling between positive DLST and southern
lower-elevation valleys in EOF1 (Figure 3b), and the time series does not show an
evident trend from 2003 to 2009 (more discussion below). Negative DLSTs in
EOF1 are generally located over northern ridge pixels of NWFR (Figure 3b) and
the western part of WFR (Figure 3a). Overall, EOF1 and its time series show a
warming effect over higher-elevation WFPs in WFR but over lower-elevation
valleys in NWFR. EOF2 and EOF3 in WFR represent the spatial patterns of higher
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DLSTs over lower elevations in the northeastern and southwestern parts of WFR,
respectively, and their time series indicate a large interannual variation. There is no
spatial coupling between the wind farms and DLSTs in EOF2 and EOF3 (figures
not shown for brevity).

As mentioned above, the EOF modes are primarily data modes and not neces-
sarily physical modes. To further attribute the EOF1 mode and its time series to the
development of wind farms, we compared our results to those in Zhou et al. (Zhou
et al. 2012). We use method II to calculate the DLST differences (2009–11 minus
2003–05 averages) over WFR (Figure 3c) and NWFR (Figure 3d). The spatial
coupling between the warming effect and the wind turbines is evident in Figure 3c
and this coupling is well captured by the EOF1 mode (Figure 3a), while there are
no warming effects related to topography over NWFR in both Figures 3b and 3d.
In general, EOF1 captures the major variations of DLST, as also indicated by the
percentage of variance explained. If the warming effect of WFPs in EOF1 over
WFR was an artifact of topography, we would observe a similar warming effect of
AWFPs in EOF1 over NWFR. Furthermore, unlike EOF1 in WFR, EOFs 2 and 3 in

Figure 3. EOF1 of MODIS JJA nighttime DLST (8C) in (a) WFR and (b) NWFR for the
period of 2003–11 and differences (2009–11 minus 2003–05 averages) of
MODIS JJA nighttime DLST (8C) in (c) WFR and (d) NWFR. Pixels with a plus
symbol are WFPs in WFR and AWFPs in NWFR. Note that (c) and Figure 2a
differ slightly from Figure 2a of Zhou et al. (Zhou et al. 2012), as the latter
was calculated from the JJA LST means.
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WFR and EOFs 1 and 2 in NWFR generally show negative DLSTs over higher
elevations, consistent with the observational decrease of temperature with altitude
(Liu et al. 2009; Minder et al. 2010).

Next we examine how the DLST vary as a function of surface elevation within
pixels. All of the 9600 pixels in the two study regions are divided equally into 10 bins
in terms of surface elevation, with each bin having ;960 pixels. Note that some
bins may have several pixels more or less than 960 because not every pixel has a
different elevation. For each bin, we also consider two subgroups (WFPs and
UWFPs) in WFR and one subgroup (AWFPs) in NWFR, if there are more than
50 pixels present for each subgroup. The corresponding box-and-whisker chart of
EOF1 in WFR (Figure 4a) indicates that the minimum, 25th percentile, median,
and 75th percentile DLSTs are always larger than those of pixels in similar ele-
vation bins, suggesting a warming effect over WFPs relative to their similar sur-
roundings. However, EOF1 of NWFR (Figure 4b) shows similar DLSTs in both
AWFPs and other pixels with similar elevation bins, suggesting no differences
between AWFPs and their similar surroundings. Also, it is interesting to note that
the DLST generally decreases with elevation for all of the 10 bins in NWFR and
also for an elevation lesser than 700m in WFR. However, the DLST increases with
an elevation greater than 700m with the presence of wind turbines in WFR. This
increase in WFR differs from NWFR and overlaps with the elevations where the
wind farms are built, mainly because of the downwind effects of wind farms over
pixels that are close to wind farms but have no wind turbines (Figures 3a,c). This
can be seen clearly from the DLST changes in UWFPs (Figure 4a). Figures 4c and
4d illustrate the corresponding box-and-whisker chart of the DLST differences
between the averages of 2009–11 and those of 2003–05 as a function of elevation
for WFR and NWFR using method II. Again, WFPs are generally associated with
higher elevations and their DLSTs are often warmer than other pixels with similar
elevations in WFR while AWFPs correspond to higher elevation but lower DLSTs
in NWFR. The similarities between Figures 4a and 4c and between Figures 4b and
4d indicate that our results from the two different methods are robust.

Zhou et al. (Zhou et al. 2012; Zhou et al. 2013) found that the warming effect
over wind farms is the smallest in DJF and the strongest in JJA over WFR. Here we
apply the EOF analysis (method I) to DJF and ANN and examine how DLST
changes with elevation as done in Figure 4. For EOF1 in WFR, there is an increase
in DLST in DJF with elevation, which differs from JJA, and the LSTs in WFPs are
only slightly higher than other pixels with similar elevations (Figure 5a). For EOF1
in NWFR, the DJF DLST decreases with elevation and the DLSTs differ little
between AWFPs and other pixels with similar elevations (Figure 5a). The DLST
differences between the averages of 2009–11 and those of 2003–05 (Figure 5b) are
similar to those in EOF1 (Figure 5a). As expected, the results of ANN show similar
features as those in JJA but with a smaller magnitude in terms of DLST changes.
Again, our two different methods (methods I and II) provide consistent results in
both WFR and NWFR.

Results of Figures 4 and 5 show that the DLST means between three subgroups
of pixels (WFPs, UWFPs, and AWFP) differ from their surroundings pixels with
similar elevations. Given the large variation of sample size among different groups
and different elevation bins, it is necessary to test (i) whether the DLST means
of WFPs differ statistically significantly from those of other pixels with similar
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elevations or from UWFPs in WFR and (ii) whether the DLST means of AWFPs
differ statistically significantly from those of other pixels with similar elevations in
NWFR. Table 1 lists the mean, standard deviation (STD), and pixel numbers of
each group of pixels for three elevation bins: 722, 742, and 806 in WFR and 731,
735, and 793 in NWFR. Evidently, WFPs differ statistically significantly at the 1%
level in their DLST means from their surrounding pixels with similar elevations

Figure 4. (top) Box-and-whisker chart of EOF1 of MODIS JJA nighttime DLST (8C) in
(a) WFR and (b) NWFR as a function of elevation (m) at pixel level. All the
pixels are divided evenly into 10 elevation bins. WFPs in WFR and AWFPs in
NWFR are in red and UWFPs are in green. For each elevation bin, if WFPs
and UWFPs are present, the chart in black represents all of the pixels for
each bin excluding WFPs in WFR. Similarly, if AWFPs are present, the chart
in black represents all of the pixels for each bin excluding AWFPs in NWFR.
(bottom) As in (top), but for the MODIS JJA nighttime DLST differences (8C)
(2009–11 minus 2003–05 averages).
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and from UWFPs for almost all of the 18 cases (3 elevation bins 3 3 seasons 3
2 methods). The only exception is the case for the highest-elevation bin (806m) in
DJF, which is expected as the wind farm impact is the weakest in DJF (Zhou et al.
2012). It is interesting to note that the DLST differences between WFPs and their
surrounding pixels with similar elevations or between WFPs and UWFPs become
smaller with the increase of elevation, which is also seen in Figures 4 and 5,
suggesting that the impact of wind farms decreases with elevation. In NWFR, the
DLST means of AWFPs are not different statistically from those of their sur-
rounding pixels with similar elevations for all of the 18 cases, even at the 10%
significance level.

Figure 5. (top) Box-and-whisker chart of MODIS DJF nighttime DLST (8C) in WFR and
NWFR from (a) EOF1 and (b) the differences (2009–11 minus 2003–05 av-
erages) using method II as a function of elevation (m) at pixel level. The
elevation bins and colors are defined as in Figure 4. (bottom) As in (top),
but for MODIS ANN nighttime DLST.
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Next we quantify the impacts of wind farms on DLST by estimating the total trend
(method III) for the areal meanDLST differencesDLST betweenWFPs (AWFPs) and
their nearby nonwind farm pixels for WFR (NWFR) as done in Zhou et al. (Zhou et al.
2012). Note that DLST contains the DLST change due to the differences in not

Table 1. Statistical significance of LST differences between the means of different
groups of pixels in WFR and NWFR.

WFR

Elevation bins

722 742 806

Pixel groups* Mean** STD Pixels Mean** STD Pixels Mean** STD Pixels

NWFPs 0.02 0.16 741 0.04 0.16 659 0.01 0.16 594 Figure 4a
WFPs 0.21 0.11 199 0.14 0.12 294 0.10 0.13 343
UWFPs 20.03 0.11 151 20.02 0.13 388 0.00 0.12 359
NWFPs 0.05 0.36 741 0.10 0.36 659 0.02 0.39 594 Figure 4c
WFPs 0.46 0.25 199 0.32 0.29 294 0.20 0.31 343
UWFPs 20.05 0.25 151 20.03 0.29 388 0.00 0.25 359
NWFPs 0.08 0.22 741 0.07 0.20 659 0.18 0.17 594 Figure 5a
WFPs 0.16 0.18 199 0.15 0.19 294 0.19 0.20 343
UWFPs 20.02 0.17 151 0.01 0.20 388 0.18 0.18 359
NWFPs 0.20 0.37 741 0.18 0.37 659 0.29 0.37 594 Figure 5b
WFPs 0.41 0.30 199 0.38 0.35 294 0.39 0.39 343
UWFPs 0.05 0.30 151 0.06 0.37 388 0.24 0.36 359
NWFPs 0.05 0.12 741 0.06 0.11 659 0.05 0.12 594 Figure 5c
WFPs 0.19 0.07 199 0.16 0.09 294 0.11 0.10 343
UWFPs 0.03 0.08 151 0.03 0.10 388 0.05 0.10 359
NWFPs 0.10 0.23 741 0.12 0.24 659 0.07 0.24 594 Figure 5d
WFPs 0.38 0.16 199 0.31 0.18 294 0.24 0.20 343
UWFPs 0.04 0.16 151 0.04 0.21 388 0.05 0.19 359

NWFR

Elevation bins

731 735 793

Pixel groups* Mean** STD pixels Mean** STD pixels Mean** STD pixels

NAWFPs 20.04 0.12 670 20.09 0.11 666 20.11 0.09 654 Figure 4b
AWFPs 20.04 0.11 290 20.09 0.12 296 20.11 0.09 304
NAWFPs 0.03 0.21 670 0.00 0.18 666 20.21 0.29 654 Figure 4d
AWFPs 0.04 0.21 290 20.01 0.18 296 20.20 0.28 304
NAWFPs 20.01 0.15 670 20.05 0.14 666 20.17 0.14 654 Figure 5a
AWFPs 20.02 0.15 290 20.06 0.14 296 20.17 0.14 304
NAWFPs 0.03 0.34 670 20.05 0.47 666 20.28 0.58 654 Figure 5b
AWFPs 0.02 0.38 290 20.06 0.44 296 20.27 0.57 304
NAWFPs 20.02 0.07 670 20.05 0.06 666 20.04 0.05 654 Figure 5c
AWFPs 20.02 0.07 290 20.04 0.07 296 20.04 0.06 304
NAWFPs 0.03 0.19 670 20.02 0.19 666 20.15 0.25 654 Figure 5d
AWFPs 0.03 0.20 290 20.03 0.19 296 20.16 0.25 304

* NWFPs refer to all of the pixels for each bin that are not WFPs inWFR, and NAWFPs refer to all of the pixels
for each bin that are not AWFPs in NWFR; WFPs, UWFPs, and AWFPs are defined in the main text.
** The LST differences between NWFPs and WFPs in bold or between UWFPs and WFPs in italic bold are
statistically significant at the 1% level. None of the LST differences between NAWFP and AWFPs is statis-
tically significant even at the 10% level. A two-tailed Student’s t test was used to test whether the LST mean
differs significantly.
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only elevation but also land surface properties between WFPs/AWFPs and their
nearby nonwind farm pixels. However, method III examines how DLST changes
temporally with the development of wind farms while the land surface prop-
erties do not change much with time (Zhou et al. 2012). In addition, its p values
can tell whether the trends are statistically significant from zero. In general,
there is a warming effect in WFPs relative to their nearby nonwind farm pixels
and this effect increases with time over WFR, while NWFR shows much
smaller DLST between AWFPs and their nearby nonwind farm pixels (Figure
6). DJF shows the smallest signal of wind farm impacts compared to JJA and
ANN, which is consistent with Zhou et al. (Zhou et al. 2012; Zhou et al. 2013).
The MODIS DLST show a total warming trend of 0.388C in DJF, 0.578C in JJA,
and 0.468C in ANN for the 8-yr interval of the study period 2003–11. The
reconstructed values using EOF1 and its time series shows a total warming
trend of 0.248C in DJF, 0.528C in JJA, and 0.458C in ANN. Although there are
only 9 years of data, the total trends are all statistically significant at the 1%
level. In contrast, the total trends for NWFR are small except DJF, but none are
statistically significant even at the 10% level.

The nighttime EOF1 mode of warmer DLSTs resembles the geographic patterns
of wind turbines that are located at higher-elevation ridges in WFR while the

Figure 6. Time series of DLST (i.e., areal mean MODIS nighttime DLST difference) (8C)
between WFPs (AWFPs) and their nearby nonwind farm pixels in WFR
(NWFR) in (a) DJF, (b) JJA, and (c) ANN for the period of 2003–11. Here, the
MODIS plots refer to the DLST difference estimated using MODIS DLSTs
and the EOF1 plots refer to the same DLST difference but using the re-
constructed EOF1 time series only. Total trends (8C per 8yr) are listed in the
figure legends and those with two asterisks (one asterisk) are statistically
significant at the 1% (5%) level. WFPs, AWFPs, and total trend are defined
in the main text.
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warmer DLSTs are observed over lower-elevation plains and valleys in NWFR.
This contrast indicates a possible link between the warming effect over WFPs and
the development of wind farms. The gradual strengthening of the spatial coupling
of EOF1 mode with wind turbines in WFR is expected, as wind turbines were
constructed in stages, with more wind turbines built and likely operating with time
from 2003 to 2011. This spatial coupling does not imply causation. However, Zhou
et al. (Zhou et al. 2012; Zhou et al. 2013) have examined possible contributors to
the LST changes and found that the diurnal and seasonal variations in wind speed
and the changes in near-surface ABL conditions due to wind farm operations are
likely the primary causes.

4. Conclusions
This paper applies the empirical orthogonal function (EOF) analysis to de-

compose satellite-derived nighttime land surface temperature (LST) for the period
of 2003–11 into spatial patterns of different scales and thus to identify whether
(i) there is a pattern of LST change associated with the development of wind farms
and (ii) the warming effect over wind farms reported previously is an artifact of
varied surface topography. The spatial pattern and time series analysis approaches
of Zhou et al. (Zhou et al. 2012; Zhou et al. 2013) are also used to supplement and
compare with the EOF results. Two equal-sized regions with similar topography
in west-central Texas are chosen to represent a wind farm region (WFR) and a
nonwind farm region (NWFR).

Our results indicate that the nighttime warming effect seen in the first mode
(EOF1) in WFR very likely represents the wind farm impacts as its spatial pattern
couples very well with the geographic distribution of wind turbines, which are
generally built on high-elevation ridges. The time series associated with the EOF1
mode in WFR also shows a persistent upward trend over wind farms from 2003 to
2011, corresponding to the increase of operating wind turbines with time. Also, the
wind farm pixels show distinctly warmer LST changes from their upwind high-
elevation pixels and their downwind nonwind farm pixels at similar elevations. It is
interesting to note that the warming effect of wind farms decreases with elevation.
In contrast, NWFR shows a decrease in LST with elevation, indicating that the
presence of wind farms inWFR has changed the LST–elevation relationship shown
in NWFR. The elevation impacts on MODIS LST, if any, are much smaller and
statistically insignificant than the strong and persistent signal of wind farm im-
pacts. While the MODIS data may be too short to draw any definite conclusions,
these results are consistent with those in Zhou et al. (Zhou et al. 2012; Zhou et al.
2013) and provide further observational evidence of the impacts of wind farms on
LST. They also indicate that EOF analysis helps to decompose the MODIS LSTs
into different spatial patterns and thus can be used to detect and quantify the
impacts of wind farms at local scales.
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