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ABSTRACT: Turbulent mixing in the planetary boundary layer (PBL) governs the vertical exchange of heat, moisture,

momentum, trace gases, and aerosols in the surface–atmosphere interface. The PBL height (PBLH) represents the maxi-

mum height of the free atmosphere that is directly influenced by Earth’s surface. This study uses a multidata synthesis

approach from an ensemble of multiple global datasets of radiosonde observations, reanalysis products, and climate model

simulations to examine the spatial patterns of long-term PBLH trends over land between 608S and 608N for the period 1979–

2019. By considering both the sign and statistical significance of trends, we identify large-scale regions where the change

signal is robust and consistent to increase our confidence in the obtained results. Despite differences in the magnitude and

sign of PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the enormous and very dry

Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India. At the global scale, the changes in PBLH are

significantly correlated positively with the changes in surface heating and negatively with the changes in surface moisture,

consistent with theory and previous findings in the literature. The rising PBLH is in good agreement with increasing sensible

heat and surface temperature and decreasing relative humidity over the SDAP associated with desert amplification, while

the declining PBLH resonates well with increasing relative humidity and latent heat and decreasing sensible heat and

surface warming in India. The PBLH changes agree with radiosonde soundings over the SDAPbut cannot be validated over

India due to lack of good-quality radiosonde observations.
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1. Introduction

The land surface has a pronounced diurnal cycle in solar inso-

lation, surface temperatures, and atmospheric planetary boundary

layer (PBL). Turbulent mixing in the PBL dominates the vertical

exchange of heat, moisture, momentum, trace gases, and aerosols

in the surface–atmosphere interface, and strongly influences the

tropospheric temperature, humidity, and wind (Stull 1988). One

fundamental variable of the PBL is the PBL height (PBLH).

PBLH represents the maximum height of the atmosphere that

is directly influenced byEarth’s surface, sets limits for themixing

and dilution height of near-surface pollutants, and controls cloud

formation and convection activity that affect Earth’s radiation

budget and hydrological cycle (Ao et al. 2012; Chan and Wood

2013; Ho et al. 2015).

The PBLH displays substantial spatiotemporal variabil-

ity under different surface and atmospheric conditions, ranging

from a few hundredmeters to several kilometers (Stull 1988). The

PBLH over land depends strongly on surface characteristics,

including soil moisture, vegetation, land cover, terrain, and

proximity to the sea (Talbot et al. 2007; Liu and Liang 2010;

Seidel et al. 2012; Zhang et al. 2013; Lee andDeWekker 2016;

Wei et al. 2017a; Sathyanadh et al. 2017). The growth of

PBLH is driven primarily by surface heating and atmospheric

stability (Chan andWood 2013; Lee andDeWekker 2016; Ao

et al. 2017; Brahmanandam et al. 2020). In the subtropics and

tropics, the PBLH is typically higher over drier regions and

during drier seasons, because more surface sensible heat flux

is available to drive vertical mixing due to less surface mois-

ture and higher Bowen ratio. As expected, it maximizes over

arid and semiarid regions, in the afternoon, and during warm

and dry seasons when land surface temperatures are warmest,

sensible heat flux is most significant, and static stability is

lowest. Hence, the global PBLH climatology shows the

deepest daytime PBLH in the Sahara Desert and Arabian

Peninsula (SDAP) (Gamo 1996; Ao et al. 2012; Garcia-

Carreras et al. 2015; Ao et al. 2017; Wei et al. 2017a).

Changes in near-surface atmospheric variables such as

temperature and relative humidity (RH) are closely linked to

changes in PBLH. Warmer and drier surfaces associated with

higher temperatures and lower RH result in greater sensible

heat flux and lower latent heat flux, leading to deeper con-

vection and larger PBLH (Zhang et al. 2013; Darand and

Zandkarimi 2019). Hence, PBLH shows strong correlations

positively with surface air temperature and negatively with
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surface RH in Europe (Zhang et al. 2013), China (Guo

et al. 2016; Dang et al. 2016; Guo et al. 2019), East Asia and

North Africa (Zhao et al. 2017), and Iran (Darand and

Zandkarimi 2019).

Global mean surface temperatures have increased since the

late nineteenth century, and this warming has been spatially

widespread and particularly marked since the 1980s, with the

warming rate over land double that over the ocean (IPCC

2013). Associated with this warming are the global increases in

near-surface and tropospheric specific humidity of air (IPCC

2013). Despite diverse and complex spatial patterns of RH

changes at regional scales, recent studies using observations,

reanalysis data, and general circulation models (GCMs) have

suggested small increases in ocean RH but substantial de-

creases in land RH in recent years with global warming (e.g.,

Simmons et al. 2010; O’Gorman andMuller 2010; IPCC 2013;

Sherwood and Fu 2014; Willett et al. 2014; Byrne and

O’Gorman 2016; Vicente-Serrano et al. 2017). As increasing

surface temperature and decreasing surface RH over land

tend to deepen the PBLH, one scientific question is whether

these changes in temperature and RH may have raised the

PBLH over land (e.g., Zhang et al. 2013).

Due to limited spatial and temporal coverage of good-

quality radiosonde measurements, there are only several ob-

servational studies on long-term PBLH trends at regional

scales. Zhang et al. (2013) estimated the PBLH trends over

Europe based on daily radiosonde observations at 25 stations

during 1973–2010 and found statistically significant increases in

daytime PBLH in all four seasons. Guo et al. (2019) investi-

gated the temporal trends of radiosonde derived PBLH from

1979 to 2016 in China and found a spatially uniform increasing

trend from 1979 to 2003 but a trend shift thereafter. Li et al.

(2020) calculated daily maximum PBLH globally using oper-

ational radiosonde and surface meteorological measurements

from 219 carefully selected weather stations for the period

1973–2018. They found significant increasing (decreasing)

trends over 74 (48) stations. However, these studies are inad-

equate to draw a broad conclusion about the large-scale pat-

terns of PBLH trends because the radiosonde network is not

evenly distributed globally and has data gaps in coverage over

many regions.

The land surface has warmed rapidly in the past several

decades but at different warming rates among different re-

gions. Recent studies (Zhou et al. 2015, 2016; Cook and Vizy

2015; Evan et al. 2015; Zhou 2016) using observations, re-

analysis data, andGCM simulations have found that surface air

temperatures in the middle and low latitudes have warmed

most over the SDAP. This warming amplification over deserts,

which is termed desert amplification (DA), has intensified with

increasing greenhouse gases (GHGs), particularly after the

1980s. The essential features of DA remained robust across all

seasons, although the magnitude of DA was greater during

warm seasons (Zhou et al. 2016; Vizy and Cook 2017;Wei et al.

2017b). These results suggest that DA is a fundamental large-

scale feature of global warming patterns in the middle and low

latitudes and will accelerate in a warming climate.

Deserts make up approximately 1/3 of the global land sur-

face area (Zhou 2016; Wei et al. 2017a). The SDAP is home to

the two largest subtropical deserts in the world and covers a

vast continental land area in the low latitudes. As the deserts

are extremely dry, with limited soil moisture, vegetation, and

cloudiness, surface heating via sensible heat is documented as

the dominant driver for the PBLH growth there (Zhao 2011;

Ao et al. 2017). Considering the amplified continent-scale

surface heating associated with DA in a warming climate and

constrained by limited moisture availability over the deserts, it

is expected to observe widespread increases in temperature

and decreases in RH over the SDAP. Another scientific

question is whether the DAmay have manifested its impact by

deepening the PBLH at a much larger spatial extent over the

SDAP than the other regions with spatially more heteroge-

neous RH changes.

Global reanalysis results in physically consistent estimates of

past observations with complete spatial and temporal coverage

and thus has greatly improved our ability to examine climate

variability (Trenberth et al. 2008; IPCC 2013). The reanalysis

PBLH estimates have been used at regional to global scales

with reasonable results (e.g., Ao et al. 2012; von Engeln and

Teixeira 2013; Guo et al. 2016; Zhao et al. 2017; Darand and

Zandkarimi 2019). There are a couple of studies on the long-

term trends of reanalysis PBLH over dry lands. Zhao et al.

(2017) examined the interdecadal variability of PBLH based

on the ECMWF first atmospheric reanalysis of the twentieth

century (ERA-20C) over arid and semiarid areas in East Asia

and North Africa for the period 1900–2010 and found sub-

stantial spatiotemporal variations in the PBLH trends during

the 111-yr period. This century-long reanalysis makes the

investigation of multidecadal variability possible, but it as-

similated only surface observations and contains spurious long-

term climate trends due to changes in the radiative forcing and

the observing system throughout the century (e.g., Poli et al.

2013; Bloomfield et al. 2018). Darand and Zandkarimi (2019)

examined monthly PBLH data from the ERA-Interim re-

analysis and revealed a significant increasing PBLH trend of

;31m decade21 at the country level over Iran for the period

1979–2016, with some seasonal differences and largest in-

creases in the semi-northern part of the country. However,

these two regional studies are based only on one reanalysis

product and have no validations against in situ observations

and other datasets.

The availability of high-resolution reanalysis products and

the newly available simulations from phase 6 of the Coupled

Model Intercomparison Project (CMIP6) provide us an op-

portunity to address the above two questions by examining the

PBLH changes at larger scales. This article uses a multidata

synthesis approach from an ensemble of multiple global data-

sets of radiosonde observations, reanalysis products, andGCM

simulations to detect and attribute the large-scale patterns of

long-term PBLH trends over land in the middle and low lati-

tudes between 608S and 608N. It focuses on the satellite era for

the period 1979–2019 to maximize data coverage of measure-

ments that are assimilated into reanalysis products and are

used to drive GCMs. By considering both the sign and statis-

tical significance of the trends, we identify large-scale regions

where the change signal is robust and consistent to increase our

confidence in the obtained results. The major objective is to
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test the hypothesis that the global warming signal is manifest

most in the spatial extent of PBLH change over the SDAP

where the amplified surface warming associated with DA en-

hances turbulent mixing and thus raise the PBLH height.

2. Data and methods

a. Data sources

Here we used 9 types of datasets, consisting of radiosonde

observations, 4 reanalysis products, and 74 historical simula-

tions from 27 CMIP6 models, for the period 1979–2019. To

intercompare the PBLH estimates from different methods,

the bulk Richardson number (Ri) method (Vogelezang and

Holtslag 1996) was also chosen to consistently diagnose the

PBLH, with a critical value of 0.25, directly from the atmo-

spheric soundings for three datasets whose PBLHs were esti-

mated using other methods. The Ri methods have proven to

the most reliable approaches over a wide range of conditions

for both stable and convective boundary layers and do not

strongly depend on the sounding vertical resolutions (e.g.,

Seidel et al. 2012; Zhang et al. 2013; Davy 2018). We followed

exactly the steps detailed in Seidel et al. (2012) and Zhang et al.

(2013) to calculate the PBLH. Note that all PBLH estimates in

this study are measured in meters above ground level (AGL).

The data details are mostly listed in Tables 1 and 2, with some

key information provided next.

1) RADIOSONDE MEASUREMENTS

Two observational PBLH datasets were derived from at-

mospheric soundings (mostly at 0000 and 1200 UTC) in the

updated Integrated Global Radiosonde Archive version 2

(IGRA2) (Durre and Yin 2008, 2011). First, we used the Ri

method to estimate the PBLH at 0000 and 1200 UTC for the

period 1979–2019 (referred to as the IGRA2-RI; Table 2)

based on the IGRA2 sounding-derived parameters (ftp://

ftp.ncdc.noaa.gov/pub/data/igra/derived/). Second, we used

the daily maximummixed layer height (MMLH) estimated by

Li et al. (2020) via the parcel method (Holzworth 1964) for

the period 1979–2018 (referred to as the IGRA2-MMLH;

Table 2) based on the IGRA2 and surface meteorological

measurements. Because the daily MMLH usually occurs locally

in the early to late afternoon, the standard two radiosonde ob-

servations each day cannot capture the fully developed mixed

layer globally. The parcel method was proposed to calculate

daily MMLH using radiosondes and diurnal potential temper-

ature observations from morning to evening to characterize the

convectivemixing of the lower troposphere (Holzworth 1964). It

has the advantage of using twice-daily radiosonde soundings

over most weather stations if the maximum virtual potential

temperature coincides with the MMLH and thus has been

adopted bymany studies to estimate theMMLHthereafter (e.g.,

Seidel et al. 2010; Li et al. 2020). Large uncertainties are ex-

pected over regions if this condition is not met. Due to the

presence of missing data over many radiosonde stations, a set of

carefully designed data selection and quality control criteria

were developed to identify stations with good-quality data for

long-term trend analysis (section 2b)

2) REANALYSIS PRODUCTS

Two latest state-of-the-art reanalysis products provide

physically consistent, global gridded hourly analysis fields at

relatively high spatial and temporal resolutions. The second

Modern-EraRetrospectiveAnalysis forResearch andApplications

(MERRA-2) is a NASA atmospheric reanalysis that begins in

1980 with the enhanced use of satellite observations (Gelaro

et al. 2017). ERA5 is the latest ECMWF atmospheric re-

analysis of the recent global climate, produced based on

historical observations since 1979 with advanced modeling

and data assimilation systems (Hersbach et al. 2020). The

reanalysis PBLH is estimated based on the Ri method with a

critical value of 0.25 in ERA5 (C3S 2017) and the total eddy

diffusion coefficient of heat with a threshold value of 2m2 s21

in MERRA-2 (e.g., McGrath-Spangler and Molod 2014;

Davy and Esau 2014). The monthly means of hourly averaged

PBLH, surface sensible heat flux (SHFX; W m22), surface

latent heat flux (LHFX; W m22), surface skin temperature

(Ts; K), 2-m air temperature (T2m; K), 2-m dewpoint tem-

perature (Td2m; K), 2-m specific humidity (q2m; kg kg
21), 2-m

air RH (RH2m; %), and lifting condensational level (LCL;

m or hPa), were analyzed for MERRA-2 (1980–2019) and

ERA5 (1979–2019). The LCL is provided by MERRA-2 as

the height of LCL (m). It is not provided in ERA5 and so is

computed as the pressure of LCL (hPa) by an iterative pro-

cedure described by Stipanuk (1973) based on surface pres-

sure (Ps), T2m, and Td2m. For both MERRA-2 and ERA5,

RH2m is not provided and so is calculated using T2m and Td2m
based on the equation in Dutton (1976).

ERA5 also provides a 10-member reanalysis ensemble (re-

ferred to as the ERA5 ensemble; Table 2) used for uncertainty

estimation (Copernicus Climate Change Service 2020). The

uncertainty as defined for ERA5 by the Ensemble of Data

Assimilations (EDA) system only considered mostly random

uncertainties in observations, sea surface temperatures (SSTs),

and model physical parameterizations. Although not all un-

certainties are accounted for, the mean and spread of the en-

semble provide valuable information on the relative accuracy

and reliability of the reanalysis data. The PBLH is estimated

based on the Ri method as in the ERA5 reanalysis. The

monthly means of daily mean PBLH for the 10 members were

analyzed for the period 1979–2019.

We also used the Ri method to estimate the PBLH at

6-hourly intervals for the period 1980–2019 (referred to as the

MERRA-2-RI; Table 2) based on the 6-hourly 3D atmospheric

instantaneous and hourly averaged 2D near-surface fields for

air temperature, humidity, geopotential height, andwind speed

from the MERRA-2 output. Note that hourly averaged at-

mospheric analyzed fields are not available. The monthly

means of daily mean PBLH (an average of the four 6-hourly

values) were analyzed for the period 1980–2019.

3) CMIP6 SIMULATIONS

CMIP6 provides PBLH output available only from a subset

of participating models at various spatial resolutions (Eyring

et al. 2016). Different PBL schemes at different vertical reso-

lutions are used in these models (Table 2). For example, the
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TABLE 1. List of 74 CMIP6 AMIP and HIST simulations from 27 models used in this study. To assess internal variability, some models

provide an ensemble of realizations with different initial conditions. For the models with more than three realizations, only the first three

realizations were obtained for each model. For the CMIP6-AMIP and CMIP6-HIST, the available models with PBLH output at the time

of analysis were chosen. For CMIP6-HIST-RI, only the first realization for a subset of CMIP6models for which data were available on the

model-level grid and the output frequency needed was chosen to estimate the PBLH as detailed in Davy (2018).

Organization Model

Number of realizations used

CMIP6-AMIP CMIP6-HIST CMIP6-HIST-RI

Canadian Climate Centre for Modelling

and Analysis, Canada

CanESM5 3 3

Canadian Climate Centre for Modelling

and Analysis, Canada

CanESM5-Can0E 3

National Center for Atmospheric

Research, United States

CESM2 3 3

National Center for Atmospheric

Research, United States

CESM2-FV2 3 3

National Center for Atmospheric

Research, United States

CESM2-WACCM 3 3

National Center for Atmospheric

Research, United States

CESM2-WACCM-FV2 3 3

Centro Euro-Mediterraneo per I

Cambiamenti Climatici, Europe

CMCC-CM2-SR5 1

Centre National de Recherches

Météorologiques, France
CNRM-CM6-1 1

Centre National de Recherches

Météorologiques, France
CNRM-ESM2-1 1

NOAA/Geophysical Fluid Dynamics

Laboratory, United States

GFDL-CM4 1 1

NOAA/Geophysical Fluid Dynamics

Laboratory, United States

GFDL-ESM4 1

NASA/Goddard Institute for Space

Studies, United States

GISS-E2-1-G 3 3

NASA/Goddard Institute for Space

Studies, United States

GISS-E2-1-H 3

NASA/Goddard Institute for Space

Studies, United States

GISS-E2-2-G 3

Institute for Numerical Mathematics,

Russian Academy of Science, Russia

INM-CM4-8 1 1

INM-CM5-0 1 3

JAMSTEC/AORI/University of Tokyo/

NIES, Japan

MIROC6 1

JAMSTEC/AORI/University of Tokyo/

NIES, Japan

MIROC-ES2L 1

Max Planck Institute for Meteorology,

Germany

MPI-ESM-1-2-HAM 1

Max Planck Institute for Meteorology,

Germany

MPI-ESM1-2-HR 1

Max Planck Institute for Meteorology,

Germany

MPI-ESM1-2-LR 1

Meteorological Research Institute, Japan MRI-ESM2-0 1

Norwegian Climate Center, Norway NorESM2-LM 1 3 1

Norwegian Climate Center, Norway NorESM2-MM 1 1

Seoul National University, Seoul,

South Korea

SAM0-UNICON 1

Research Center for Environmental

Changes, Academia Sinica, Taiwan

TaiESM1 1 1

Met Office Hadley Centre, United

Kingdom

UKESM1-0-LL 1

Total models/simulations 12/26 15/35 13/13
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PBL scheme is based on the Ri number, mixing lengths, and

moist nonlocal thermodynamic mixing in the Canadian Earth

System Model (CanESM5; von Salzen et al. 2013), while the

Community Earth System Model (CESM2) employed the so-

called Cloud Layers Unified by Binormals (CLUBB) param-

eterization (Bogenschutz et al. 2018), one of the ‘‘assumed

probability density function (PDF)’’ methods (Golaz et al.

2002; Larson et al. 2002). Unlike the traditional PBL schemes

used in GCMs, the CLUBB is a third-order turbulence closure

that is centered around a multivariate PDF and represents a

‘‘unified’’ parameterization that is responsible for treating

boundary layer clouds and shallow convection with one pa-

rameterization (Bogenschutz et al. 2018). Here we used two

types of historical simulations from the CMIP6 archives

(Eyring et al. 2016): historical (HIST) and Atmospheric Model

Intercomparison Project (AMIP) runs, referred to as CMIP6-

HIST and CMIP6-AMIP (Table 2), respectively. The CMIP6-

HIST simulations (1850–2014) were forced with observed

changes in anthropogenic and natural forcing. The CMIP6-

AMIP run (1979–2014) was a standard global atmospheric

general circulation model simulation for recent climate forced

by observed SSTs/sea ice and prescribed external forcings. In

addition, we also used the Ri method to estimate the PBLH at

6-hourly interval for the period 1979–2014 (referred to as the

CMIP6-HIST-RI; Table 2) provided by Davy (2018) based on

the 6-hourly 3D atmospheric and 3-hourly 2D near-surface

instantaneous fields for air temperature, humidity, geopotential

height, and wind speed from the CMIP6-HIST simulations

(Table 1).

Temporal variations in the CMIP6 simulations are deter-

mined mainly by the externally imposed forcing, but also

contain unforced internal variability (noise) within the atmo-

sphere. To assess the internal variability, some models provide

an ensemble of realizations with different initial conditions.

For the CMIP6-AMIP and CMIP6-HIST, the available models

with PBLH output at the time of analysis were chosen and only

the first three realizations were obtained for the models with

more than three realizations. For the CMIP6-HIST-RI, only

the first realization for a subset of CMIP6 models, for which

data were available on the model-level grid and at the output

frequency needed, was chosen to estimate the PBLH as de-

tailed in Davy (2018). In total, there are 74 simulations from 27

models: 26 AMIP runs from 12 models for CMIP6-AMIP, 35

runs from 15 models for CMIP6-HIST, and 13 runs from 13

TABLE 2. List of variable and method used to estimate the PBLH for the nine datasets used in this study.

Dataset acronym Variable used PBLH estimate method Time period

IGRA2-MMLH Daily atmospheric profiles (pressure,

temperature, and dewpoint) at 0000 and

1200 UTC from the IGRA2 and 3-

hourly surfacemeasurements (pressure,

temperature, and dewpoint) from

NOAA’s NCDC

The parcel method (Holzworth 1964) to

estimate MMLH as detailed in Li

et al. (2020)

1979–2018

IGRA2-RI Daily atmospheric and near surface

virtual potential temperature,

geopotential height, and wind speed at

0000 and 1200 UTC from the IGRA2

sounding-derived parameters from

the NCDC

The bulk Richardson number method

with a critical value of 0.25 following

Seidel et al. (2012) and Zhang

et al. (2013)

1979–2019

ERA5, ERA5-ensemble Monthly mean of hourly mean PBLH

provided by the reanalysis

The bulk Richardson number method

with a critical value of 0.25 (C3S 2017)

1979–2019

MERRA-2 Monthly mean of hourly mean PBLH

provided by the reanalysis

The total eddy diffusion coefficient of heat

with a threshold value of 2m2 s21

(Salmun et al. 2018)

1980–2019

MERRA-2-RI 6-hourly 3D atmospheric instantaneous

and hourly averaged 2D near-surface

fields for air temperature, humidity,

geopotential height, and wind speed

from the MERRA-2 output (Global

Modeling and Assimilation Office

2015a,b,c,d)

The bulk Richardson number method

with a critical value of 0.25 following

Seidel et al. (2012) and Zhang

et al. (2013)

1980–2019

CMIP6-AMIP, CMIP6-HIST Monthly mean of daily mean PBLH

provided by available models for the

CMIP6 AMIP and HIST simulations

(Table 1)

Different PBL schemes and vertical

resolution in different models (e.g.,

Svensson and Lindvall 2015)

1979–2014

CMIP6-HIST-RI 6-hourly 3D atmospheric and 3-hourly 2D

near-surface instantaneous fields for air

temperature, humidity, geopotential

height, and wind speed from the CMIP6

HIST simulations (Table 1)

The bulk Richardson number method

with a critical value of 0.25 as detailed in

Davy (2018)

1979–2014
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models for CMIP6-HIST-RI. Each chosen model and its

number of realizations for the CMIP6 simulations are listed in

Table 1. The monthly mean of daily mean PBLH from these

simulations were analyzed for the period 1979–2014.

b. Data processing

Here we examine the long-term PBLH trends over land

between 608N and 608S. The ocean is not considered as the

major processes controlling PBLH differ primarily between

land and ocean (Garratt 1992; Seidel et al. 2012; Chan and

Wood 2013; Ho et al. 2015; Byrne and O’Gorman 2016). The

land beyond 608N and 608S is excluded because high-latitude

continental interior regions and ice- and snow-covered surfaces

have different PBLH characteristics from the middle and low

latitudes, particularly during cold seasons (Liu and Liang 2010;

Seidel et al. 2012;Wei et al. 2017a; Davy 2018). To attribute the

changes in PBLH, we examine their statistical relationships

with other key PBLH-related variables using the two sets of

high-resolution reanalysis data (i.e., ERA5 and MERRA-2)

due to the complete spatial and temporal coverage.

Initial analyses reveal some similar large-scale features in

the PBLH trends across all seasons except boreal winter. To

reduce redundancy and the number of plots by season for

different datasets, we focus on the annual mean PBLH

changes, which can capture well the major large-scale PBLH

trends for most seasons while minimizing signals in PBLH as-

sociated with seasonal variations (e.g., insolation, clouds, soil

moisture, and SSTs). This simplicity is reasonable as observa-

tional studies generally show consistent patterns of long-term

PBLH trends for all seasons over 25weather stations in Europe

(Zhang et al. 2013) and over 219 carefully selected radiosonde

stations globally (Li et al. 2020).

For every station in the two radiosonde-derived PBLH

datasets, the observed daily estimates of MMLH and PBLH at

0000 and 1200 UTC were processed into the annual mean

anomaly time series for the period 1979–2018 following four

steps. First, the observed daily estimates were first averaged to

calculate the monthly mean. For every month, at least 10 days

of data were required for the monthly averaging. Second, the

monthly anomaly data were created by subtracting the long-

termmonthly mean (climatology) from the monthly mean data

(i.e., removing the climatological seasonality). Third, the

monthly anomaly data were averaged to create the annual

mean for every year, and at least 6 months of data were re-

quired for the annual averaging. Finally, the long-term annual

mean anomaly time series was obtained for the period 1979–

2018/19, which required at least 28 years (or 70%) of data. The

use of thresholds of 10 days month21 (e.g., Li et al. 2020),

6 months yr21 (e.g., Wang and Wang 2016), and 70% of the

temporal coverage (e.g., Gertler and O’Gorman 2019) is a

reasonable compromise between the data length, complete-

ness, and spatial coverage. In total, 147 and 192 stations with

adequate observations were chosen following the above steps

for the IGRA2-MMLH and IGRA2-RI PBLH datasets, re-

spectively. The data coverage is reasonably good over most

regions in the Northern Hemisphere but relatively poor over

remote deserts and in the Southern Hemisphere.

It is well recognized that PBLH is strongly coupled with

land–atmosphere interactions. Despite the complexity and

uncertainty in representing land–atmosphere interaction in

different weather and climate models, it was found that the

ensemble mean (EM) of forecasts driven by different initial

conditions can reduce forecast uncertainties that result from

errors in initial conditions (e.g., Guo et al. 2007; Hofer et al.

2012; Potter et al. 2018). It is also found that the multimodel

ensemble mean (MEM) often outperforms most individual

models in simulating the land surface component of weather

and climate systems (Kharin and Zwiers 2002; Guo et al. 2007).

In particular, different PBL schemes make varying assump-

tions about the transport of heat, moisture, and momentum

within the PBL (Lee and De Wekker 2016). Averaging over

multiple members enhances the forcing signal and reduces

noise from internal variability and errors from individual

members or models (IPCC 2013). For the ERA5-ensemble,

the 10 members were averaged to calculate the EM (referred

to as the ERA5-EM). For the CMIP6 models, the models of

single realization and the multirealization mean of each

model with more than one realization were averaged to ob-

tain the MEM. Here we do not simply take the mean of all

realizations of the available CMIP6 models to avoid biasing

the MEM toward the models with a higher number of reali-

zations. The MEM for the 12 models in the CMIP6-AMIP,

the 15 models in the CMIP6-HIST, and the 13 models in the

CMIP6-HIST-RI is referred to as the CMIP6-AMIP-MEM,

CMIP6-HIST-MEM, and CMIP6-HIST-RI-MEM, respec-

tively. However, the EM and MEM average out internal

variability and so have a smaller magnitude in variability and

trend than individual members. The monthly mean PBLHs

from the individual members of the ERA5 and CMIP6 en-

sembles were analyzed and used to calculate the ensemble

distribution, include the ensemble mean and spread, for un-

certainty estimate.

The global gridded reanalysis and CMIP6 data are monthly

mean values with no missing data. All data at different spatial

resolutions were spatially reprojected into the common 18 3 18
grid boxes using bilinear interpolation and thenwere processed

into the annual mean anomaly time series for every grid box.

Note that the PBLH exhibits a distinct diurnal cycle. The

CMIP6 data only consist of monthly means of daily mean

values, while the reanalysis data contain subdaily values and so

need further processing. The reanalysesMERRA-2 and ERA5

consist of 24-hourly-averaged values every month. For every

grid box, we first used the 24-hourly-averaged PBLH values to

obtain the long-term climatology of the PBLH diurnal cycle

and then identified the five consecutive hours with maximum

and minimum climatological PBLHs. Then the monthly means

of hourly data were aggregated to produce the monthly

means of daily mean (an average of 24-hourly values), daily

maximum (an average of 5-hourly values with maximum cli-

matological PBLHs), and daily minimum (an average of

5-hourly values with minimum climatological PBLHs). We

also created the monthly means of daily PBLHs at 0000 and

1200 UTC for validations against the radiosonde observa-

tions. For the ERA5-ensemble members, the monthly means

of daily mean PBLH were calculated from the 24-hourly-averaged
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PBLH values. For the MERRA-2-RI, the monthly means of

daily mean PBLH were calculated from the four 6-hourly in-

stantaneous PBLH estimates. Finally, for every grid box, the

monthly mean data were processed into the annual mean

anomaly time series for each individual data period following

the last three steps done above for the radiosonde data. In

total, there are 12 660 land grid boxes of 18 3 18 between 608N
and 608S across a wide range of atmospheric conditions and

surface characteristics.

c. Methods of large-scale trend analysis

Large differences and uncertainties exist among different

PBLH estimates and different datasets (e.g., Seidel et al. 2010;

McGrath-Spangler and Molod 2014; McGrath-Spangler et al.

2015; Wei et al. 2017b; Ao et al. 2017). To synthesize the dif-

ferences and cope with the uncertainties, we use a multidata

synthesis approach to make inferences on the robustness and

consensus of the long-term trends across the aforementioned

different datasets. The emphasis is more on the sign and sig-

nificance of the trend and less on the magnitude as the changes

are more likely robust if more independent datasets agree on

the direction and statistical significance of the changes (e.g.,

Power et al. 2012; IPCC 2007, 2013; Dosio et al. 2019). We

identify and focus on large-scale regions where the change

signal is considered to be robust and consistent if all (or 100%)

of the datasets show a statistically significant trend (p , 0.05)

and agree on the sign of the trend, to increase our confidence in

the obtained results.

Two widely used methods were used to quantify the mag-

nitude and significance of the trend of the annual mean

anomaly time series processed above for any variable over the

study period. The first was to use the ordinary least squares

regression (OLS) to estimate the linear trend (i.e., slope)

combined with a two-tailed Student’s t test for significance test,

referred to as the OLS method. The second was to use the

Theil–Sen slope estimate to assess the monotonic trend (linear

or nonlinear) combined with the Mann–Kendall test (Theil

1950; Sen 1968; Kendall 1970; Dytham 2011) for significance

test, referred to as the M–K method. The M–K method is a

nonparametric (i.e., distribution-free) test and is much less

sensitive to outliers and skewed distributions compared to

linear regressions (IPCC 2013). Trend analysis was performed

for the annual mean anomaly time series for all data variables

created in section 2b.

We also performed a detailed time series analysis over the

entire study domain (608N–608S) and two chosen regions (the

SDAP and India) where a consensus on the PBLH trends was

identified. To maximize large-scale PBLH change patterns and

minimize local-scale variability, we aggregated the PBLH and

related data via spatial averaging at two spatial scales: 1) sta-

tion mean and 2) regional mean. The former is simply an

arithmetic mean of individual station data and was applied to

both the observational and reanalysis data. For the reanalysis,

the station data were obtained from the grid boxes where the

chosen stations are located based on their geographic location

(latitude and longitude). The latter was applied only to the two

reanalyses and was calculated using area-weighted averaging

over the land grid boxes between 608S and 608N, SDAP (188–

318N, 58W–508E), and India (178–348N, 688–968E) (see the

rectangles in Fig. 3c). We calculated the Pearson’s correlation

coefficient (referred to as R) to quantify the temporal associ-

ation between two times series or the spatial similarity between

two variables.

Note that every variable analyzed in this study is an an-

nual mean quantity. For brevity, the annual mean of daily

mean PBLH, daily maximum PBLH, daily minimum PBLH,

daily PBLH at 0000 UTC, and daily PBLH at 1200 UTC, five

frequently used variables, are referred to as PBLHmean,

PBLHmax, PBLHmin, PBLH00, and PBLH12 hereafter, re-

spectively. Also the term ‘‘annual mean’’ is often omitted

for the remainder of this paper.

3. Results and discussion

a. Climatology and trends in PBLHmean for the reanalysis
and CMIP6

Figure 1 shows the spatial patterns of climatological

PBLHmean (m) from the four reanalysis and three CMIP6

datasets. Overall, the PBLH climatology exhibits similar

spatial patterns across the different datasets, with the

deepest PBL over low-latitude drylands and the shallowest

in high latitudes and humid tropical regions. For the 12 660

land grid boxes between 608S and 608N, the spatial corre-

lation (R) between the ERA5 and the other six datasets,

MERRA-2, ERA5-EM, and MERRA-2-RI, CMIP6-AMIP-

MEM, CMIP6-HIST-MEM, and CMIP6-HIST-RI-MEM,

are 0.70, 0.99, 0.67, 0.76, 0.76, and 0.75, respectively. These

coefficients are all statistically significant (p , 0.0001). At

the grid box level, the minimum, maximum, mean, and

standard deviation (STD) of PBLHmean are 134.4, 1209.1,

585.1, and 155.1m for ERA5, and 335.0, 2229.6, 937.5, and

336.8m for MERRA-2, respectively. These values in the

ERA5 are almost identical to those in the ERA5-EM and

mostly comparable to those in the MERRA-2-RI and three

CMIP6 MEMs, while the MERRA-2 has much larger values

than the MERRA-2-RI. The major differences among these

seven datasets include the following: 1) the three CMIP6

MEMs exhibit a much smaller spatial range in PBLHmean, due

to a much larger minimum and a smaller maximum, than

ERA5, and 2) the MERRA-2 has a much larger values in the

minimum, maximum, mean, and STD than any other datasets.

These results are generally consistent with previous studies

(e.g., Svensson and Lindvall 2015; Wei et al. 2017a; Davy 2018;

Zhou 2021).

Figure 2 shows the spatial patterns of PBLHmean trend

(m decade21) estimated using the M–K method from the re-

analysis and CMIP6 datasets. Widespread positive trends are

seen in ERA5 over most land areas, except South Asia,

Western Australia, most of Canada, and the central and east-

ern United States (Fig. 2a). In comparison, fewer grid boxes

have significant trends in MERRA-2, with strong and signifi-

cant increasing trends in the Brazilian highlands, most of

Africa, and the Middle East, and significant decreasing trends in

the Indian subcontinent, Australia, and eastern China (Fig. 2b).

The trend in the ERA5-EM (Fig. 2c) is very similar to that in
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ERA5. MERRA-2-RI (Fig. 2d) shares similar trend patterns

to MERRA-2 but with a much smaller magnitude and a

slightly smaller spatial extent. The three CMIP6 MEMs

(Figures 2e,f) share similar significant increasing trends over

most areas in the Northern Hemisphere (e.g., the SDAP, the

continental United States, and Europe), exceptWest and South

Asia, but widespread insignificant trends across the Southern

Hemisphere. Note that the CMIP6 trends over coastal regions

and islands differ from the reanalysis results due to the coarse

spatial resolution of the models and the impacts of marine

PBL. In general, the trends are largest between 308N and 308S
in the reanalysis datasets and between 308 and 608N in the

CMIP6 models. Among the 12 660 land grid boxes between

608S and 608N, 51.3% (4.1%), 18.8% (24.2%), 49.7% (4.3%),

20.5% (18.2%), 30.6% (12.8%), 36.0% (23.5%), and 33.4%

(16.7%) exhibit a statistically significant increasing (decreasing)

trend at the 5% level, for ERA5, MERRA-2, ERA5-EM,

MERRA-2-RI, CMIP6-AMIP-MEM, CMIP6-HIST-MEM,

and CMIP6-HIST-RI-MEM, respectively. When the trend

is estimated using the OLS method, the results remain

very similar to these in the M–K method, except that the

percentages of grid boxes with significant trends are slightly

higher (Fig. S1 in the online supplemental material). Evidently,

the PBLH trend demonstrates large differences in the sign

and magnitude over many areas, but significant trends are

consistently seen at large scales over the SDAP and Indian

subcontinent.

To identify the large-scale spatial patterns with a con-

sensus on the PBLHmean trends among different datasets,

we calculate a consistency index (CI) as the number of

datasets with the same sign of trends that are statistically

significant at the 5% level. The spatial patterns of the CI

based on the M–K method are shown, respectively, for the

four reanalysis (Fig. 3a), three CMIP6 (Fig. 3b), and seven

FIG. 1. Spatial patterns of climatological PBLHmean (m) from the seven reanalysis and CMIP6 datasets at 18 3 18
resolution: (a) ERA5 (1979–2019), (b) MERRA-2 (1980–2019), (c) ERA5-EM (1979–2019), (d) MERRA-2-RI

(1980–2019), (e) CMIP6-AMIP-MEM (1979–2014), (f) CMIP6-HIST-MEM (1979–2014), and (g) CMIP6-HIST-

RI-MEM (1979–2014). The maximum, minimum, mean, and standard deviation (STD) of PBLH over all land grid

boxes between 608S and 608N are listed above each panel.
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reanalysis1CMIP6 (Fig. 3c) datasets. For example, an in-

dex value of 14 (24) in Fig. 3a indicates that all four re-

analyses share similar and significant upward (downward)

trends. Figure 3a highlights the large-scale consensus on the

significant increasing trends (in red, CI 5 4) over North

Africa, West Asia, central Africa, and Brazil, and along the

Mongolian–Russian Siberian borders, but on the significant

decreasing trends (in blue, CI 5 24) over the Indian sub-

continent. Note that MERRA-2-RI (Fig. 2d) has a much

smaller area in red (e.g., over the SDAP) than the other

three reanalyses (Figs. 2a,b) because its PBLHmean is esti-

mated from four 6-hourly instantaneous atmospheric fields

(rather than from 24-hourly averaged fields for the other

reanalyses), which have much larger interannual variability

and thus fewer grid boxes with significant trends (Table 2).

Evidently, positive trends dominate over a broad, contig-

uous swath of land covering the SDAP while negative

trends are relatively smaller in spatial extent and cover

mostly India. The three CMIP6 datasets (Fig. 3b) show

consistent significant increasing trends (in red, CI5 3) over

many areas in North Africa, the contiguous United States,

and eastern Canada, but significant decreasing trends (in

blue, CI 5 23) over the Indian subcontinent and China.

Note that their area in red over the SDAP (Fig. 3b) is

smaller than the entire desert areas with increasing PBLH

trend in the reanalysis (Figs. 2a–c) because of the impacts of

marine PBL over coastal regions in the periphery of the

deserts in coarse-resolution GCMs. When both the four

reanalysis and three CMIP6 datasets are considered to-

gether (Fig. 3c), only the SDAP and India stand out with

consistent trends. To confirm this further, we also per-

formed the same analysis in Fig. 3 but using the OLS

method and obtain almost identical results (Fig. S2), indi-

cating that the results of PBLHmean trends are independent

FIG. 2. Spatial patterns of PBLHmean trend (m decade21) estimated using the M–K method from the seven

datasets at 18 3 18 resolution: (a) ERA5 (1979–2019), (b) MERRA-2 (1980–2019), (c) ERA5-EM (1979–2019),

(d) MERRA-2-RI (1980–2019), (e) CMIP6-AMIP-MEM (1979–2014), (f) CMIP6-HIST-MEM (1979–2014), and

(g) CMIP6-HIST-RI-MEM (1979–2014). The percentage of positive (1) and negative (2) trends that are statis-

tically significant at the 5% level over all land grid boxes between 608S and 608N are listed above each panel.
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of the methods used for the trend estimate. The seven da-

tasets highlight a consensus and robustness of a large-scale

pattern of rising PBLH over the enormous SDAP (188–
318N, 58W–508E) and decreasing PBLH over India (178–
348N, 688–968E), the two rectangle boxes depicted in Fig. 3c.

For brevity, our remaining paper will focus mostly on the

PBLH estimated from the M–K method and the SDAP and

India as two regional hotspots.

Figure 4 shows the probability distribution function (PDF),

or frequency of occurrence, of PBLHmean trends (m decade21;

Fig. 2) that are statistically significant at the 5% level over

land between 608S and 608N (in blue), the SDAP (in red), and

India (in green). Despite the large differences in the trend

magnitude, the reanalyses (Figs 4a–d) clearly show a tendency

toward larger and more positive (negative) trends over the

SDAP (India) than the entire region of 608S–608N. Such PDF

differences are also evident in the CMIP6 MEMs (Figs. 4e–g).

Note that the EM and MEM enhance the forcing signal (e.g.,

global warming signal) and reduce internal variability and

model uncertainty. All indicate that the SDAP (India) has a

higher frequency of occurrence of large and positive (negative)

PBLH trends than the entire study domain. We also calculate

the PDF to demonstrate the ensemble spread of PBLHmean

trend among the ensemble members in the ERA5 (Fig. 5a) and

CMIP6 models (Figs. 5b–d). The uncertainty associated with

initial conditions, observations, SSTs, and model physical pa-

rameterizations in the ERA5 ensemble is small, and so all

ensembles exhibit similar features to the ERA5-EM. The

CMIP6 models exhibit large intermodel differences, but most

models demonstrate a higher frequency of occurrence of in-

creasing (decreasing) PBLH over the SDAP (India) than the

entire study domain.

Figures 1–5 illustrate the PBLHmean climatology and trends

at the grid box level. To focus on the large-scale features,

Table 3 lists the climatology (m) and trend (m decade21) of

regional mean PBLHmean for the reanalysis and CMIP6 data-

sets averaged over the entire study domain (608S–608N),

SDAP, and India. MERRA-2 has substantially larger clima-

tological values, 966.9m (608S–608N), 1453.2m (SDAP), and

1265.2m (India) than the other six datasets, which have ranges

of 536.8–717.2, 691.3–843.2, and 594.4–761.7m, respectively.

All datasets show consistent and significant trends, positively in

the SDAP and negatively in India, and the resulting trends

estimated using the M–K and OLS are very similar. Like the

climatology, the MERRA-2 has much larger trends than the

other datasets. For the region 608S–608N, only the two ERA5

datasets and one of the CMIP6 datasets show statistically sig-

nificant upward trends. The lack of significant trend over the

entire domain in the two MERRA-2 datasets is a result of

smoothing the spatially heterogeneous trends (Figs. 2b,d).

b. Comparisons with radiosonde observations at daytime

The above results show the PBLHmean changes for the

gridded reanalysis and CMIP6 datasets. Over land, the PBLH

has a strong diurnal cycle. It is typically shallow and stable at

night because of longwave radiative cooling but grows deep

and unstable at daytime because of solar heating (Stull 1988;

Liu and Liang 2010). Next, we use three compositing methods

to validate the reanalysis results against the radiosonde mea-

surements but focus on the daytime PBLH for two reasons.

First, most PBLH changes are expected to occur at daytime

due to solar heating (Seidel et al. 2012; Chan and Wood 2013;

Brahmanandam et al. 2020). Second, the PBLH is more diffi-

cult to quantify and has larger uncertainty for the stable than

unstable regime and so is better estimated at daytime in terms

of quality by current methods using radiosonde, reanalysis, and

GCM data (e.g., Seidel et al. 2012).

First, we compare the observed MMLH and reanalysis

PBLHmax (termed the compositing method A), which repre-

sents the daytime maximum PBLH and is used to approximate

the MMLH estimated from the radiosonde observations. Note

that temporal sampling may differ largely between these two

FIG. 3. Spatial patterns of consistency index (CI) for PBLHmean

trend (m decade21) estimated using the M–K method from (a) the

four reanalysis datasets (Figs. 2a–d), (b) the three CMIP6 datasets

(Figs. 2e–g), and (c) all the seven datasets (Figs. 2a–g). The value of

consistency index is defined as the number of the datasets with the

same sign of trends that are statistically significant at the 5% level.

The rectangle boxes in blue (188–318N, 58W–508E and 178–348N,

688–968E) in (c) depict the area over which the data are averaged

for the regional analysis over the SDAP and India, respectively.
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FIG. 4. The probability distribution function (PDF) or frequency of occurrence of PBLHmean (m decade21) that

are statistically significant at the 5% level over land averaged over three regions: the zonal mean between 608S and

608N (in blue), the SDAP (in red), and India (in green) for the seven datasets (Fig. 2). The geographic domains for

the SDAP and India are depicted in Fig. 3c.
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datasets over some regions [section 2a(1)]. Figure 6a shows the

spatial patterns of MMLH trends estimated from the IGRA2-

MMLH. Among the 147 stations between 608S and 608N,

29.9% (8.2%) have a statistically significant increasing (de-

creasing) trend at the 5% level. In particular, the radiosonde

data do exhibit coherent and large-scale spatial patterns of

increasing trends over the SDAP. Similar increasing (de-

creasing) trends are also seen over Europe (India), consistent

with previous observational studies (Zhang et al. 2013; Li et al.

2020). Figures 7a and 7b show the scatterplot of the MMLH

trends and corresponding reanalysis PBLHmax trends for 63

stations that have a statistically significant trend (p, 0.1) in the

IGRA2-MMLH. Evidently, the MMLH has many more sta-

tions with increasing trends than with decreasing trends and it

has much larger trends than the reanalyses. Its correlation R is

0.12 (p 5 0.35) with the ERA5 and 0.38 (p , 0.01) with the

MERRA-2, indicating the similar sign formost trends but large

differences in the magnitude. This weak correlation is partially

expected considering the sampling issuementioned previously.

However, at the regional scale, the MMHL could be useful

over the SDAP where the sampling issue is minor (see more

results later)

Second, we composite the PBLH00 and PBLH12 trends from

the IGRA2-RI to better match the reanalysis and observations

and to avoid the above temporal sampling issue. The daytime

radiosonde trend is chosen from one of the two IGRA2-RI

trends at 0000 and 1200 UTC (e.g., PBLH00 and PBLH12)

whose climatological PBLH is larger (termed compositing

method B). The reanalysis daytime trend is determined from

the chosen UTC time accordingly. Figure 6b shows the spatial

patterns of daytime PBLH trends estimated from the IGRA2-

RI. Among the 192 stations between 608S and 608N, 60.9%

(4.7%) have a statistically significant increasing (decreasing)

trend at the 5% level. The radiosonde data exhibit a much

higher percentage of positive trends than Fig. 6a and also in-

creasing trends over the dry Arabian Peninsula and Europe,

similar to Fig. 6a. Figures 7c and 7d show the scatterplot of the

observed and reanalysis daytime PBLH trend for 133 stations

with a statistically significant trend at the 10% level in the

IGRA2-RI. The correlation R is 0.47 (p, 0.01) for ERA5 and

0.50 (p, 0.01) forMERRA-2, much stronger than theR values

in Figs. 7a and 7b.

Third, we composite the PBLH00 and PBLH12 trends from

the IGRA2-RI to match the reanalysis and observations

following the same logic in the compositing method B. The

daytime radiosonde trend is chosen fromone of the two IGRA2-

RI trends (e.g., PBLH00 and PBLH12) based on the local solar

time as done in Wang and Wang (2016), and the reanalysis

daytime data are chosen accordingly (termed compositing

method C). The spatial patterns of observed daytime PBLH

trends and their percentages of the observed significant trends

(Fig. 6c) and the scatterplot between observed and reanalyzed

FIG. 5. As in Fig. 4, but for the four ensemble datasets: (a) ERA5 10-member ensemble (1979–2019), (b) CMIP6-

AMIP multimodel ensemble (1979–2014), (c) CMIP6-HIST multimodel ensemble (1979–2014), and (d) CMIP6-

HIST-RImultimodel ensemble (1979–2014). The dashed and solid curves denote the individual ensemblemembers

and the ensemble mean, respectively.
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(Figs. 7e and 7f) show similar results to compositing method B

(Figs. 6b and 7c,d).

Next, we validate the two reanalysis results against the ob-

servations from available radiosonde stations at the regional

scale as it is essential that the reanalyses can at least capture the

major PBLH features observed over the SDAP and India

where consistent trends are identified in section 3a. The focus is

on the station mean variability instead of individual stations to

maximize large-scale patterns and minimize local influences.

The daytime PBLHs for the reanalysis and radiosonde data are

compared for compositing methods A and B. Compositing

method C is not shown due to its similarity to compositing

method B.

Figures 8a and 8c show the station mean interannual vari-

ations in observed MMLH and reanalysis PBLHmax anom-

alies (i.e., the compositing methodA) from five stations over

the SDAP. The PBLH exhibits a persistent and statistically

significant (p , 0.01) upward trend and shares similar in-

terannual variability in the observed and reanalyzed data.

The increasing trend is 98.4 m decade21 for the observa-

tions, 31.2 m decade21 for ERA5, and 18.7 m decade21 for

MERRA-2. Despite underestimating the observed trend,

the reanalysis PBLH shows a statistically positive correla-

tion with the observed PBLH, with R 5 0.76 (p , 0.01) in

ERA5 and 0.69 (p , 0.01) in MERRA-2. These results in-

dicate that the observed long-term trend and interannual

variability in MMLH are generally captured by the rean-

alyses reasonably well over the SDAP and ERA5 is closer to

the observations than MERRA-2. Figures 8b and 8d are

similar to Figs. 8a and 8c but from nine stations in India. The

reanalysis PBLH exhibits a significant decreasing trend (p,
0.01) while the observed data show negative but insignifi-

cant trends. In particular, the observed PBLH exhibits op-

posite trends between the first and last 20 years. It correlates

significantly with ERA5 (R 5 0.53, p , 0.01) but insignifi-

cantly with MERRA-2 (R 5 20.10, p 5 0.59). It is well

documented that Indian radiosonde data contain large in-

homogeneities due to frequent instrument changes and

other causes (e.g., Lanzante et al. 2003; Thorne et al. 2005;

Zhou et al. 2020), which may help to explain the opposite

trends and the poor correlation. In addition, the PBLH over

the Indian subcontinent is characterized by complex to-

pography and heterogeneous land surface, coupled with the

Indian monsoon and various soil–vegetation–atmosphere

interactions (e.g., Sathyanadh et al. 2017). This complexity

along with the data quality issues result in low confidence

even in homogenized datasets because of the very poor

quality and abnormally large variances in the raw data

(Zhou et al. 2020).

Figure 9 shows the station-mean interannual variations in

the observed and reanalysis daytime PBLH anomalies (i.e.,

compositing method B; Figs. 6b and 7c,d) from five stations

available over the Arabian Peninsula and one station available

in India from the IGRA2-RI. Again, significant increasing

trends and strong correlations are evident in the dry Arabian

Peninsula (R 5 0.72–0.76; p , 0.01), while weak and insignif-

icant correlations are seen in India, where missing data are

evident in the radiosonde measurements.

We need to realize that the radiosonde data are point

measurements, while the reanalysis values are averaged over a

TABLE 3. Climatology (m) and trend (m decade21) of regional mean PBLHmean for the reanalysis and CMIP6 datasets used in this

study. For column 2 (Type), climatology means the climatology of regional-mean PBLHmean; OLS and M–K are two methods used to

calculate the trend and its significance. Regional averaging is applied to the land grid boxes between 608S and 608N, SDAP (188–318N,

58W–508E), and India (178–348N, 688–968E), depicted as the two rectangles in Fig. 3c. Boldface values indicate trends that are statistically

significant at the 5% level.

Dataset Type 608S–608N SDAP India

ERA5 Climatology 589.48 723.05 594.44

MERRA-2 Climatology 966.91 1453.36 1265.16

ERA5-EM Climatology 599.48 737.25 599.98

MERRA-2-RI Climatology 536.83 691.25 757.43

CMIP6-AMIP-MEM Climatology 704.32 843.21 757.08

CMIP6-HIST-MEM Climatology 668.44 776.98 761.7

CMIP6-HIST-RI-MEM Climatology 717.19 754.27 751.73

ERA5 OLS 7.59 14.51 28.52

MERRA-2 OLS 1.45 27.74 225.7
ERA5-EM OLS 7.66 16.43 27.02

MERRA-2-RI OLS 0.25 8.71 219.17

CMIP6-AMIP-MEM OLS 0.51 3.26 27.02
CMIP6-HIST-MEM OLS 0.22 1.82 29.83

CMIP6-HIST-RI-MEM OLS 0.48 3.03 212.33

ERA5 M–K 7.62 14.69 29.02

MERRA-2 M–K 0.28 26.92 227.78
ERA5-EM M–K 7.73 16.77 27.65

MERRA-2-RI M–K 0.09 8.83 222.62

CMIP6-AMIP-MEM M–K 0.46 3.29 26.47

CMIP6-HIST-MEM M–K 0.07 1.79 29.83
CMIP6-HIST-RI-MEM M–K 0.42 2.86 212.87
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grid box at a much coarser resolution (Chan andWood 2013).

It is difficult for the reanalysis data to match the observed

PBLH trend, which is localized in space and time. Also, ra-

diosonde profiles are measured twice a day at specified syn-

optic times (0000 and 1200 UTC), have missing data over

many stations, and are often insufficient in vertical resolution

for most data, which can create large fluctuations in the

PBLH estimate (Liu and Liang 2010). Atmospheric rean-

alyses produced at various institutes have substantially im-

proved in quality as a result of better models, better input

data, and better assimilation methods (Dee et al. 2011).

Despite much progress made in reducing uncertainties in

assimilating various types of observations, current reanalysis

data still suffer from artifacts largely due to the global ob-

serving system changes and cannot well represent near-

surface variables such as surface energy flux and moisture,

which could produce complications for climate studies, es-

pecially regarding low-frequency trends at regional scales

(Robertson et al. 2014; Gelaro et al. 2017; Bosilovich et al.

2017). Hence, large differences in PBLH trends between

observed and reanalyzed exist at local to regional scales.

Nevertheless, the reanalysis PBLHs reproduce the observed

trend and interannual variability over the SDAP, while

differing from observations over India due to radiosonde data

quality issues.

c. Statistical relationships between PBLH and related
variables

Previous studies have documented that changes in PBLH

are strongly correlated with changes in surface sensible heat,

temperature, and RH (Zhang et al. 2013; Zhao et al. 2017;

Darand and Zandkarimi 2019; Li et al. 2020). Here we perform

similar statistical analyses between PBLH and several key

PBLH-related variables using the two high-resolution re-

analysis datasets.

Figure 10 shows the scatterplots between the trends in daily

maximum PBLH, SHFX, Ts, and RH2m for (left) ERA5 and

(right) MERRA-2. Only the grid boxes with a statistically

significant trend in PBLH (p , 0.05) over land between 608N
and 608S are included. As expected from theory, the PBLH

trend is positively correlated with the trend in SHFX and Ts,

and negatively correlated with the trend in RH2m. For ex-

ample, R is 0.77 with SHFX, 0.69 with Ts, and 20.72 with

RH2m for the 7590 grid boxes in ERA5, and the corre-

sponding values are 0.85, 0.91, and 20.91 for the 4696 grid

boxes in MERRA-2. Considering the large sample size, the R

values are extremely strong and all statistically significant

(p , 0.001), indicating a strong spatial coupling between the

paired trends.

To further examine the above relationships, we also calcu-

late the correlation for three temporally averaged PBLHs

(dailymaximum, dailyminimum, and dailymean) and consider

more PBL-related variables. Table 4 lists the R values for

SHFX, LHFX, LCL,Ts,T2m, Td2m (q2m), and RH2m using both

the M–K and OLS methods. Evidently, PBLH trends are

correlated positively with the trends in variables related to

surface heating (SHFX, T2m, and Ts), and negatively with the

trends in variables related to surface moisture (LHFX, Td2m,

q2m, and RH2m). Note that changes in LCL are related to both

surface heating and humidity as lower surface RH (i.e., warmer

and/or drier air) results in higher LCL (and PBLH as well).

The correlation between PBLH and LCL is negative in the

ERA5 as the LCL is expressed as the pressure (hPa), not the

height (m) at the LCL that is used in other datasets. Overall,

the R values are extremely strong and all statistically signifi-

cant (p, 0.001) for the daily maximum and daily mean PBLH

considering the large sample size. For example, the 28 R

values for the daily maximum PBLH range between 0.50 and

0.92, with 21 of them exceeding 0.70. In general, the R values

are comparable for the daily maximum and daily mean

PBLH, but are much weaker for the daily minimum PBLH at

nighttime. Interestingly, the correlations are much stronger in

the MERRA-2 than the ERA5.

Figure 11 shows the regional mean interannual variations in

daily mean PBLH, SHFX, Ts, and RH2m for (left) ERA5 and

(right) MERRA-2 averaged over the entire study domain

(608S–608N). The PBLH shows long-term upward trends con-

sistent with the increase in sensible heat and surface warming

and the decrease in RH2m with time. At the interannual scale,

the PBLH is correlated positively and significantly with SHFX

(R 5 0.96) and Ts (R 5 0.88) and negatively with RH2m

FIG. 6. Spatial patterns of PBLH trend (m decade21) estimated

using the M–K method from the IGRA2 radiosonde data:

(a) daytime MMLH (compositing method A), (b) daytime PBLH

(compositing method B), and (c) daytime PBLH (compositing

method C). The percentages of positive (1) and negative (2)

trends that are statistically significant at the 5% level over land

between 608S–608N are listed above each panel. The rectangle

boxes in blue are depicted in Fig. 3c.
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(R 5 20.96) in the ERA5. The correlations in the MERRA-2

data are similar but slightly weaker. Unlike the persistent in-

creasing trend in the ERA5, the MERRA-2 PBLH exhibits an

increasing trend from 1980 to 2002 but a downward trend

thereafter.

Figure 12 is similar to Fig. 11, but for the SDAP. Again, the

PBLH shows positive trends consistent with the increase in

sensible heat and surface warming and the decrease in RH2m

with time. At the interannual scale, the PBLH correlates

positively and significantly with SHFX (R5 0.75) and Ts (R5

FIG. 7. Comparison of PBLH trend (m decade21) estimated using theM–Kmethod from the

IGRA2 radiosondes and corresponding ERA5 and MERRA-2 datasets: (a),(b) daytime

MMLH from 63 stations (Fig. 6a, compositing method A), (c),(d) daytime PBLH from 133

stations (Fig. 6b, compositing method B), and (e),(f) daytime PBLH from 138 stations (Fig. 6c,

compositing method C). The correlation coefficient (R) and its significance (p value) and

sample size (N) are listed above each panel. Only the stations with a trend that is statistically

significant at the 10% level is used.
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0.75) and negatively with RH2m (R520.32) in ERA5 and the

correlations are slightly weaker in MERRA-2. The weak cor-

relation with RH2m is expected given the limited moisture

availability over the deserts. Figure 13 is similar to Fig. 11, but

for India. In contrast to the SDAP, the PBLH shows negative

trends consistent with decreasing SFHX and Ts and increasing

RH2m. At the interannual scale, the PBLH correlates posi-

tively and significantly with SHFX (R5 0.82) andTs (R5 0.28)

and negatively with RH2m (R 5 20.92) in the ERA5 and the

correlations are slightly weaker in the MERRA-2. The weak

and insignificantR values withTs are expected given increasing

moisture availability (and thus latent heat) over India.

Besides the results for PBLHmean shown in Figs. 11–13, we

also calculate the correlation for PBLHmax and PBLHmin and

consider more PBL-related variables. Table 5 lists theR values

for SHFX, LHFX, Ts, T2m, and RH2m. Evidently, PBLH is

correlated positively andmostly significantly with the variables

related to surface heating (SHFX, T2m, and Ts), and negatively

with the variables related to surface moisture (LHFX and

RH2m). Overall, the R value is extremely strong and all sta-

tistically significant (p , 0.001) for PBLHmax at daytime and

PBLHmean, while the R value is much weaker for PBLHmin at

nighttime, consistent with theR values for the trends (Table 4).

Note that the global mean time series (608S–608N) is mostly

determined by large-scale external forcing and so has a much

larger R value than the regional mean time series (e.g., SDAP

and India), which is also affected by local to regional factors

(e.g., clouds and SSTs).

d. Physical explanations for PBLH trends

Earth is mainly warmed from the bottom up, as most solar

radiation is absorbed at the surface and this energy is trans-

mitted to the rest of the atmosphere through PBL processes.

There exists a high level of complexity and heterogeneity of

various factors in controlling the PBLH changes at multiple

spatial and temporal scales under different surface and atmo-

spheric conditions (Stull 1988). Inherently, the PBLH is par-

ticularly sensitive to soil moisture, vegetation, and terrain

(Talbot et al. 2007; Liu and Liang 2010; Seidel et al. 2012;

Zhang et al. 2013; Lee and De Wekker 2016; Wei et al. 2017a;

Sathyanadh et al. 2017) and thus exhibits a far more hetero-

geneous picture than other variables such as temperature (e.g.,

Donat et al. 2014). For example, soil moisture determines the

partitioning of net radiation between sensible and latent heat

FIG. 8. Station-mean interannual variations in daytime MMLH anomalies from the IGRA2-MMLH (left y axis;

m) and corresponding reanalysis daytime PBLHmax anomalies (right y axis; m) from (a),(b) ERA5 and (c),(d)

MERRA-2 averaged over (a),(c) 5 radiosonde stations in the SDAP and (b),(d) 9 stations in India for the period

1979/80–2019. These 14 stations are depicted in Fig. 6a. The correlation coefficient (R) and its significance (p value)

and sample size (N) are listed above each panel. The trend using the M–K method for the time series and its

significance (p value) and N are shown within each panel as well. Compositing method A is used to produce the

daytime PBLHs.
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and thus the PBLH; its temporal change can significantly

modify the PBLH from daily to interannual time scales and its

spatial change can largely determine the spatial heterogeneity

in PBLH (Guo et al. 2007; Lee and De Wekker 2016). The

spatiotemporal variations in these surface conditions can sub-

stantially affect both the magnitude and sometimes the sign of

the PBLH trends at local to regional scales.

There exists a wide range of complexity and uncertainty in

PBLH estimates among different datasets andmethods. PBLH

is one key measure of the strength of the PBL processes but

lacks a unified definition. Hence a variety of methods have

been used to estimate the PBLH, and different methods can

produce substantially different values, even for the same at-

mospheric profile (e.g., Seidel et al. 2010; McGrath-Spangler

andMolod 2014). The radiosonde-based PBLH estimates have

limited spatial and temporal coverage and suffer from inho-

mogeneities (Thorne et al. 2011; Haimberger et al. 2012).

The reanalysis PBLH is a model-based estimate and so is

prone to model deficiencies (e.g., McGrath-Spangler and

Molod 2014; McGrath-Spangler et al. 2015; Wei et al. 2017a;

Zhou 2021) and artifacts and nonphysical trends largely due

to the global observing system changes (e.g., Dee et al. 2011;

Robertson et al. 2014; Gelaro et al. 2017; Bosilovich et al.

2017). It has been well documented that current weather and

climate models have difficulties and large uncertainties in

accurately representing key PBL processes (Garcia-Carreras

et al. 2015; Holtslag et al. 2013; Wei et al. 2017b; Ao

et al. 2017).

Our results show a large spread in the magnitude and sign of

PBLH trends among different datasets overmany regions. This

is not surprising at the global scale considering the difficulty

and uncertainty in estimating PBLH and the complexity and

heterogeneity of PBLH changes discussed above. Thus, it is

challenging and somewhat impossible to validate the global

long-term PBLH trends in the reanalysis and GCM datasets

using radiosonde observations with limited spatial and tem-

poral coverage. To synthesize the differences and copewith the

uncertainties, we use a multidata synthesis approach from an

ensemble of different datasets to identify large-scale regions

where the change signal is considered to be robust and con-

sistent by considering both the sign and statistical significance

of the trends by all datasets (Power et al. 2012; Dosio et al.

2019). We assume that the PBLH estimate methods are based

on well-established physical principles and so are more likely

to reach a consensus on the direction (or sign) than they are on

the magnitude of the change.

FIG. 9. Station-mean interannual variations in daytime PBLH anomalies from the IGRA2-RI (left y axis; m) and

corresponding reanalysis daytime PBLH anomalies (right y axis; m) from (a),(b) ERA5 and (c),(d) MERRA-2

averaged over (a),(c) 5 radiosonde stations in the SDAP and (b),(d) 1 station in India for the period 1979/80–2019.

These 6 stations are depicted in Fig. 6b. The correlation coefficient (R) and its significance (p value) and sample size

(N) are listed above each panel. The trend using the M–K method for the time series and its significance (p value)

and N are shown within each panel as well. Compositing method B is used to produce the daytime PBLHs.
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Our results indicate strong spatial coupling in the long-termtrends

between PBLH and surface heating and moisture variables, partic-

ularly in the daytime. Over land, the PBLH growth is drivenmainly

by surface heating and static stability (Chan and Wood 2013; Lee

and De Wekker 2016; Ao et al. 2017; Brahmanandam et al. 2020).

Warmer and drier surfaces result in greater sensible heat flux and

PBLH, and so PBLH is strongly correlated with changes in near-

surface sensible heat, temperature, and RH (Zhang et al. 2013;

FIG. 10. Scatterplots between PBLHmax trend (x axis) and corresponding trends in sensible

heat (SHFX;Wm22), surface skin temperature (Ts; K), and 2-m relative humidity (RH2m;%)

for (left) ERA5 and (right) MERRA-2. Only the grid boxes with a statistically significant

trend in PBLH (p , 0.05) over land between 608S and 608N are included. The correlation

coefficient between the two trends and the sample size (N) in grid boxes are listed above each

panel. It is statistically significant (p , 0.0001) in all plots.
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Darand and Zandkarimi 2019; Li et al. 2020). Our statistical

analyses (Table 4, Fig. 10) show significant correlations in the

long-term trend, positively between PBLHand variables related

to surface heating (SHFX,T2m, and Ts), and negatively between

PBLH and variables related to surface moisture (LHFX, Td2m,

q2m, andRH2m). These correlations are stronger at daytime than

nighttime because of the close daytime coupling between PBLH

and solar heating (e.g., Liu and Liang 2010; Zhang et al. 2013;

Lee and De Wekker 2016). Our reported relationships are

consistent with previous studies (Zhang et al. 2013; Chan and

Wood 2013; Darand and Zandkarimi 2019).

Our results highlight a consensus on increasing PBLH trends

among different datasets over the SDAP. The SDAP is among

the driest and hottest regions on Earth and has limited soil

moisture, vegetation, and cloudiness. As discussed previously,

surface heating via sensible heat is documented as the domi-

nant driver in determining the convective PBLH growth over

arid areas because of limited availability of surface moisture. It

is well known that drier regions with less soil moisture and

vegetation are associated with higher Bowen ratios and tend to

experience larger warming rates due to more sensible heat flux

and less local evaporative cooling (Zhou et al. 2007, 2009,

2010). Increased downwelling longwave radiation (DLR)

associated with large-scale warming and moistening in re-

sponse to increasing GHGs has been identified as the primary

surface radiative forcing for the amplified surface warming

associated with DA over the SDAP (Zhou et al. 2015, 2016;

Cook and Vizy 2015; Zhou 2016; Evan et al. 2015; Wei et al.

2017b). This positive radiative forcing is converted mainly

into sensible heat over the dry deserts, which enhances

surface heating and deepens PBLH via elevated turbulent

mixing in the PBL.

Our results also highlight a consensus on decreasing PBLH

trends among different datasets over the Indian subcontinent.

Indian monsoon precipitation has intensified over the past

three decades, while drying trends are seen over the SDAP

(e.g., Wang et al. 2012; Jin et al. 2014). This is consistent with

the well-coupled monsoon–desert mechanism (e.g., Rodwell

and Hoskins 1996; Sun et al. 2019; Kim et al. 2019) and with

GCM-based prediction of intensified monsoon in a warming

climate (e.g., Chen et al. 2020; Wang et al. 2020). For example,

Hoskins (1996) proposed that the drying trend in the arid re-

gions resulted from the increased descent produced by the

monsoon heating-induced Rossby waves that interact with

subtropical westerly flows. The contrast changes in PBLH and

T2m between the SDAP and India seem to support this monsoon–

desert coupling. In addition, our results in Fig. 13 and Table 4 also

show close connections in the trend and interannual variation

between PBLH and near-surface moisture variables (e.g., RH2m

and latent heat) over India, resonating with intensified monsoon

precipitation. The reanalysis results in India, however, cannot be

validated using reliable radiosonde observations.

Our results suggest that the reanalysis PBLH estimate might

be more reliable in ERA5 than in MERRA-2. The reanalysis

PBLH is estimated based on the Ri method in ERA5 and the

total eddy diffusion coefficient of heat in MERRA-2 (e.g.,

McGrath-Spangler and Molod 2014; Davy and Esau 2014).

Among various methods used to estimate the PBLH, the al-

gorithms based on the Ri method were proved to be most

suitable for application to large radiosonde, reanalysis, and

TABLE 4. Spatial correlations in annual mean trends between PBLH and related variables for the two reanalysis (ERA5 and MERRA-2)

datasets. Column 1 (Method): Twomethods (OLS andM–K) are used to calculate the trend (decade21) and its significance. Column 2 (PBLH):

PBLHmean is the dailymean of 24-hourly PBLHvalues, PBLHmax is the daytimemean of 5 hwithmaximum climatological PBL values, PBLHmin

is the nighttimemeanof 5 hwithminimumclimatological PBLvalues.Column3 (N): the number of grid boxes (N)with a statically significant trend

in PBLH (p, 0.05) over land between 608S and 608N. Columns 4–10 (the corresponding PBLH related surface variables): SHFX is sensible heat

flux (Wm22), LHFX is latent heat flux (Wm22), PLCL is the pressure at lifting condensation level (hPa) fromERA5,ZLCL is the height at lifting

condensation level (m) fromMERRA-2,Ts is surface skin temperature (K),T2m is 2-m surface air temperature (K), Td2m is 2-m surface dewpoint

temperature (K), q2m is 2-m surface specific humidity (g kg21), and RH2m is 2-m surface relative humidity (%). All correlation coefficients in

boldface are statistically significant at the 1% level based on a two-tailed Student’s t test due to the large size of data samples (N).

ERA5

Method PBLH N SHFX LHFX PLCL Ts T2M Td2M RH2M

OLS PBLHmean 7137 0.76 20.52 20.73 0.61 0.51 20.50 20.73

OLS PBLHmax 7693 0.77 20.64 20.74 0.70 0.51 20.57 20.73

OLS PBLHmin 4580 0.13 0.43 20.16 0.04 20.01 20.16 20.15
M2K PBLHmean 7018 0.76 20.51 20.72 0.60 0.51 20.49 20.72

M2K PBLHmax 7590 0.77 20.63 20.74 0.69 0.50 20.57 20.72

M2K PBLHmin 4415 0.12 0.43 20.16 0.04 0.00 20.15 20.15

MERRA-2

Method PBLH N SHFX LHFX ZLCL Ts T2M Td2M RH2M

OLS PBLHmean 5609 0.65 20.59 0.79 0.80 0.79 20.68 20.76

OLS PBLHmax 4857 0.86 20.76 0.92 0.91 0.91 20.90 20.92
OLS PBLHmin 6374 0.18 20.08 0.44 0.55 0.55 20.17 20.39

M2K PBLHmean 5443 0.63 20.57 0.76 0.77 0.76 20.66 20.74

M2K PBLHmax 4696 0.85 20.74 0.90 0.91 0.90 20.89 20.91

M2K PBLHmin 5991 0.16 20.05 0.43 0.52 0.52 20.18 20.38
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GCM datasets (Seidel et al. 2012; McGrath-Spangler and

Molod 2014). Our PBLH estimates using the Ri method from

the MERRA-2-RI are much smaller than the PBLHs from the

MERRA-2 and comparable to the ERA5 estimate. Also, sys-

tematic biases were documented in the MERRA-2 PBLH,

particularly at nighttime (e.g., McGrath-Spangler and Molod

2014; Svensson and Lindvall 2015; Dang et al. 2016; Davy 2018;

Zhou 2021). Furthermore, our validations using the radiosonde

data show the ERA5 PBLH is closer to the observations than

MERRA-2. If this is the case, rising PBLH is likely more

widespread spatially than that seen in MERRA-2.

Our results indicate large discrepancies among different PBLH

datasets, which are likely due to the differences in spatial resolu-

tion (point measurements versus coarse-resolution grid averaged

data), observational uncertainties, and deficiencies in modeling

the surface radiative forcing, surface energy partitioning, and PBL

mixing. The land surface and PBL change in response to external

forcings are a result of complex interactions among the atmo-

sphere, PBL, and land surface. Considering the complexity of

turbulent mixing and the challenges in observing and modeling

the PBL processes, it is very challenging to attribute the differ-

ences among different PBLH datasets in the fully coupled land–

atmosphere system. For example, the systematic underestimated

diurnal range in the PBLHand surface air temperature has been a

long-standing issue in reanalysis and numerical models (e.g., Wei

et al. 2017a,b; Du et al. 2018; Davy 2018). As the focus of the

present study is the detection of convergent PBLH trends, further

attribution of these differences is beyond the scope of this paper

and will be explored in future studies.

4. Conclusions

This paper examines the large-scale patterns of long-term

PBLH trends over land between 608S and 608N. Nine different

types of datasets consisting of radiosonde observations, re-

analysis products, and climate model simulations are evaluated

over the satellite era for the period 1979–2019. To synthesize

the differences and cope with the uncertainties among differ-

ent PBLH estimates, a multidata synthesis approach is used to

make inferences on the robustness and consensus of the long-

term trends across different datasets. The emphasis is more on

the sign and significance of the trend and less on themagnitude.

We identify large-scale regions where all datasets (or 100%)

show a statistically significant trend (p, 0.05) and agree on the

sign of trends, to increase our confidence in the obtained re-

sults. The testable hypothesis is that the global warming signal

is manifest most in terms of the spatial extent of PBLH change

over the SDAP where the amplified surface warming associ-

ated with DA enhances turbulent mixing and thus raise the

PBLH height. Despite methodological uncertainties and data

FIG. 11. Regional-mean interannual variations in PBLHmean anomaly (in green) and three PBLH-related vari-

ables (in red): sensible heat (SHFX; W m22), surface skin temperature (Ts; K), and 2-m relative humidity (RH2m;

%), for (left) ERA5 and (right) MERRA-2 averaged between 608S and 608N for the period 1979–2019. The cor-

relation coefficient (R) and its significance (p value) and sample size (N) are shown within each panel.
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limitations, the main findings of this study are summarized as

follows:

1) Large differences in long-term PBLH trends among dif-

ferent datasets are found over many regions, expressed in

different magnitudes and/or signs of trends. This spread

reflects the difficulty and uncertainty in estimating PBLH

and the complexity and heterogeneity of various factors in

controlling the PBLH changes under different surface and

atmospheric conditions.

2) There is strong spatial coupling in the long-term trends

between PBLH and related key variables, particularly in

the daytime. There are statistically significant correlations in

the trends, positively between PBLHand variables related to

surface heating and negatively between PBLH and variables

related to surface moisture. The reported relationships are

consistent with theory and previous findings in the literature.

3) Different reanalysis and GCM datasets indicate consis-

tently coherent and large-scale spatial patterns of rising

PBLH over the enormous SDAP and declining PBLH in

India. Consistent PBLH trends also exist in other regions

but are much smaller in spatial extent than the SDAP and

in a subset of the nine datasets used. The radiosonde data

exhibit similar spatial features of increasing PBLH over the

SDAP and the reanalysis data generally capture the ob-

served regional mean long-term trend and interannual

variability in PBLH reasonably well over the deserts. The

PBLH changes over India cannot be validated due to lack

of good-quality radiosonde observations.

4) One robust signal across all datasets reveals a consensus on

increasing (decreasing) PBLH trends over the SDAP

(India). The ensemble distribution of reanalysis and GCM

PBLHtrends indicatesagreatercoherenceandahigher frequency

of occurrence of rising (declining) trends over the SDAP (India)

than any other regions. The rising PBLH is in good agreement

with amplified surface warming associated with DA, decreasing

RH, and increasing sensible heat over the SDAP, while the

declining PBLH is consistent with increasing RH and latent heat

and decreasing sensible heat in India in the reanalysis data.

To the best of our knowledge, this work is the very first study

to identify the large-scale patterns of long-term PBLH trends

in a warming climate among different datasets and establish

their relationships with several key PBLH related variables at

the global scale. Climate models predict consistently that DA

will accelerate over the arid and semiarid regions in the context

of global warming (Zhou et al. 2016; Zhou 2016). Along with

this amplified surface heating, the PBLH is expected to rise

continuously over the SDAP. The PBLH represents the depth

to which the free atmosphere is directly influenced by Earth’s

surface and responds to surface impacts. Rising PBLH indi-

cates deeper impacts of warming deserts on the free atmo-

sphere. This finding has important implications as the Sahara

and Arabian deserts are considered to be a hotspot in terms of

climate change and impacts from regional to global scales

through the influence of Saharan dust and atmospheric circu-

lation (Knippertz and Todd 2012;Vizy andCook 2017;Thomas

and Nigam 2018).

FIG. 12. As in Fig. 11, but averaged over the SDAP.
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TABLE 5. Temporal correlations in regional-mean annual anomaly time series between PBLH and related variables for the two re-

analysis (ERA5 andMERRA-2) datasets during the period 1979–2019.All variables are defined in Tables 3 and 4. Correlation coefficients

in boldface are statistically significant at the 5% level based on the two-tailed Student’s t test.

ERA5

Region PBLH N SHFX LHFX Ts T2M RH2M

608S–608N PBLHmean 41 0.96 20.21 0.88 0.88 20.96

608S–608N PBLHmax 41 0.98 20.75 0.88 0.87 20.98

608S–608N PBLHmin 41 0.58 0.79 0.80 0.82 20.67
SDAP PBLHmean 41 0.75 0.04 0.75 0.75 20.32

SDAP PBLHmax 41 0.55 20.15 0.67 0.68 20.27

SDAP PBLHmin 41 20.02 0.61 0.57 0.54 20.19

India PBLHmean 41 0.82 20.70 0.28 20.03 20.92
India PBLHmax 41 0.86 20.61 0.65 0.16 20.93

India PBLHmin 41 20.62 0.00 20.13 20.25 20.44

MERRA-2

Region PBLH N SHFX LHFX Ts T2M RH2M

608S–608N PBLHmean 40 0.81 20.67 0.38 0.35 20.88

608S–608N PBLHmax 40 0.91 20.69 0.51 0.42 20.95

608S–608N PBLHmin 40 0.14 0.10 0.47 0.47 20.59
SDAP PBLHmean 40 0.43 20.54 0.64 0.62 20.38

SDAP PBLHmax 40 0.48 20.56 0.63 0.59 20.34

SDAP PBLHmin 40 0.02 20.42 0.72 0.71 20.41

India PBLHmean 40 0.88 20.80 0.24 0.08 20.86
India PBLHmax 40 0.95 20.88 0.75 0.57 20.95

India PBLHmin 40 0.00 20.04 20.20 20.19 20.03
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