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Supplementary Information 
 
 

A. Impacts of open water body on VOD changes 
 
The VOD product has some large uncertainties over open water areas25-26. When there is a large 
open water body on the surface, it may contaminate the microwave signal and underestimate the 
VOD values (i.e. retrieved VOD value is lower than the true value). So a considerably wet year 
such as 1992 and 2007 might result in standing open water on the surface and thus have VOD 
values lower than other years (Fig. 4a and Extended Data Fig. 5a). We note that the volcanic 
eruption around 1991/1992 might have also played a role in the VOD anomaly in 1992. 
However, the significant decreasing VOD trend during the period 1988-2010 remains robust 
even after excluding these two wet years. Moreover, if we were to assume that there were no 
vegetation changes during the period 1988-2010, the decline in rainfall would result in less 
standing open water spatially and temporally and thus larger increases in VOD values. On the 
contrary, we observed the VOD decline during this period. In addition, the high density of tall 
trees in tropical rainforests makes it less likely to observe open water bodies. Therefore, the most 
likely reason for the observed VOD decline is that the vegetation itself changed toward the 
direction with lower vegetation water content and biomass, which is in line with the changes in 
EVI and other satellite data shown in our main text.       
 
B. Assessing EVI changes using MODIS spectral reflectance variations 
 
Here we use MODIS measured surface reflectance data in the blue (BLU, 0.459–0.479 μm), red 
(RED, 0.62–0.67 μm), and near-infrared (NIR, 0.841–0.876 μm) spectral bands from the Terra 
satellite for the period 2000 to 2012 to evaluate EVI changes.  
 
The decline of MODIS EVI can result from changes in the canopy reflectance at different 
spectral bands in response to real changes in vegetation characteristics. The most striking 
spectral feature of vegetation is the large contrast of strong absorption in the visible spectrum 
such as RED and BLU versus strong reflectance in the NIR spectrum. Assuming that non-
vegetation effects due to clouds and aerosols are mostly corrected by the MODIS atmospheric 
correction processing, we expect to see a decrease in NIR reflectance versus an increase in RED 
and BLU reflectance if there is a reduction in vegetation photosynthetic activity.  
 
A majority of pixels in our study region exhibit a decreasing trend in NIR and an increasing 
trend in RED and BLU (Extended Data Fig. 6), with about 27%, 47% and 13% of the study area 
showing a statistically significant trend at P<0.1 for BLU, RED and NIR, respectively. At the 
regional level, there is a significant trend (per decade) of +0.0040.001 (P=0.005) in RED and 
+0.0030.001 (P=0.008) in BLU for the period 2000-2012, and -0.0200.006 (P=0.007) in NIR 
for the period 2003-2012 (Extended Data Fig. 7). Evidently, MODIS spectral measurements 
show decreasing trends in NIR that resemble those of EVI while RED and BLU exhibit the 
opposite trends, indicating that the MODIS measured EVI change is a true signal. 
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C. Assessing non-vegetation effects on EVI changes 
 
C1. Uncertainties of MODIS EVI 
 
Both the estimated linear EVI trends and the EVI differences between the last and first three 
years of the MODIS data quantified over our study region are much larger than the expected EVI 
errors (ref. 7), suggesting that the EVI changes cannot be simply explained by data errors.  
 
C2. Impacts of residual atmospheric artifacts on EVI changes 
 
Changes in MODIS vegetation indices may suffer from residual atmospheric artifacts due to the 
contaminations of aerosols and clouds6-8,53. Atmospheric corruption is known to artificially 
reduce vegetation greenness such as NDVI. MODIS EVI was designed to improve upon NDVI 
by introducing aerosol resistance using BLU to correct for aerosol influence in RED15,17. 
Although a recent analysis6 indicates that the atmospheric corruption to the MODIS Collection 5 
EVI used in this study is minimal due to refinements to the MODIS atmospheric correction and 
EVI algorithms, this does not exclude the possibility of residual atmospheric effects that could 
cause an artificial decrease in MODIS EVI over the Congo basin. Assuming that this is the case, 
the residual atmospheric effect may decrease pixel-level MODIS EVI at a particular time due to 
uncertainties in AOT and COT, but cannot cause a statistically significant decreasing trend in the 
EVI unless it also shows a statistically significant trend with time, i.e. the impreciseness of 
MODIS atmospheric correction contains a time trend, which is highly unlikely.  
 
As clouds significantly decrease EVI, the evidently decreasing trend in COT over our study 
region would cause an increase in EVI if this change was not captured by the MODIS 
atmospheric corrections. Furthermore, the temporal decrease in clouds will reduce the 
reflectance values in RED, NIR and BLU (the same sign but with different magnitudes), which 
are not observed in the MODIS data (Extended Data Figs S6-7). However, MODIS surface 
reflectance was not produced for pixels flagged with clouds and only higher quality, cloud-free, 
quality assurance-filtered data were retained for compositing in the EVI product (MOD13C2).  
 
Given the large spatiotemporal variability of aerosols, there is a possibility that the EVI changes 
may result from the residual atmospheric effect due to an increasing or decreasing trend in AOT. 
Here we use the 6S (Second Simulation of the Satellite signal in the Solar Spectrum) model to 
assess the range of residual atmospheric effects due to aerosol uncertainties. The 6S code is a 
widely used and advanced radiative transfer model designed to simulate the reflection of solar 
radiation by a coupled atmosphere-surface system for a wide range of atmospheric, spectral and 
geometrical conditions54. It is a basic code for the calculation of look-up tables in the MODIS 
atmospheric correction algorithm. Our simulations include 30 cases (Table S1) by considering 
three types of aerosol loading (small: AOT=0.1; medium: AOT=0.3; large: AOT=0.5), two view 
zenith angles (0 and 30), five relative azimuth angles (0, 45, 90, 135 and 180), one solar 
zenith angle (30) and water vapor amount of 3 g/cm2. The actual surface reflectance is 0.03, 0.3, 
and 0.02 for RED, NIR and BLU respectively. The corresponding reflectance is simulated for 
25% overestimation or 25% underestimation of AOT for each case.  
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Table S1. Input parameters to the 6S code for simulations of 30 cases 

Case # Solar 
zenith 

angle () 

View 
zenith 

angle () 

Water vapor 
amount 
(g/cm2)  

Aerosol 
optical 

thickness 

Relative 
azimuth 

() 

Actual  
reflectance 

Red NIR BLU 
1 30 0 3 0.1 0 0.03 0.3 0.02 
2 30 30 3 0.1 0 0.03 0.3 0.02 
3 30 0 3 0.1 45 0.03 0.3 0.02 
4 30 30 3 0.1 45 0.03 0.3 0.02 
5 30 0 3 0.1 90 0.03 0.3 0.02 
6 30 30 3 0.1 90 0.03 0.3 0.02 
7 30 0 3 0.1 135 0.03 0.3 0.02 
8 30 30 3 0.1 135 0.03 0.3 0.02 
9 30 0 3 0.1 180 0.03 0.3 0.02 

10 30 30 3 0.1 180 0.03 0.3 0.02 
11 30 0 3 0.3 0 0.03 0.3 0.02 
12 30 30 3 0.3 0 0.03 0.3 0.02 
13 30 0 3 0.3 45 0.03 0.3 0.02 
14 30 30 3 0.3 45 0.03 0.3 0.02 
15 30 0 3 0.3 90 0.03 0.3 0.02 
16 30 30 3 0.3 90 0.03 0.3 0.02 
17 30 0 3 0.3 135 0.03 0.3 0.02 
18 30 30 3 0.3 135 0.03 0.3 0.02 
19 30 0 3 0.3 180 0.03 0.3 0.02 
20 30 30 3 0.3 180 0.03 0.3 0.02 
21 30 0 3 0.5 0 0.03 0.3 0.02 
22 30 30 3 0.5 0 0.03 0.3 0.02 
23 30 0 3 0.5 45 0.03 0.3 0.02 
24 30 30 3 0.5 45 0.03 0.3 0.02 
25 30 0 3 0.5 90 0.03 0.3 0.02 
26 30 30 3 0.5 90 0.03 0.3 0.02 
27 30 0 3 0.5 135 0.03 0.3 0.02 
28 30 30 3 0.5 135 0.03 0.3 0.02 
29 30 0 3 0.5 180 0.03 0.3 0.02 
30 30 30 3 0.5 180 0.03 0.3 0.02 
  

 
Our analysis will be focused mostly on the cases of AOT underestimation in which the spectral 
reflectance changes simulated from 6S relative to the actual reflectance values (Extended Data 
Fig. S8) resemble those observed in MODIS in terms of signs (Extended Data Figs S6-7). If the 
residual atmospheric effect is underestimated over time, the simulated surface reflectance will 
increase by 0.002-0.013 (10%-65%) in BLU and 0.001-0.008 (3.3%-26.7%) in RED but decrease 
only slightly by 0.001-0.006 (0.3%-2%) in NIR for all types of AOT loadings (Table S2). BLU is 
expected to have the largest increase, followed by RED because atmospheric scattering of 
sunlight increases nonlinearly with the decrease in wavelength6 as illustrated by Extended Data 
Fig. S8. However, the MODIS spectral data in our study region show that the increase in RED 
(0.003-0.004) is bigger than that in BLU (0.002-0.003) and the decrease in NIR (0.008-0.020) is 
several times more bigger than the increase in BLU and RED (Table S2), indicating that the 
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MODIS observed EVI decrease is unlikely to be an artifact of residual atmospheric aerosol 
effects.  
 
Table S2. Observed and simulated surface reflectance changes  

 RED NIR BLU 
MODIS 
observations 

Linear trend (2000-2012) 0.004 -0.008 0.003 
Linear trend (2003-2012) 0.003 -0.020 0.002 

6S 
Simulations 

Small AOT loading (AOT=0.1) 0.001 -0.001 0.002 
Medium AOT loading (AOT=0.3) 0.004 -0.004 0.007 

Large AOT loading (AOT=0.5) 0.008 -0.006 0.013 

Note that the simulated reflectance due to 25% underestimation of AOT is averaged by the three 
different types of aerosol loadings. 
 

C3. Impacts of sun-view angle effects on EVI changes 
 
EVI is subject to variations caused by sun-view angle or bidirectional reflectance distribution 
function (BRDF) effects55-56. Methods have been proposed to estimate the BRDF effects but not 
implemented in the current MODIS products55. The EVI data used in this study (MOD13C2) 
does not have a BRDF correction although it has a quality assurance bit assigned for BRDF 
correction (as per personal communication of Dr. Kamel Didan, who is one of the EVI algorithm 
developers).   
 
The MODIS instruments are stabilized in overpass time - i.e. there is no orbital drift, as in the 
case of Advanced Very High Resolution Radiometer57. Orbital drift may introduce a BRDF 
dependence of the EVI trends due to change in the mean solar geometry from year to year. For 
MODIS data, the mean solar geometry is the same during our study period in April-May-June 
(AMJ). Note that a recent study (Morton et al., 2014)9 found that the intra-annual EVI changes 
between the beginning and the end of the dry season in Amazonia are due to changes in MODIS 
sampling geometry, while our study is focused on the inter-annual EVI changes. Because we are 
analyzing trends in AMJ average EVI, spurious effects due to changes in MODIS sampling have 
a negligible effect on our results and conclusions. MODIS sampling changes are largest between 
Solstices (data far from the principal plane) and Equinoxes (data from the principal plane). It is 
possible that year-to-year AMJ average EVIs may be impacted by slightly different proportions 
of samples from back- and forward-scattering regions, but such variations are not systematic. 
Therefore, the declining EVI trend reported in our study is not impacted by the seasonal 
variations in the solar geometry reported in Morton et al9. 
 
For wide-swath sensors such as MODIS, the wide view angles may introduce some variability in 
EVI. However, the MOD13C2 EVI product58 at 0.05 resolution was spatially and temporally 
composited based on quality, cloud, and viewing geometry of daily 1km EVI data on a per-pixel 
basis. Cloud-contaminated pixels and extreme off-nadir sensor views were considered to be of 
lower quality. A cloud-free, nadir view pixel with no residual atmospheric contamination 
represented the best quality pixel. Only the higher quality, cloud-free, filtered data were retained 
for the compositing. The EVI algorithm used a compositing technique called Constrained View 
angle - Maximum Value Composite (CV-MVC). The CV-MVC is an enhanced MVC technique, 
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in which only the observation with the highest VI value and the smallest view angle, i.e. closest 
to nadir view, is chosen to represent the composite cycle for each pixel58. This compositing 
approach should minimize, but not completely remove the view angle related BRDF effect on 
MODIS EVI variability.  
 
The ideal way to assess the potential view angle effects on EVI variability is to perform a BRDF 
correction to the MODIS daily reflectance data at 1km resolution from the Terra satellite, which 
unfortunately is beyond the scope of this article and our computing resources. Furthermore, 
separating non-vegetation BRDF effects on EVI variability from real vegetation dynamics 
remains challenging55. Here we use a BRDF-corrected surface reflectance product 
(MCD43C4)59-60 developed and implemented by the MODIS albedo team to assess the BRDF 
effects for the period 2003-2012. The MCD43C4 provides reflectance data adjusted via a BRDF 
to model the values as if they were taken from nadir view. We created a new monthly BRDF-
corrected EVI product from MCD43C4 following the current MODIS EVI algorithm (Extended 
data Figs 9a and 9c) and compared it to the standard EVI product with proper quality assurance 
filtering (Fig. 2b and Fig. 3c). Unlike the standard EVI data, the regional mean BRDF-corrected 
EVI trend is statistically insignificant (P=0.269), but the general decreasing trend in the standard 
EVI remains robust in the BRDF-corrected EVI, particularly the large decreases after 2006 
(Extended Data Fig. 9a). Similar to the spatial patterns of changes in the standard EVI data, the 
BRDF-corrected EVI decreased over 97% of the study area (Extended Data Fig. 9c), with 22% 
of the area showing a significant negative trend at P<0.1. Overall the BRDF-corrected EVI 
shows a smaller decrease than the standard data, particularly in southern Congo where fewer 
high-quality pixels are available than northern Congo. The differences in the EVI changes are 
expected given each EVI dataset was calculated from different reflectance data and was 
composited by different approaches (see more discussion next). 
 
It should be noted that the BRDF-corrected surface reflectance (MCD43C4) was derived by 
combining MODIS measurements from the Terra and Aqua satellites. The local equatorial 
crossing time is approximately 10:30 a.m. for Terra and ~1:30 p.m. for Aqua. In general, more 
clouds are seen over land during the afternoon than in the morning. Our analysis of EVI data 
showed much fewer pixels flagged as high-quality in Aqua than Terra (that is the reason why we 
use the morning Terra data instead of the afternoon Aqua data in our analysis). Also the 
MCD43C4 product has some pixels with poor quality data because a smoothing algorithm was 
used, which resulted in the differences in surface reflectance when compared to the standard 
product (as per personal communication of Dr. Sangram Ganguly who has worked with MODIS 
EVI and Nadir BRDF Adjusted Reflectance (NBAR) products for phenological studies). 
Furthermore, the standard EVI data of MOD13C2 were spatially and temporally composited 
from daily 1km Terra data at pixel level using the CV-MVC approach, which minimizes the 
BRDF effect, while the BRDF-corrected EVI was calculated directly from the 16-day composite 
Terra and Aqua combined surface reflectance data at 0.05° resolution. 
 
One alternative way to assess the BRDF effect is to use the MODIS NDVI data from MOD13C2 
as a proxy because NDVI is insensitive to the sun-view angle effects, particularly for dense 
forests55-56. As the same compositing approaches and the same quality assurance flags were used 
to create the EVI and NDVI data by the same MODIS algorithm, this method helps to exclude 
the compositing differences in comparing the BRDF-corrected EVI to the standard EVI. 
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However, NDVI may saturate over dense forests and thus may be not as sensitive as EVI to 
rainfall variability. Nevertheless, the regional mean NDVI shows a statistically significant 
decreasing trend of -0.0300.009 (P=0.012) for the period 2003-2012 or declined by -0.017 
between the last and first three years (Extended Data Fig. 9b). Geographically, NDVI decreased 
over 96% of the study area (Extended Data Fig. 9d), with 42% of the area showing a significant 
negative trend at P<0.1.  
 
The results from the above two approaches show the general decreasing trend of vegetation 
greenness over time, which is mostly consistent with the results from the standard product with 
proper quality assurance filtering. Given the wide swath covered by the MODIS sensors, the 
view angle effect may introduce some variability in EVI, but the EVI compositing approach 
(CV-MVC) in the standard product selected observations with the highest VIs and the smallest 
view angles and thus minimized the view angle related BRDF effect. Therefore, we do not 
envision that the sun-view angle effect played a significant role in the observed interannual and 
spatial patterns of EVI variability.  
 
C4. Impacts of sensor degradation on EVI changes  
 
Recent studies show that some of the Terra land bands have exhibited a systematic wavelength 
dependent drift because of sensor degradation61. It was estimated that the top-of-atmosphere 
reflectance has decreased by about 6% in blue and 2-3% in red and NIR since 2003 (ref. 62). 
This unaccounted sensor degradation or calibration artifact has affected the Terra MODIS 
Collection 5 level 1b, and therefore, the surface reflectance products. The top-of-atmosphere red 
and near-infrared (NIR) bands were affected equally, but due to the atmosphere impact, red 
reflectance decreased more than the NIR reflectance, resulting in a spurious increase in EVI and 
NDVI. However, the decreasing trend in EVI observed over our study region cannot be 
attributed to the calibration artifact for at least three reasons. First, the observed decrease in NIR 
since 2003 over the Congo, 0.02 (Table S2), is almost 6-7% of the average NIR value while the 
expected calibration artifact is only 2-3%. Second, the unaccounted sensor degradation effect, if 
dominant, would have decreased the MODIS reflectance in the blue, red and NIR bands (i.e., the 
changes should be in the same direction). However, the MODIS reflectance in the blue and red 
bands showed an increasing trend over our study region (Table S2), which is contrary to the 
expected calibration artifact. Third, the calibration artifact, if dominant, would not have 
demonstrated a strong correlation between MODIS EVI and other independent moisture and 
vegetation parameters (e.g., TWS, VOD and CBA) shown in the main text. Moreover, our 
preliminary results show a clear decreasing trend in EVI during the period 2001-2012 (the figure 
is not shown due to Nature’s page limit) after we analyzed a sample of the MODIS Collection 6 
data in which the artifact was corrected. We note that this Collection 6 data was also corrected 
for BRDF effects.   
 
It is anticipated that the improvements made in the upcoming MODIS Collection 6 products will 
reduce, if not completely remove, some of the calibration artifact identified in the MODIS 
Collection 5 data product62. Further quantification of this artifact on EVI over our study region, 
however, cannot be done thoroughly before the MODIS Collection 6 data are available and our 
scientific understanding of such effects on EVI is sound.  
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D. Assessing Congo forest temporal dynamics using Landsat 7 ETM+ imagery 
 
We explored the temporal dynamics of vegetation in the Congo basin using Landsat 7 ETM+ 
images for four scenes (Extended Data Fig. 10) where EVI, rainfall and TWS all show strong 
decreasing trends from 2000 to 2012 (Fig. 2). Although Landsat 7 has lost about 25% of its data 
at areas off-nadir due to the Scan-Line-Corrector since May 2003, the rest of the images are still 
of high quality and can be used to analyze vegetation dynamics. Landsat offers images at 30x30 
meter spatial resolution, much higher than that for MODIS EVI, and thus help to better exclude 
non-vegetated areas. However, ETM+ imagery has a much lower temporal resolution (16 days). 
Therefore, high quality images are hard to come by.  In addition, we also try to keep the images 
used within the study period of April-May-June to be consistent with the time window of 
MODIS EVI.  As a result, we only have 3~5 images for each of the scenes (Table S3). Even with 
these limited images, they are still not cloud free. We manually created a cloud mask for each 
image, and combined the cloud mask for all images so that if a pixel is contaminated in any of 
the images, that pixel is excluded from the temporal variation analysis. The atmospheric effect 
was corrected to the surface reflectance by the Dark Object Subtraction Version 3 (DOS3) 
approach63.  DOS3 is an improved DOS algorithm that considers the effect of Rayleigh 
scattering for the transmittance in both viewing and illumination directions. It was demonstrated 
to produce the best overall classification and change detection results when applied to a multi-
temporal dataset consisting of seven Landsat 5 Thematic Mapper (TM) images over China63. 
Downwelling diffuse radiation was obtained by running 6S with Rayleigh atmosphere only. 
 

Table S3: List of Landsat 7 ETM+ images used in the analysis 

Path Row Year Day of year Image ID 
176 057 2002 129 LE71760572002129SGS00 

  2009 212 LE71760572009212ASN00 
  2010 183 LE71760572010183ASN00 

177 057 2004 126 LE71770572004126ASN01 
  2006 115 LE71770572006115ASN00 
  2008 121 LE71770572008121ASN00 
  2009 139 LE71770572009139ASN00 
  2013 102 LE71770572013102ASN00 

178 057 2003 146 LE71780572003146ASN00 
  2011 200 LE71780572011200ASN00 
  2013 093 LE71780572013093ASN00 

177 058 2004 126 LE71770582004126ASN01 
  2006 115 LE71770582006115ASN00 
  2013 102 LE71770582013102ASN00 

 
We first converted the raw ETM+ images to surface reflectance63 and then computed NDVI, EVI 
and performed Tasseled Cap transformation64-65 with the surface reflectance. The mean temporal 
variations of NDVI and EVI for all vegetated pixels as well as their mean temporal trajectory in 
the Tasseled Cap brightness-greenness space were analyzed. To exclude non-vegetated pixels 
from being used in the analysis, we excluded pixels across the image stack with NDVI<0.5 in the 
first of the image time series. Extended Data Fig. 10 shows the temporal variations of NDVI and 
EVI for each of the scene. Overall, they show decreased NDVI and EVI values toward the end of 
the time series. The temporal trajectory of vegetation in the brightness-greenness space has long 
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been used to understand forest successional rate and direction66-69. In general, closed canopy 
young forests have relatively high greenness and brightness. As forest growth and succession 
continue, self-thinning leads to gaps in the canopy. Forest canopies are increasingly dominated 
by fewer trees with larger crowns casting shadows on neighboring trees. As a result, both the 
brightness and greenness decreases with time. However, a decrease in greenness associated with 
an increase in brightness or an increase in brightness without significant change in greenness 
indicates forest degradation. Accordingly, we found that forests in three out of the four Landsat 
scenes analyzed are degrading with time (Extended Data Fig. 10). The vegetated pixels in scene 
Path=176, Row=57 do not show a clear trend in this space from 2002 to 2010. 
 
E. Impacts of deforestation, human-induced forest degradation and fires on EVI changes 
 
Most of the EVI decline cannot be attributed to human-induced deforestation and forest 
degradation. Although the spatial extent and rate of deforestation in Africa is debatable due to 
lack of reliable data and survey information, it is believed that deforestation in West Africa is 
significant70-71 but is much lower in the Congo basin than other tropical rainforests72-73. The low 
deforestation rates in Congo are primarily attributed to (1) poor road network within the country 
that makes access to remote areas difficult, (2) political and regulatory changes that have dis-
incentivized investment in the country, and (3) geographic constrains of forest clearing for 
agriculture activities that have expanded and occurred primarily outside of forested areas74. On 
the other hand, there is probably a notable human-induced degradation of the forests in this 
area75. However, this small-scale forest degradation over the Congo, particularly due to forest 
fragmentation and selective logging over certain regions, is difficult to monitor using moderate 
resolution MODIS data. Therefore, a small percentage of pixels exhibiting a decline in EVI 
might result from deforestation and human-induced forest degradation but this change should be 
small in magnitude and spatially extensive and fragmented76, which cannot produce a notable 
vegetation browning trend at the basin scale. For example, the forest cover loss intensity in 
Congo between 2000-2005 and 2005-2010 was distributed unevenly, mainly located at the 
southern borders of Congo forests (which is outside of our study region) and was mostly 
correlated with areas of high population density and mining activity73.  
 
Fire is a significant and continuous natural factor that plays a central role in forest destruction in 
the tropical regions. Monthly fire counts show two peak fire seasons, coinciding with the bi-
modal rainfall seasonal cycle and the total yearly fire counts show the highest number of fires in 
2005 and the lowest in 2007 during 2003-2011, compared to other years77. As there are no 
evident upward trends in the yearly fire counts77, it is reasonable to assume that fire is unlikely to 
be the major contributor to the widespread decline in EVI.  
 
We used MODIS land cover classification and percent forest cover data to define our study 
region, which covers primarily the intact forest canopies and has no land cover/use changes 
detected in the Congo basin (see Methods for detail). We also used the MODIS data to quantify 
the year-to-year percent forest cover over our study region, which changed little from 2001 to 
2012 (figures not shown for brevity), indicating that deforestation and fire cannot be the 
dominant factor for the observed basin-scale EVI decline. 
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Table S4: List of acronyms and abbreviations 
 
AMJ April-May-June 
AMSR-E Advanced Microwave Scanning Radiometer - Earth Observing System 
AOT Aerosol Optical Thickness 
BLU Blue  
BRDF Bidirectional Reflectance Distribution Function 
CBA Canopy Backscatter Anomaly 
CERES Clouds and Earth’s Radiant Energy System 
COT Cloud Optical Thickness 
CRU Climatic Research Unit 
CSR Center for Space Research 
CV-MVC Constrained View angle - Maximum Value Composite 
DJFMAM December-January–February-March-April-May 
DOS3 Dark Object Subtraction Version 3 
EOF Empirical Orthogonal Function 
ETM Enhanced Thematic Mapper 
EVI Enhanced Vegetation Index 
GFZ Germany’s GeoForschungsZentrum 
GPCC Global Precipitation Climatology Centre 
GPCP Global Precipitation Climatology Project 
GRACE Gravity Recovery and Climate Experiment 
JPL Jet Propulsion Laboratory 
LST Land Surface Temperature 
MAM March-April-May 
MODIS MODerate resolution Imaging Spectroradiometer 
VOD Vegetation Optical Depth 
NASA National Aeronautics and Space Administration 
NBAR Nadir BRDF Adjusted Reflectance 
NDVI Normalized Difference Vegetation Index 
NIR Nar-Infrared 
PAR Photosynthetically Active Radiation 
QSCAT Quick Scatterometer 
RED Red 
SSM/I Special Sensor Microwave Imager 
TM Thematic Mapper 
TRMM Tropical Rainfall Measuring Mission 
TWS Terrestrial Water Storage 
VOD Vegetation Optical Depth 
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