Assessing the paleoclimatic utility of the Indo-Pacific coral genus Diploastrea

in a 225-year oxygen isotope record from Fiji

Abstract of a thesis presented to the Faculty

of the University at Albany, State University of New York

in partial fulfillment of the requirements

for the degree of

Master of Science

College of Arts and Sciences

Department of Earth and Atmospheric Sciences

Stefan Bagnato 2003

### ABSTRACT

In the Western Pacific there remains, both spatially and temporally, a sparse record of surface ocean conditions and very few long paleoclimate records able to extend our understanding of this important region. The coral genus *Porites* is the common coral currently used for Pacific paleoclimate studies and has proven to be very useful. The massive coral *Diploastrea*, due to its slow growth rate and dense structure, may preserve temporally longer geochemical proxy records than *Porites* colonies of the same length. Its long lifespan and fossil history give this genus great potential, however no assessment has been made of the paleoclimatic utility of *Diploastrea* skeletons.

Presented here are *Diploastrea*  $\delta^{18}$ O time series from Savusavu, Fiji, a region sensitive to combined SST and precipitation changes due to activity of the El Ni o Southern Oscillation (ENSO) and the South Pacific Convergence Zone (SPCZ). Sampling of a single skeletal element and/or a narrow sample track results in annual variations with the least amount of time averaging and greatest amplitude. Higher winter growth rates coupled with a constant sampling interval have preferentially captured winter conditions in the geochemical composition of *Diploastrea*'s skeleton. These winter-biased  $\delta^{18}$ O time series illustrate that *Diploastrea* is as effective as *Porites* in recording the interannual environmental history of the region, dominated by both sea surface temperature (SST) and SPCZ-related rainfall. Examination of SST and precipitation data suggests that the trend component in *Porites*  $\delta^{18}$ O at this site is amplified relative to observed trends in SST and expected trends in  $\delta^{18}$ O<sub>scawater</sub>, and that *Diploastrea*-generated  $\delta^{18}$ O time series more closely reflects variability on this time scale. Utilizing Singular Spectrum Analysis (SSA) analysis, it is demonstrated that

ii

### ACKNOWLEDGEMENTS

This thesis is not only the culmination of my own work, but is the result of the contributions of several people. I am most grateful to Brad Linsley for giving me the opportunity to be part of such an amazing and interesting project, and to do field work in Fiji, a truly incredible experience. Encouraging independent thought and exploration, while at the same time providing essential guidance, his advice through this project has been immeasurable.

I would also like to thank the guru of the isotope lab, Steve Howe. Steve s hard work and dedication to high quality isotope analyses are responsible for most of the data presented here. Thanks are also extended to Peter deMenocal at the Lamont-Doherty Earth Observatory of Columbia University for use of the ICP-AES for Sr/Ca analyses. Additionally Dave Anderson at the NOAA Paleoclimatology Program and Gilbert Compo at the NOAA Climate Diagnostics Center provided invaluable assistance and advice on time series analysis techniques and interpretation of the coral records.

Many thanks to Dave Mucciarone and Tom Potts for their assistance, and camaraderie in the field, and to my committee members Jerry Wellington and Don Rodbell for their input on this thesis.

Funding for this research was provided by the National Oceanic and Atmospheric Administration and the National Science Foundation.

# TABLE OF CONTENTS

| Abstract                                                                                 | ii                                                  |  |  |  |  |
|------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| Acknowledgments                                                                          | V                                                   |  |  |  |  |
| Table of Contents                                                                        | vi                                                  |  |  |  |  |
| List of Figures                                                                          | vii                                                 |  |  |  |  |
| List of Tables                                                                           | viii                                                |  |  |  |  |
| Chapter 1. Introduction to M                                                             | fain Problems and Objective1                        |  |  |  |  |
| Chapter 2. Calibrating the Massive Coral Diploastrea heliopora for Paleoclimate          |                                                     |  |  |  |  |
| Reconstruction                                                                           | 6                                                   |  |  |  |  |
| Chapter 3. Endolithic algae in <i>Diploastrea</i> : A record of ENSO? .37                |                                                     |  |  |  |  |
| Chapter 4. A Paleoclimatic Evaluation of the Indo-Pacific coral Diploastrea heliopora in |                                                     |  |  |  |  |
| Fiji: A Promising New Archive of Pacific Climate Variability47                           |                                                     |  |  |  |  |
| Chapter 5. Conclusions and Topics for Future Work69                                      |                                                     |  |  |  |  |
| References                                                                               | . 74                                                |  |  |  |  |
| Appendix 1. Fiji Core 4F1 N                                                              | Aixed Skeleton Stable Isotope Data .87              |  |  |  |  |
| Appendix 2. Fiji Core 4F1 H                                                              | Endothecal Skeleton Stable Isotope Data90           |  |  |  |  |
| Appendix 3. Fiji Core 4F1 H                                                              | Exothecal Skeleton Stable Isotope and Sr/Ca Data93  |  |  |  |  |
| Appendix 4. Fiji Core LH E                                                               | xothecal Skeleton Stable Isotope and Sr/Ca Data 101 |  |  |  |  |

# LIST OF FIGURES

| 1. I        | ocation map of Fiji Islands 10                                                           |
|-------------|------------------------------------------------------------------------------------------|
| 2. 8        | PCZ rainfall axis and spatial pattern of the IPO 12                                      |
| 3. 5        | keletal $\delta^{18}$ O and Sr/Ca for <i>Diploastrea</i> core tops18                     |
| 4. F        | ji coral X-radiographs and corallite architecture22                                      |
| 5. 0        | omparison of $\delta^{18}$ O cycles for different sampling techniques 24                 |
| 6. <i>1</i> | <i>Diploastrea</i> X-radiograph with superimposed sampling intervals27                   |
| 7. (        | ore 4F1 skeletal $\delta^{18}$ O and CAC SST time series (1970-1997)28                   |
| 8. 7        | ime series $\delta^{18}$ O for Fiji cores showing variable disequilibrium offset30       |
| 9. (        | entered time series $\delta^{18}$ O for Fiji cores                                       |
| 10.         | Composite <i>Diploastrea</i> $\delta^{18}$ O record with ENSO and SPCZ indices 34        |
| 11.         | Algae band ages, historical ENSO, and LH stable isotopes44                               |
| 12.         | SPCZ rainfall index, SPI, and annual average <i>Diploastrea</i> $\delta^{18}$ O55        |
| 13.         | Examination of long-term trends in coral $\delta^{18}$ O 57                              |
| 14.         | Relationship between long-term trends in extension rate and skeletal $\delta^{18}$ O .58 |
| 15.         | IPO index and IPO band $\delta^{18}$ O for Fiji corals .62                               |
| 16.         | Wavelet power spectrum of Fiji <i>Diploastrea</i> $\delta^{18}$ O 64                     |
| 17.         | Wavelet power spectrum of the Ni o-3 SST anomaly index 65                                |
| 18.         | Wavelet power spectrum of Maiana $\delta^{18}$ O66                                       |

# LIST OF TABLES

- 1. Correlation matrix for bimonthly Fiji coral  $\delta^{18}$ O, and regional climate data ... 19
- 2. Correlation matrix for annual average Fiji coral  $\delta^{18}$ O, and regional climate data ...19
- 3. Depth of algae bands in *Diploastrea* core LH .42
- 4. Singular Spectrum Analysis of unfiltered *Diploastrea* core 4F1  $\delta^{18}$ O ...61
- 5. Singular Spectrum Analysis of unfiltered *Diploastrea* core LH  $\delta^{18}$ O 61

Assessing the paleoclimatic utility of the Indo-Pacific coral genus Diploastrea

in a 225-year oxygen isotope record from Fiji

A thesis presented to the Faculty

of the University at Albany, State University of New York

in partial fulfillment of the requirements

for the degree of

Master of Science

College of Arts and Sciences

Department of Earth and Atmospheric Sciences

Stefan Bagnato 2003

# **CHAPTER 1**

# INTRODUCTION TO MAIN PROBLEMS AND OBJECTIVES

Climate change in the tropics plays a pivotal role in global-scale climate on various time scales, from interannual to glacial (e.g., Cole et al., 2000; Lea et al, 2000; Linsley et al., 2000a; Tudhope et al., 2001; Hendy et al., 2002; Seltzer et al., 2002). The interannual El Ni o Southern Oscillation (ENSO), a tropical Pacific phenomenon, is a prime example, affecting climate worldwide. An interdecadal scale pattern of sea surface temperature (SST) variability in the Pacific has been identified (Mantua et al., 1997; Zhang et al., 1997; Power et al., 1999a; Power et al., 1999b; Garreaud and Battisti, 1999; Salinger et al., 2001) that is spatially similar to ENSO but whose forcing (tropical or extratropical) is still poorly understood (Latif and Barnett, 1994). Because continuous measurements of physical ocean properties such as temperature and salinity generally do not span more than 50 years before present in the tropical Pacific, a period likely already affected by human activities, natural variability in such components of the ocean-atmosphere system remain poorly understood. It is therefore necessary to extend these climate records to pre-anthropogenic times with proxy records.

For reconstructing past variability of the tropical surface ocean, massive scleractinian corals probably provide the best annually resolved proxy data because the incorporation of various elements and isotopes into their carbonate skeletons is driven in large part by ocean conditions (e.g., Shen et al., 1992; Fairbanks et al., 1997; Gagan et al., 2000). Coral skeletons incorporate several chemical tracers that have been correlated with important oceanic and atmospheric parameters, including temperature, salinity, rainfall, river runoff, ocean mixing, and anthropogenic influence, depending on the site. The chemistry of coral aragonite skeleton has therefore proven to be a very powerful tool for climate reconstructions on seasonal to millennial time scales (Quinn et al., 1993;

Dunbar et al., 1994; Charles et al., 1997; Linsley et al., 2000a; Tudhope et al., 2001, among many others).

Given the fact that corals grow continuously at rates of several millimeters to a couple of centimeters per year and can live for centuries, living specimens (commonly 200-400 years old) can be used to study the recent past, while fossil coral reef sequences can yield environmental information about the late Quaternary. The formation of annual density bands, couplets of high and low-density material, usually provides an excellent chronology in many corals, yielding absolute age assignments similar to tree rings over the time period of study. However the banding is not always evident and in the absence of distinct annual banding, the annual periodicity of isotopic and/or trace metal analyses can be used to develop a chronology with annual resolution (Alibert and McCulloch, 1997; Charles et al., 1997; Linsley et al., 2000b).

Corals have been successfully used to reconstruct various features of the coupled oceanic-atmospheric system. The  $\delta^{18}$ O of massive corals has been used to reconstruct SST, salinity (SSS), and the  $\delta^{18}$ O composition of seawater (Dunbar and Wellington, 1981; Cole and Fairbanks, 1990; Cole et al., 1993; Quinn et al., 1993; Linsley et al., 1994; Charles et al., 1997; Linsley et al., 2000b, LeBec et al., 2000). Additionally, past ENSO activity has been identified using Pacific coral  $\delta^{18}$ O from equatorial regions (McConnaughey, 1989; Cole and Fairbanks, 1990; Cole et al., 2001). It has been well documented that the  $\delta^{18}$ O of coral skeleton is a function of both temperature and the  $\delta^{18}$ O of seawater. At some sites it has been possible to deconvolve temperature and salinity using a salinity-independent temperature proxy in concert with  $\delta^{18}$ O. The Sr/Ca and

Mg/Ca ratio are highly correlated with SST at some sites and are a common choice (Smith et al., 1979; Beck et al., 1992; deVilliers et al., 1994; McCulloch et al., 1994; Mitsuguchi et al., 1996; Alibert and McCulloch, 1997; Schrag, 1999). Massive corals have proven particularly useful in studying interannual variability, but understanding of decadal changes in ocean properties has had more limited success due to various problems, including a general lack of long coral records.

One common and significant shortcoming of many coral proxy records is their length. It is difficult to evaluate climate variability with decadal and multi-decadal scale periodicity utilizing records which only capture a few cycles. Much coral-based paleoclimate work to date in the Pacific has utilized the genus *Porites*, due to its wide geographic range and high annual growth rate of approximately 1 cm per year. The high growth rate has allowed for extremely high resolution sampling (near monthly or better), but unfortunately the lifespan of this coral genus is generally not sufficient to create proxy records of ocean conditions in excess of ~300 years. The genus *Diploastrea*, however, has a much slower annual growth rate of approximately 4-6 mm per year, which coupled with a denser structure more resistant to boring organisms and grazing fish, promotes a longer lifespan and potentially a temporally longer coral proxy record.

Coral cores of *Diploastrea* and *Porites* were recently retrieved from the same bay in the Fiji Islands, creating a unique opportunity for calibration and comparison. Calibration of *Diploastrea* could provide a means to assess interannual and interdecadal scale variability in the tropical Pacific over a longer multi-century period than would be possible using *Porites*. The objective of this thesis is to calibrate *Diploastrea* coral cores by comparing isotopic data to measured oceanographic data and climate indices and to an

existing *Porites* record from the same location. Following calibration, it is demonstrated that *Diploastrea*  $\delta^{18}$ O time series faithfully record the interannual, interdecadal, and secular trend scale environmental history of the region, and hold the potential to extend instrumental records and climate indices beyond that possible using the genus *Porites*.

# CHAPTER 2

# CALIBRATING THE CORAL DIPLOASTREA HELIOPORA FOR

# PALEOCLIMATE RECONSTRUCTION

### ABSTRACT

The success of coral-based paleoclimate research in the Pacific remains mostly on interannual time scales, characterization of the globally important El Ni o Southern Oscillation (ENSO) system being a prime example. The principal coral archive utilized in the Pacific for this effort has been the genus *Porites*. The Indo-Pacific coral genus Diploastrea, however, due to its slower extension rate, denser structure, and longer lifespan, can potentially preserve geochemical proxy records 2-3 times longer than Porites cores of the same length. Before its potential can be realized, Diploastrea must first be calibrated and its climate signal assessed. A calibration using two Diploastrea cores from Fiji (16... 49 S, 179... 14 E) is presented here that allow for simultaneous calibration and evaluation of the reproducibility of  $\delta^{18}$ O at this site. Comparison to a *Porites*  $\delta^{18}$ O record from the same location allows for further validation of *Diploastrea* s climate signal, dominated by ENSO and South Pacific Convergence Zone (SPCZ) variability. It is demonstrated that the  $\delta^{18}$ O of *Diploastrea* skeletons has the ability to capture interannual climate variability with equal success as Porites corals while at the same time have the lifespan necessary to capture interdecadal variability.

#### **INTRODUCTION**

The value of coral proxy records in the Pacific is enormous given the short and spatially sparse instrumental climate record, especially in the Western Pacific. The chemistry of coral aragonite has proven to be a very powerful tool in reconstructing various features of the coupled oceanic-atmospheric system including sea surface temperature (SST), sea surface salinity (SSS), and the  $\delta^{18}$ O composition of seawater (Dunbar and Wellington. 1981; Cole and Fairbanks, 1990; Cole et al., 1993; Quinn et al., 1993; Linsley et al., 1994; Charles et al., 1997; Linsley et al., 2000b; LeBec et al., 2000).

The coral genus *Porites* has been the primary Pacific coral archive of climate variability to date and evaluation of ENSO-scale variability has been a large success of such coral proxy records (McConnaughey, 1989; Cole and Fairbanks, 1990; Cole et al., 1993; Dunbar et al., 1994; Tudhope et al., 2001). However very few Pacific *Porites* records exist which span more than 100 years (Cole et al., 1993; Linsley et al., 1994; Quinn et al., 1998; Boiseau et al., 1998; Cole et al., 2000; Linsley et al., 2000a; Urban et al., 2000), a significant limitation in addressing climate variability with decadal and multi-decadal periodicity. The massive coral genus *Diploastrea*, however, has a skeletal extension rate 2-3 times slower than *Porites*, which in itself suggests that *Diploastrea* colonies can yield longer proxy records than *Porites* colonies of the same length. Additionally, *Diploastrea* has a dense skeletal structure which is resistant to boring organisms, grazing fish, and the destructive crown-of-thorns starfish, promoting a longer lifespan (Vernon, 1986).

Here the effect of sampling different skeletal elements of *Diploastrea* and sample track width on the amplitude of the seasonal  $\delta^{18}$ O cycle is evaluated, and after

determining the preferred sampling regime, the  $\delta^{18}$ O time series are compared to instrumental climate data and indices. Comparison of both *Diploastrea* cores to the *Porites* record of Linsley et al. (in review) helps to validate the chosen sampling techniques, and illustrates the reproducibility of  $\delta^{18}$ O in these Fiji corals. A discussion of *Diploastrea* s ability to accurately resolve both interdecadal and trend-scale climate variability at this site follows in Chapter 4.

## **STUDY AREA**

The Fiji Islands lie in the western subtropical South Pacific and consist of approximately one hundred small islands and two large main islands, Viti Levi and Vanua Levu. Corals were collected from Savusavu Bay, a large bay open to the Koro Sea, on the northern Fijian island of Vanua Levu (16... 49 S, 179... 14 E) (Fig. 1). Four rivers empty into Savusavu Bay, the Ndreke ni wai, the Lango lango, the Vianga, and the Na Tua vou. The average SST in this region is 27.2<sub>1</sub>C, with an annual range of about 4<sub>1</sub>C. Although Fiji lies significantly south of the equator and outside the heart of the Western Pacific Warm Pool, a region with strong temperature anomalies associated with ENSO, this site is well positioned to record the activity of the SPCZ, and the Southern Oscillation (SO), both globally important climate features. Although *Diploastrea* s geographic range is limited to the Indian and Western Pacific Oceans, the geochemistry of its skeleton, once calibrated, offers additional future potential for studying connections between these two ocean basins, and between ENSO and Asian monsoon variability.



Figure 1. Location map showing Fiji's position in the western subtropical South Pacific and an enlargement of the study area, Savusavu Bay on the northern Fijian island of Vanua Levu. The axis of SPCZ maximum rainfall for 1958-1998 extends from New Guinea towards French Polynesia, passing between Fiji and Samoa (Fig. 2). The SPCZ is the dominant climatic feature of the Southern Hemisphere subtropics, and its position and activity are modulated by the ENSO and the Interdecadal Pacific Oscillation (IPO) (Trenberth, 1976; Kiladis et al., 1989; Folland et al., 2002). When the SPCZ migrates northward during El Ni o events, drier than average conditions exist in Fiji, while southward displacement of the SPCZ during La Ni a events brings wetter than average conditions (Salinger et al., 1995), thus altering the  $\delta^{18}O_{seawater}$ . Fiji, lying near the hinge point of Southern Oscillation effects on SST and near the southernmost displacement of the SPCZ, should experience small ENSO-related SST anomalies and relatively large precipitation anomalies on ENSO time scales.

#### **METHODS**

#### **Coral Collection and Preparation**

In April 1997 a 30 cm coral core (4F1) from a colony of *Diploastrea* was collected by hydraulic drill in ~10 m of water and in December 2001 a 1.3 m coral core (LH) was collected from a second *Diploastrea* colony in 2 m of water, both from the outer edge of Savusavu Bay on the south side of Vanua Levu, Fiji (16... 49 S, 179... 14 E). A 2.3-m-long *Porites* core (1F) (Linsley et al., in review) was collected from the middle of Savusavu Bay in 10 m of water in April 1997. Core preparation and isotope analyses follow the procedures of Linsley et al. (2000b). The cores were washed with fresh water, dried and sectioned into 7-mm-thick slabs along the major growth axes using a band saw.



Figure 2. Location of Fiji, Samoa, and Maiana in relationship to the South Pacific Convergence Zone rainfall axis and the spatial pattern of the IPO (from Folland et al., 2002). Background contours show the IPO as a convariance map of the 3rd EOF of low-pass filtered SST anomalies for 1911-1995. The contour interval is 0.04 °C, negative contours are dashed, values <-0.12°C lightly stippled and those >+0.12°C heavily stippled. Figure modified from Folland et al. (2002).

The slabs were then X-rayed to reveal the annual density bands. The slabs were cleaned with deionized water in an ultrasonic bath for approximately 15 minutes to dislodge saw cuttings, then placed in a drying oven at 40...C overnightSubannual skeletal samples were collected using a Dremel Tool with a 1-mm-diameter round diamond drill bit under a binocular microscope along corallite traces identified both by eye and on the X-ray positives. Each core was sampled at 0.5 mm intervals throughout the upper 50 mm for calibration purposes and at 1 mm intervals below 50 mm. Detailed sampling protocols are discussed in the results section of this chapter.

## **Stable Isotope Mass Spectrometric Analysis**

For each sample, approximately 200 g of coral powder was dissolved in 100%  $H_3PO_4$  at 90...C in Multiprep sample preparation device and the resulting  $CO_2$  gas was analyzed using a Micromass Optima gas-source triple-collector mass spectrometer at the University at Albany, State University of New York stable isotope laboratory. The total number of subannual samples analyzed from core 4F1 analyzed was 554, with approximately 10% of these being analyzed in duplicate. During the course of analyzing core 4F1, the average standard deviation of the isotopic compositions of international standard NBS-19 was 0.019 for  $\delta^{-13}C$  and 0.035 for  $\delta^{-18}O$  (n=100). The average difference between the replicate coral samples analyzed was 0.06 for  $\delta^{13}C$  and 0.06 for  $\delta^{18}O$  (n=70). The total number of subannual samples analyzed in duplicate. During the course of analyzing core LH, the average standard deviation of NBS-19 was 0.015 for  $\delta^{13}C$  and 0.034 for  $\delta^{18}O$  (n=258). The average difference between replicate samples analyzed

was 0.08 for  $\delta^{-13}$ C and 0.07 for  $\delta^{-18}$ O (n=174). All data are reported as per mil deviations relative to Vienna Peedee belemnite (VPDB).

### **ICP-AES** Analysis

For each sample, approximately 100 g of coral powder was dissolved in ~2 mL of 2% HNO<sub>3</sub> and introduced as an aerosol to a Jobin-Yvon Panorama inductively coupled plasma atomic emission spectrometer at the Lamont-Doherty Earth Observatory of Columbia University, using procedures similar to those described by Schrag (1999). Measurement of the Sr/Ca ratio used splits of the same samples used for oxygen and carbon isotopic analysis. A total of 235 subannual samples were analyzed from core 4F1, with approximately 10% being analyzed in duplicate. During the course of the analyses, the average relative standard deviation of the replicate samples analyzed was 0.22% (n=18). A total of 245 subannual samples were analyzed from core LH, with approximately 10% being analyzed in duplicate. During the course of the analyses, the average relative standard deviation of the replicate samples analyzed was 0.18% (n=24).

## **Potential Coral Growth Effects**

Coral skeleton is not deposited inorganically; rather it is accomplished through a biologically mediated process which can impart growth effects on skeletal chemistry. For some time, the rate of coral growth has been suspected to affect the  $\delta^{18}$ O disequilibrium offset (Land et al., 1975; McConnaughey, 1989; Wellington et al., 1996; deVilliers et al., 1995). This vital effect , if overlooked, can give the appearance of climatic change in an isotopic time series when it is in fact a biological signal. It is therefore a very important consideration when sampling corals, and is most often addressed through careful sampling along the axis of maximum growth, where this effect

this thought to be constant (Land et al., 1975; McConnaughey, 1989; Wellington et al., 1996). Coral  $\delta^{18}$ O is several parts per mil more depleted than aragonite precipitated in equilibrium with ocean water, and this offset from  $\delta^{18}$ O equilibrium is known to shift outside the maximum growth axis (Cohen and Hart, 1997). There is concern, however, that the vital effect may not be constant over the life of a very large/old coral spanning more than a couple of centuries (Barnes et al., 1995) because tissue layer thickness and skeletal density can change through time.

The concern of the stability of the disequilibrium offset over time is well-based. Many coral isotopic time series show a clear trend toward lighter  $\delta^{18}$ O values approaching present day (Druffel and Griffin, 1993; Linsley et al., 1994; Quinn et al.,1998; Urban et al., 2000; Hendy et al., 2002), which may or may not be climateinduced. Some researchers have chosen to de-trend their data in order to focus on the interannual and decadal changes in the records. In the hope of avoiding vital effect problems, both *Diploastrea* cores were drilled and sampled as close to the maximum growth axis as was possible. *Diploastrea* corallites grow in much straighter paths than those in *Porites*, facilitating sampling. Core 4F1 was sampled continuously without switching corallites and core LH only required switching sampling paths 3 times, creating nearly uninterrupted records from each core s collection date.

Concern over biological effects on environmental tracers in corals is not limited to stable isotopes. The Sr/Ca ratio of coral aragonite, a common SST proxy, may also be affected by coral growth. Significant correlation between coral skeletal Sr/Ca and SST s at many sites in the tropics has been used as the basis for developing paleo-SST reconstructions over the past several centuries (Beck et al., 1992; deVilliers et al., 1994;

Shen et al., 1996; Alibert and McCulloch, 1997; Linsley et al., 2000a). The underlying assumption for the past  $\sim 10$  years has been that the coral Sr/Ca ratio is controlled by the same simple thermodynamic laws that govern the precipitation of inorganic aragonite. However the incorporation of Sr and Ca into coral aragonite, like oxygen isotopes, is biologically mediated and not completely understood. The mystery about biological control on aragonite precipitation in corals has begun to raise some doubt about the efficacy of the Sr/Ca ratio in paleoclimate applications. Cohen et al. (2001) report significant variability between daytime calcification rate and nighttime calcification rate, and that the nighttime portion of the skeleton should be sampled because only the chemistry of nighttime skeleton is truly temperature-dependent. Such results fuel a strong controversy about the extent of biological bias that exists in climatic information derived from various tracers in corals. However, the study of Cohen et al. (2001) sampled mostly from within the tissue layer, which has been shown to produce discrepant isotopic and trace metal values. Additionally, their Sr/Ca-SST calibration equation is not significantly different from most bulk sampling studies to warrant drastic changes in the use of this tracer at present. Clearly more work is required to fully understand the effects of complicated coral growth on environmental tracers.

## Chronology

The isotopic analyses show a strong and obvious annual cycle, while the density banding in these *Diploastrea* colonies is not distinct over the entire length of the cores, although identified bands do appear to be annual. Therefore, the annual periodicity of skeletal  $\delta^{18}$ O was used to develop the chronology for the cores. Because average annual  $\delta^{18}$ O amplitude is close to that expected if water temperature was the controlling factor,

satellite-derived monthly SST data (1970-2001) from the 2... x 2... grid encompassing Savusavu Bay (Reynolds and Smith, 1994) was used to develop the age models. The  $\delta^{18}O$  data were tuned to the SST record by assigning the lowest  $\delta^{18}O$  value of each year to the highest SST and the highest  $\delta^{18}O$  value of each year to the lowest SST. Age assignments were then linearly interpolated between these two annual anchor points which unavoidably introduces a couple of months of error because corals do not grow uniformly throughout the year. The monthly SST dataset is only available as far back as 1970, so for age assignments before 1970 the lowest  $\delta^{18}O$  values were assigned to March and the highest  $\delta^{18}O$  values were assigned to August (March and August being the average times of highest and lowest SST respectively from 1970-1997). It should be noted that these temperature extremes do vary from year to year, introducing the potential for additional temporal error on the order of 1 to 2 months in years prior to 1970.

The coral  $\delta^{18}$ O data were tuned to the SST record for age assignment, but it is well known that coral skeletal  $\delta^{18}$ O is affected by both SST and  $\delta^{18}$ O<sub>seawater</sub>. While the Sr/Ca ratio is thought to be a more pure temperature proxy than  $\delta^{18}$ O (Beck et al., 1992; deVillers et al., 1994; McCulloch et al., 1994), at this location there is no time lag between the annual cycles in skeletal Sr/Ca and  $\delta^{18}$ O (Fig. 3), indicating that corresponding cycles in SST and  $\delta^{18}$ O<sub>seawater</sub> are also coincident. This is consistent with instrumental data from this region. Rainfall data from several sites around Fiji indicate that on average March and August also have the highest and lowest precipitation, respectively. The phase-locked nature of SST and precipitation is confirmed by the correlation coefficients between two SST datasets (Reynolds and Smith, 1994) and precipitation (Kalnay et al., 1996) at this site (r= 0.80 and 0.88 respectively) (Table 1).



Figure 3. Sr/Ca and  $\delta^{18}$ O from the upper 200mm (~35 years) of *Diploastrea* core 4F1 (A) collected in 1997 and LH (B) collected in 2001. The phase-locked relationship between the two tracers indicates that either may be used for age control via tuning to the SST record without conflicting influence from variable seawater chemistry.

|                       | 4F1 δ <sup>18</sup> Ο | LH δ <sup>18</sup> O | 1F δ <sup>18</sup> Ο | CAC SST | IGOSS SST | SSS   | Precip |
|-----------------------|-----------------------|----------------------|----------------------|---------|-----------|-------|--------|
| 4F1 δ <sup>18</sup> Ο | -                     |                      |                      |         |           |       |        |
| LH δ <sup>18</sup> Ο  | 0.58                  | -                    |                      |         |           |       |        |
| 1F δ <sup>18</sup> Ο  | 0.54                  | 0.61                 | -                    |         |           |       |        |
| CAC SST               | -0.63                 | -0.64                | -0.77                | -       |           |       |        |
| IGOSS SST*            | -0.75                 | -0.58                | -0.75                | 0.998   | -         |       |        |
| SSS**                 | 0.53                  | 0.56                 | 0.59                 | -0.42   | -0.39     | -     |        |
| Precipitation         | -0.61                 | -0.62                | -0.60                | 0.80    | 0.88      | -0.34 | -      |

Table 1. Correlation matrix for bimonthly Fiji coral and climate data between 1970 and 1997 unless otherwise noted.

Table 2. Correlation matrix for annual average Fiji coral and climate data between 1970 and 1997 unless otherwise noted.

|                       | 4F1 δ <sup>18</sup> Ο | LH δ <sup>18</sup> O | 1F δ <sup>18</sup> Ο | CAC SST | IGOSS SST | SSS   | Precip |
|-----------------------|-----------------------|----------------------|----------------------|---------|-----------|-------|--------|
| 4F1 δ <sup>18</sup> Ο | -                     |                      |                      |         |           |       |        |
| LH δ <sup>18</sup> Ο  | 0.45                  | -                    |                      |         |           |       |        |
| 1F δ <sup>18</sup> Ο  | 0.42                  | 0.52                 | -                    |         |           |       |        |
| CAC SST               | -0.51                 | -0.67                | -0.75                | -       |           |       |        |
| IGOSS SST*            | -0.36                 | -0.51                | -0.37                | 0.69    | -         |       |        |
| SSS**                 | 0.54                  | 0.53                 | 0.88                 | -0.68   | -0.37     | -     |        |
| Precipitation         | -0.55                 | -0.78                | -0.30                | 0.53    | 0.53      | -0.49 | -      |

\* IGOSS SST Data 1982-1997

\*\* SSS Data 1976-1997, from Gouriou and Delcroix (2002)

These correlations, although weaker than bimonthly data, persist for annually averaged data, suggesting that this is a regionally significant relationship (Table 2). This reinforces the assignment of the lowest  $\delta^{18}$ O values in a given year to March and that at this location either geochemical tracer will provide comparable age control and seawater chemistry will not affect the choice of SST as the chronology tool. Highly correlated interannual temperature and rainfall at this site is most likely due to the intimate link between the ENSO and the SPCZ (Vincent, 1994; Salinger et al., 1995; Salinger et al., 2001; Folland et al., 2002), producing equally significant SST and precipitation anomalies in the region surrounding Fiji. Thus, both SST and precipitation variability in this region should be recorded by coral  $\delta^{18}$ O at this site. For some locations in the Pacific however, extremes in temperature and precipitation or salinity do not necessarily coincide. Clearly, data from both improves confidence in the developed age model, perhaps the most important step in coral-based paleoclimate work.

Linear interpolation between the two subannual tie points of each year allowed for conversion of isotope data to the time domain and is generally considered the most objective method despite the coral s uneven growth rate through the year (Charles et al., 1997). A 1 mm sample interval in the *Diploastrea* cores yields ~5-6 samples per year on average, but due to the inconsistent growth rate this recovery ranged from as low as 2 to as high as 9 samples per year, so the sampling regime cannot accurately be called bimonthly. Because the SST and other climate data are monthly while the coral isotopic data have unequal time steps, all coral and instrumental data presented here were linearly interpolated to 6 points per year using the Timer program from the Arand software package (P. Howell, per. comm.) to facilitate comparison of the records.

### **RESULTS AND DISCUSSION**

### Sampling regime effect on the annual cycle

The width of a sampling transect in *Porites* cores usually incorporates 3-4 corallites because the individual polyps are approximately 0.5 mm in diameter. This averaging of endothecal and exothecal material from 3-4 individuals of the colony is unavoidable with bulk sampling methods but is however thought to minimize any geochemical spatial variations in the skeleton. For corals with larger polyps, like Diploastrea, there is concern that different skeletal elements in the same time horizon of an individual corallite may show geochemical heterogeneity even when deposited under the same conditions (Land et al., 1975; Dodge et al., 1992; Leder et al., 1996) (Fig. 4). This problem is complicated by the possible complex saw tooth-like pattern of synchronous time horizons (Land et al., 1975; Leder et al., 1996). The recent study of Watanabe et al. (2003), which evaluated this possible sampling effect in *Diploastrea*, was published near the completion of this project, and thus it was necessary to look to other analogous coral genera on which such an evaluation had previously been made. The genus *Montastrea*, a large-polyped, slow-growing Caribbean coral was studied by Dodge et al. (1992) and Leder et al. (1996) and is likely the best published analogue for Diploastrea. Dodge et al. (1992) recognized growth differences between endothecal and exothecal material, with lines of skeletal deposition comprising a greater vertical dimension for endothecal than exothecal material. The authors recommend restricted sampling of exothecal material for a more accurate chronology. Leder et al. (1996) noted isotopic variations between skeletal elements of *Montastrea*; the endothecal material showing reduced seasonal amplitude of  $\delta^{18}$ O and a more irregular annual cycle, relative



Figure 4. X-radiograph positives of the upper ~30cm of Fiji *Diploastrea* core 4F1 (A) and Fiji *Porites* core 1F (B), both collected in April 1997. The clear inter-genus differences are the much larger corallites in *Diploastrea* relative to *Porites*, and that *Diploastrea* contains 2-3 times as many annual density bands in this interval as *Porites*, the latter creating a longer paleoclimatic record in the same length of core. (C) Sketch of generic corallite showing exothecal and endothecal regions, modified from Vernon (1986). Different skeletal elements can have different isotopic values, even when deposited under the same conditions and complex growth surface geometry can cause time averaging for large-polyped corals like *Diploastrea*. These potential smoothing mechanisms necessitate narrow, single skeletal element sample paths to yield the best possible climate signal using oxygen isotopes.

to time-synchronous exothecal elements. Additionally, stain lines in this coral illustrated that the growth surface is not flat and parallel to the external surface, rather it has a jagged saw tooth pattern, suggesting that wide sampling tracks with a mixture of skeletal elements may result in reduced sensitivity due to time averaging.

To address this sampling concern and to determine the best sampling regime for *Diploastrea*, three time-synchronous sample transects were made in the upper 50 mm of core 4F1, one incorporating only exothecal material, one incorporating endothecal material, and the third incorporating a mixture of exothecal and endothecal material from the full width of a corallite, all at near monthly resolution (0.5 mm sample interval). The isotopic records from the skeletal transects are plotted together versus time in Figure 5, each with their own age model. The exothecal and endothecal transects generally show higher seasonal amplitude than the transect using a mixture of skeletal material. This result is interpreted to be due to the extreme differences in sample track width. Not knowing the exact growth surface geometry of *Diploastrea*, it can only be assumed that the growth surface is similar to that observed in Montastrea and other corals (Land et al., 1975; Leder et al., 1996). For the mixed skeletal element transect it was necessary to sample the full corallite width, on the order of 1 cm. Such a wide sampling track increases the amount of time averaging because samples are retrieved perpendicular to the growth axis and therefore cross-cut the jagged growth surface. Meanwhile the single element transects had a width of only 5 and 3 mm for the exothecal and endothecal transects, respectively, greatly reducing the amount of time averaging.



Figure 5. Oxygen isotopic time series from three experimental sample transects in the upper 50 mm of *Diploastrea* core 4F1 utilizing a mixture of skeletal elements (A), exothecal material (B), and endothecal material (C), each with their own age model. Endothecal material seems to yield the largest annual  $\delta^{18}$ O amplitude, however the large effect of time averaging indicates that this greater seasonal amplitude may not be due to the inherent nature of endothecal material, but rather the narrow sample path used. This study is not able to distinguish these effects and therefore exothecal skeletal material was used in this study given its recommendation for other large-polyped corals (Dodge et al., 1992; Leder et al., 1996) and its sufficient seasonal amplitude for resolving the interannual and interdecadal signal. However, the recent study of Watanabe et al. (2003) was able to minimize time averaging by using a constant sample path of 2 mm, and suggests that endothecal material may hold the greatest seasonal amplitude for  $\delta^{18}$ O.

Showing increased amplitude with decreasing sample track width, it is hard to establish whether the inherent heterogeneity of different skeletal regions or the width of sample transects is more important in generating a climate signal with the highest amplitude. It therefore seems necessary to preferentially sample only a single *Diploastrea* skeletal element to more accurately capture the annual cycle, while sampling in as narrow a track as possible to reduce time averaging due to the coral s saw tooth-like growth surface. Although endothecal material yields the largest annual  $\delta^{18}$ O amplitude, it was decided to sample both cores using just exothecal material because (1) exothecal material has a more consistent thickness and density and therefore easier to sample (2) all three methods recorded the same interannual signal, and (3) of the preference for analysis of exothecal material in *Montastrea* (the closest possible analogue). In a study too recent to have guided this calibration, Watanabe et al. (2003) examined the spatial heterogeneity of different skeletal elements in *Diploastrea* skeletons from the western Pacific. The authors found that with high resolution sampling (25 samples/year) endothecal material yields the highest seasonal amplitude and recommended preferential sampling of this inner skeletal material to best capture the full annual cycle. The results presented here are consistent with those of Watanabe et al. (2003) but expand on them by pointing out that in generating a long coral proxy record using *Diploastrea*, lower resolution sampling of a single skeletal element will produce as accurate a picture of regional climate variability with fewer samples. Given the promise that Fiji s location holds for capturing ENSO, SPCZ, and IPO-related climate variability of interannual and interdecadal scales, a slight reduction of the amplitude of the annual cycle should not affect major trends (Quinn et al., 1996).

## A bias toward winter conditions

It is often assumed, for the purposes of age assignment, that coral skeletal extension rates are constant between subannual tie points each year in the age model, which is most certainly not true, but is generally considered the most objective method (Charles et al., 1997). Density band formation in corals is generally considered to be an annual process. At this location the high density bands are formed in the summer, perhaps due to higher SST and/or greater cloud cover. Conditions in winter months create more optimal growth conditions and low density skeleton forms. For *Diploastrea*, because the sampling interval of the long sample transects is constant at 1 mm, while the growth rate varies at least seasonally, more samples are retrieved per year from the section of skeleton that was growing the fastest, in this case in winter (Fig. 6). Because the sampling interval yields more winter samples than summer, there is preferential capture of the winter months in these *Diploastrea* time series of  $\delta^{18}$ O. Figure 7, the oxygen isotopic time series since 1970 for core 4F1, along with monthly CAC SST for the 2...x2... grid surrounding Savusavu Bay (Reynolds and Smith, 1994) illustrates this preferential capture of the relative winter SST changes from year to year.

An effect of the seasonal bias is a reduced annual  $\delta^{18}$ O amplitude (0.5-0.6) relative to the expected range if SST was the only influence on coral  $\delta^{18}$ O. Laboratory experiments define the widely recognized 0.22 /...C  $\delta^{18}$ O —temperature relationship (Epstein et al., 1953), which given the roughly 4...C annual temperature range in Fiji would produce an expected range of ~0.9 each year. The observed annual range in any given year is about two-thirds of this predicted range based on SST variability, which I interpret to be the result of nearly two-thirds of the samples within a year coming from



Figure 6. X-radiograph blow-up of one corallite in *Diploastrea* core 4F1. Annual density bands are couplets of high (dark) and low (light) density skeleton. White circles are approximately 1 mm in diameter and represent the constant sampling interval. Due to *Diploastrea*'s variable seasonal growth rate, roughly 2/3 of the samples retrieved from any given year come from the low density band, deposited in winter, thereby introducing a seasonal bias into the  $\delta^{18}$ O time series.



Figure 7. SST data for the  $2^{\circ}x2^{\circ}$  grid surrounding Fiji (closed circles) with 4F1  $\delta^{18}$ O (open circles) illustrating that relative changes in winter SST are preferentially captured in the oxygen isotopic composition of *Diploastrea*, while relative summer (peak SST) conditions are not reproduced as well.

the winter portion of the skeleton (the effect may be reduced in endothecal material). Although researchers rarely point out the seasonal bias that corals impart due to their inconsistent growth rates, Leder et al. (1996) recommended a sampling regime of 50 samples per year to accurately capture the annual cycle for this very reason. Recognizing this bias and sacrificing part of the annual cycle with a lower sample resolution, however, is sometimes necessary and useful in generating longer coral records which can contain not only interesting seasonal variability, but interannual and interdecadal variability as well (Quinn et al., 1996; Crowley et al., 1999).

# Comparison of Fiji cores and Reproducibility of $\delta^{18}$ O

Linsley et al. (1999) note that corals of the same *Porites* species growing in the same location can have different absolute  $\delta^{18}$ O values (because skeletal  $\delta^{18}$ O is not deposited in equilibrium with seawater) but contain comparable variance. This intragenus effect is observed for *Diploastrea* as well as inter-genus differences in the average disequilibrium offset when data are plotted together on the same  $\delta^{18}$ O scale (Fig. 8). The average  $\delta^{18}$ O value for each 1970-1997 coral time series is -4.96 and -4.81 for *Diploastrea* cores 4F1 and LH respectively, and -5.16 for *Porites* 1F of Linsley et al. (in review). Disequilibrium offsets are thought to be relatively constant along the axis of maximum growth (Land et al., 1975; McConnaughey, 1989; Wellington et al., 1996), suggesting that the observed *Diploastrea* intra-genus differences in average  $\delta^{18}$ O may indicate that the cores were not retrieved exactly on this axis. Inter-genus differences, as expected, are even larger, but could partially be explained by the sample regime s preference for winter skeleton, which shifts the central tendency toward more positive


Figure 8.  $\delta^{18}$ O time series from (A) Fiji *Diploastrea* cores 4F1 (gray squares) and LH (black circles), and (B) Fiji *Porites* core 1F (dashed) showing both intraand inter-genus differences in the average disequilibrium offset. Additionally, both *Diploastrea* cores have higher average  $\delta^{18}$ O values than the *Porites* coral because of the sampling regime's preference for winter material and a slower extension rate allowing for aragonite deposition closer to equilibrium with seawater (Land et al., 1975; McConnaughey, 1989; deVilliers et al., 1995).

 $\delta^{18}$ O values. Additionally, this may be an inherent inter-genus difference that may stem from *Diploastrea* s slower extension rate, allowing for aragonite deposition closer to equilibrium with seawater (Land et al., 1975; McConnaughey, 1989; deVilliers et al., 1995).

As recommended by Linsley et al. (1999), centering of the data around the mean facilitates comparison of the records, and allows for examination of the common variance in each time series. The mean  $\delta^{18}$ O for the period 1945-1995 from each Fiji time series was subtracted from all values, this period being the longest whole year interval common to all three cores. These centered time series (Fig. 9) illustrate that both *Diploastrea* cores share common interannual  $\delta^{18}$ O variance over the period of comparison and are positively correlated over the past 30 years (Table 1) despite growing in very different water depths. Reproducibility of coral records remains a considerable concern given the general lack of reliable and continuous site-specific instrumental data to confirm the observed variance. Through the correlation between the two *Diploastrea* records presented here it is demonstrated that the sampling techniques and this new archive itself both yield a reliable and reproducible  $\delta^{18}$ O signal.

Given the dominant use of *Porites* over the past 10-20 years in the Pacific, and the general consensus on its dependability for retrospective studies of the surface ocean, the Fiji *Porites* record described in Linsley et al. (in review) proves to be especially useful in further verifying the climate signal contained in both *Diploastrea* records. Correlation coefficients between each *Diploastrea* core and the *Porites* record show that all three Fiji cores are positively correlated over the period of overlap (Tables 1 and 2). Sharing common interannual variance (Fig. 9) is a very promising result given the inherent



Figure 9. Fiji *Diploastrea*  $\delta^{18}$ O (A) and *Porites* (B)  $\delta^{18}$ O time series. Coral data were centered by subtracting the 1945-1995 average from all values. All three Fiji cores share common variance over this ~30 year period and demonstrate the reproducibility of the exothecal sampling techniques and that *Diploastrea* skeletons preserve a climate signal as reliable as *Porites* for recording the interannual environmental history of the region.

differences between these genera, the water depths of growth, and the unavoidable reduction of *Diploastrea* s annual amplitude due to the bulk sampling methods. Chapter 4 shows that over the full length of the 225-year time series of *Diploastrea* LH and *Porites* 1F, this inter-genus coherence continues on interannual time scales.

### Interpretation of the Fiji Coral $\delta^{18}$ O Signal

In this region, SST and precipitation, strongly driven by the ENSO and the SPCZ respectively, dominate the interannual climate signal (Fig. 10). Table 1 documents the correlations between coral  $\delta^{18}$ O and SST, SSS, and precipitation in this region. Coral  $\delta^{18}$ O at this site can be explained by this mixed climate signal. Comparison to indices of ENSO and SPCZ activity further illustrate the source of the observed interannual variance. The Ni o-4 SST anomaly index (Kaplan et al., 1998) is equatorial in its coverage (5...N-5...S, 160...E-150...W), but also straddles the dateline and therefore is useful in documenting the SST effect of ENSO activity in the western Pacific. In Figure 10 the two *Diploastrea* records have been averaged for comparison to the climate indices. Such stacking of multiple records is typical of tree-ring paleoclimate studies in order to minimize individual and local biases or noise that could obscure the regional climate signal of interest. Many coral-based paleoclimate studies rely on a single colony from which to derive their proxy data, which may not always be representative of larger scale climate features. Although the sampling regime suppresses the annual cycle, and Fiji is located outside of the region of large ENSO-related SST anomalies, this composite Diploastrea  $\delta^{18}$ O record is still able to capture the major shifts in the Ni o-4 index over the last  $\sim 30$  years.



Figure 10. The SPCZ Position Index and the SPCZ rainfall Index (A), the Ni o-4 SST anomaly index (B), and the Fiji *Diploastrea* composite  $\delta^{18}$ O record (C). Averaging the two *Diploastrea* cores removes individual biases and noise that might otherwise obscure the climate signal, a technique regularly employed in tree-ring climate studies. *Diploastrea* skeletal  $\delta^{18}$ O captures the major transitions in rainfall and SST-based indices, reliably recording the interannual environmental history of the region, dominated by SPCZ- and ENSO-related precipitation and SST.

The SPCZ Position Index (SPI) defines the position of the SPCZ based on sea level pressure differences between Suva, Fiji, and Apia, Samoa (Folland et al., 2002), where positive values indicate displacement toward Samoa while negative values indicate displacement toward Fiji. The SPCZ rainfall index is the seasonal (December, January, February) average of precipitation station records in the southwest Pacific (17.5...S-22.5...S, 182.5...E-179...W), from the ded dataset of Dai et al., (1997), as compiled by Deser (2000). These indices, coupled with the Ni o-4 index, demonstrate the interannual link between the activity of the SPCZ and that of the ENSO. While the rainfall-based SPCZ index does not account for evaporation in the South Pacific, the significant match between SPCZ-driven rainfall and coral  $\delta^{18}$ O (Table 1, Fig. 10) likely precludes a large evaporation effect on this interannual signal. These climate indices illustrate that this coral genus can reliably capture the climate history of this important region of the Pacific. **Implications** 

In the South Pacific, temporally short and spatially sparse site-specific instrumental data cannot begin to address long-term variability in ENSO-scale climate dynamics or establish statistically significant conclusions about decadal-scale variability. Intra- and inter-genus reproducibility of coral proxy time series are essential given the lack of reliable climate data against which to test pre-historical variance. Such testing of proxy reproducibility and blending of multiple records is regularly utilized in tree-ring studies of decadal climate variability (D Arrigo et al., 2001; Biondi et al., 2001) and should be employed for comparable coral-based studies to confirm the observed variance. If *Diploastrea* s paleoclimatic utility can be confirmed at additional locations outside of those sampled in this study and by Watanabe et al. (2003), and this new archive s validity

further verified, substantial steps can be taken toward knowledge of long-term interannual and decadal climate variability in the Pacific that *Porites*-based proxy records are not long enough to capture.

### CONCLUSIONS

Diploastrea skeletal  $\delta^{18}$ O from Fiji is influenced by both SST and  $\delta^{18}$ O<sub>seawater</sub> due to the intimately linked ENSO and SPCZ. To best retrieve this mixed climate signal, sampling of *Diploastrea* skeletons for stable isotope analysis should include only a single skeletal element with narrow sample tracks to reduce time averaging, a significant potential problem in such large-polyped corals. Depending on the mode of variance to be studied in a given region, sample interval should be carefully evaluated. A reliable interannual signal is possible with roughly bimonthly sampling of exothecal material, but to best capture the annual cycle, near monthly or better sampling of endothecal material may be necessary given the slow and seasonally variable extension rates. Growing less than a kilometer apart, these *Diploastrea* corals have experienced the same environmental history as the *Porites* coral of Linsley et al. (in review). The equivalence of both Diploastrea records illustrates that the chosen sampling regime can yield reproducible results while inter-genus equivalence on interannual time scales over the past ~30 years further verifies that Diploastrea can produce viable climate records as effectively as the established coral paleoclimate archive to date. The growth rate and lifespan of Diploastrea suggest that continuous proxy records approaching 800 years could potentially be retrieved from the Western Pacific and Indian Ocean in the future.

## CHAPTER 3

## ENDOLITHIC ALGAE IN *DIPLOASTREA*: A RECORD OF ENSO?

### ABSTRACT

Forty five algae bands, likely of the species *Ostreobium quekettii*, are found in the skeleton of a 1.3-m-long *Diploastrea heliopora* coral from Fiji with a recurrence interval between 2 and 8 years. Significant limitations about the nature of algal growth exist which preclude accurate age assignment of the layers, but their very presence in the skeleton suggests a climate link to their colonization and death; their recurrence interval suggesting possible influences from the El Ni o Southern Oscillation (ENSO) system. It is shown that the timing of historical El Ni o events coincides with many of the observed algae layers, but that simple ocean-atmosphere variability may not explain the presence of others. The  $\delta^{13}$ C record from this core is not significantly correlated to sunlight availability and/or cloud cover, precluding any connection between the endolithic algae bands and photosynthetic activity of the symbiotic zooxanthellae. Without detailed life cycle, growth information and proper age assignment any relationship between algal presence/absence in the skeletons of *Diploastrea*, or other coral genera, and environmental changes will remain unidentified.

### DISCUSSION

A single species of algae, Ostreobium quekettii, is the only known species able to survive in the unique environment within the skeleton of living corals. The presence of this algae has been documented in the skeletons of several species of *Porites* (Kanwisher and Wainwright, 1967; Highsmith, 1981; Le Campion-Alsumard et al., 1995; Shashar et al., 1997), as well as Favia (Halldal, 1968; Shibata and Haxo, 1969; Fork and Larkum, 1989), Goniastrea (Highsmith, 1981), and Montastrea (Lukas, 1974). It is believed that the algae live below the coral tissue layer to shade themselves from UV radiation, which is absorbed by various compounds in the coral tissue (Shashar et al., 1997). Additionally the algae gain protection from grazing fish by living below the tissue layer, unlike their vulnerable free-living counterparts on the reef. However, because these algae live below the coral tissue layer, almost all (99.9%) of the incident photosynthetically active radiation (PAR) is absorbed by the symbiotic zooxanthellae before reaching them. Action and absorption spectra indicate that Ostreobium quekettii utilize light in the red and near infra-red (Halldal, 1968; Fork and Larkum, 1989), which is not absorbed by the zooxanthellae, allowing them to photosynthesize in a low light environment. Many corals have been found to contain at least one green band of this algae directly below the coral tissue layer, some having a few additional bands deeper in the skeleton. However the number of bands in *Diploastrea* core LH seems to be unprecedented in the literature. Multiple bands were noted in *Porites* corals from Enewetak Atoll, with a periodicity of band formation calculated to be ~1-1.4 years (Highsmith, 1981). Also at Enewetak, Buddemeier et al. (1974) found multiple algae bands in a Goniastrea coral 2-2.5 cm apart while the coral growth rate was only 6 mm/yr. Because the bands are obviously not

annual the authors have suggested that the algae periodically re-infest corals, although what may trigger this re-infestation remains to be found.

When multiple bands are present it is important to know whether all bands are living or not. Periodic algal re-infestation, indicated by dead lower bands, would suggest some climatic trigger in the re-infestation. Light experiments indicate that incident light is strongly filtered first by zooxanthellae in the coral tissue, leaving 0.1% for the endolithic algae, and that after passing through the first algae band, very little PAR is left  $(\sim 0.001\%)$  for further photosynthesis, suggesting that only the outer band is active (Halldal, 1968). Additionally Kanwisher and Wainwright (1967), through respiration and light experiments, were able to identify intact chloroplasts only in the outermost band and that lower bands in the coral were green in color due to phaeophytin, a degradation product of chlorophyll, trapped in the skeleton, confirmed by Shibata and Haxo (1969). However, Highsmith (1981) points out an interesting light penetration phenomenon which occurs in corals with high skeletal bulk density. Longer, straighter corallites characteristic of higher skeletal bulk density, a function of corallite wall thickness relative to diameter, allows light to penetrate farther down through light tubes. Corals with lower bulk densities cause more reflections per unit length and light would have to travel farther in thin-walled corallites than in thick-walled corallites to penetrate the same distance into the skeleton.

Highsmith (1981) points out the contradictions in the literature and the enigmatic nature of the algae bands. Most corals contain only one green algae band, directly below the coral tissue, suggesting that the algae grow upwards at pace with the coral. If this is the case, why do some corals contain multiple bands? And if the bands are produced

during a particular season, light intensity, oxygen level, or seawater condition, why do not all corals contain multiple bands?

The fact that *Diploastrea* core LH contains multiple algae bands may be due to increased light penetration of the skeleton because it was growing in very shallow water and/or the skeletal density and architecture created light tubes to aid in light penetration. Buddemeier et al. (1974) concluded that algal attack on corals is likely controlled by seasonal and environmental changes. Le Campion-Alsumard et al. (1995) also point out that *Ostreobium quekettii* bands may reflect algal seasonality, although any seasonal influence on coral infestation remains unknown. But if only the outer band was living at the time of core collection, which seems more likely due to light absorption and shading by zooxanthellae, then this core may contain a record of climatically induced algal re-infestation with an El Ni o-like periodicity which may be due to changing light levels, seawater changes, oxygen levels, temperature, or salinity changes.

There are 45 distinct algae bands over the 1.3 m length of *Diploastrea* core LH, most green in color, while a couple are either red or gray in color (Table 3). There is no clear isotopic signature of the algae bands in coral skeletal  $\delta^{18}$ O or  $\delta^{13}$ C, likely because the small amount of algal pigment is diluted in the carbonate powder. The spacing of the algae bands in core LH, every 10-40 mm, translates into every 2-8 years using the average extension rate of 5 mm/yr, with an average spacing between bands of 5 years. This recurrence interval suggests there may be some connection to the ENSO system. Unfortunately, there seems to be no way to accurately assign ages to the algae bands. The age of the skeleton where the algae bands are found at present in the core does not represent the age when the algae band was growing because the algal bands appear to

| Growth surface- | Algae Band | Skeleton | Corrected |
|-----------------|------------|----------|-----------|
| offset (vears)  | Depth (mm) | Ade      | Year      |
| 3.31            | 9          | 1998.65  | 2001.96   |
| 0.0.            | 18         | 1997.15  | 2000.46   |
|                 | 29         | 1995.21  | 1998.52   |
|                 | 53         | 1991.21  | 1994.52   |
|                 | 74         | 1987.37  | 1990.68   |
|                 | 112        | 1980.35  | 1983.66   |
|                 | 132        | 1977.04  | 1980.35   |
|                 | 152        | 1973.63  | 1976.94   |
|                 | 168        | 1970.79  | 1974.10   |
|                 | 190        | 1966.62  | 1969.93   |
|                 | 214        | 1962.34  | 1965.65   |
|                 | 219        | 1961.11  | 1964.42   |
|                 | 240        | 1957.06  | 1960.37   |
|                 | 256        | 1954.06  | 1957.37   |
|                 | 271        | 1951.21  | 1954.52   |

Table 3. Depth of algae bands in Diploastrea core LH and estimated ages

| Algae Band |              | Corrected |
|------------|--------------|-----------|
| Depth (mm) | Skeleton Age | Year      |
| 297        | 1945.54      | 1948.84   |
| 309        | 1943.62      | 1946.93   |
| 325        | 1940.54      | 1943.84   |
| 357        | 1934.81      | 1938.12   |
| 370        | 1931.62      | 1934.93   |
| 390        | 1928.62      | 1931.93   |
| 435        | 1919.34      | 1922.65   |
| 462        | 1914.91      | 1918.22   |
| 488        | 1910.31      | 1913.62   |
| 550        | 1897.72      | 1901.02   |
| 563        | 1894.51      | 1897.82   |
| 574        | 1892.62      | 1895.93   |
| 595        | 1888.48      | 1891.79   |
| 608        | 1886.21      | 1889.52   |
| 623        | 1883.21      | 1886.52   |

| Algae Band |              | Corrected |
|------------|--------------|-----------|
| Depth (mm) | Skeleton Age | Year      |
| 640        | 1880.21      | 1883.52   |
| 660        | 1876.91      | 1880.22   |
| 689        | 1871.91      | 1875.22   |
| 744        | 1861.62      | 1864.93   |
| 840        | 1846.62      | 1849.93   |
| 878        | 1840.62      | 1843.93   |
| 917        | 1834.21      | 1837.52   |
| 951        | 1829.01      | 1832.32   |
| 1003       | 1820.37      | 1823.68   |
| 1045       | 1813.76      | 1817.07   |
| 1060       | 1811.21      | 1814.52   |
| 1100       | 1805.62      | 1808.93   |
| 1157       | 1797.37      | 1800.68   |
| 1190       | 1792.48      | 1795.79   |
| 1234       | 1785.34      | 1788.65   |

develop several centimeters below the tissue layer and grow at pace with the polyps. Therefore the best estimation of the algal ages adds the time offset between the upper most algae position and the growth surface to the age of the skeleton bearing the algae (Table 3). This correction likely yields a maximum age for the algae bands, assuming that the observed offset represents the maximum depth and lowest light levels under which the algae will grow. The other assumption in this calculation is that the upper band was living at the time of core collection and accurately characterizes the coral tissue-algae band offset distance. If the upper band was dead at core collection these calculations are skewed by an unknown amount. Without in-depth biological examination of the band it cannot be determined if the observed green band is due to chloroplasts in the living algae, or the degradation products of them. However if the algae band growing with the tissue layer never died, then there would only be one band present. It therefore seems that the exact age of algal death, which is what could potentially be climatically related, cannot be determined for this core because the history of the upper algae layer is not known.

This difficulty is evident when the estimated ages of the algae bands are compared to the El Ni o chronology of Quinn et al. (1987), and to the oxygen and carbon isotopic time series (Fig. 11). Most algae bands coincide with either moderate or strong El Ni o events, but there are some bands present during non El Ni o years and some El Ni o years without algae bands. Relative to the  $\delta^{18}$ O record, interpreted to record rainfall and SST variability, algae bands are present during maximum, minimum, and transitional  $\delta^{18}$ O values, collectively indicating that perhaps El Ni o-induced cold and dry anomalies are not the only stressor affecting algal activity. The  $\delta^{13}$ C records from Fiji have been



Figure 11. Corrected age of algal bands (open squares), using 3.3 year offset between upper-most band and coral tissue layer, the timing of moderate (gray squares), strong and very strong (black squares) El Ni o events based on the Quinn et al. (1987) chronology, and the *Diploastrea* core LH  $\delta^{18}$ O (black) and  $\delta^{13}$ C (gray) time series. Algae bands do not produce a distinct signature in the oxygen or carbon isotopic time series. Additionally, difficulty in algal age assignment precludes a clear connection between algal bands and ENSO although the spacing suggests such a connection. It is hard to determine if algal presence is due to El Ni o, La Ni a, high or low SST, salinity, cloud cover, etc.

much more difficult to interpret, with inconsistent annual cycling relative to  $\delta^{18}$ O, and therefore SST, rainfall, and salinity (r = 0.33 and 0.06 for core LH and 4F1, respectively). However in the upper 30 years of each core there is some evidence that  $\delta^{13}$ C may lag the  $\delta^{18}$ O record by up to a couple of months with some consistency but in the pre-calibration period this relationship does not persist. Additionally, *Diploastrea*  $\delta^{13}$ C shows no clear relationship with cloud cover and/or sunlight availability, with r values equally bleak (0.15 and -0.04 for core LH and 4F1, respectively), although generally more positive  $\delta^{13}$ C values occur in austral winter, during times of reduced cloud cover. Such a relationship is expected given the idea that during times of higher photosynthetic activity, zooxanthellae utilize more  ${}^{12}$ CO<sub>2</sub>, leading to a concentration of  ${}^{13}$ CO<sub>2</sub> in the DIC pool from which calcification takes place (Swart et al., 1996). Swart et al. (1996) point out, however, that changes from coral autotrophy to heterotrophy, and changes in the partitioning of <sup>13</sup>C between zooxanthellae and coral tissue can also affect the DIC pool available for calcification. Despite the difficulty in interpreting the Fiji *Diploastrea*  $\delta^{13}$ C signal, a problem common to coral paleoclimate studies, the estimated algal ages from Table 3 do not consistently coincide with either  $\delta^{13}$ C maxima or minima, as with  $\delta^{18}$ O, questioning the inverse relationship between endolithic algal and coral prosperity.

### CONCLUSIONS

The timing of algal death, potentially connected to climatic changes, may not be completely controlled by ENSO-scale variability in physical ocean parameters or sunlight availability, based on the algal chronology calculated here. However only a handful of the many algae bands in this coral cannot be explained by El Ni o activity. The algal chronology created here is certainly inadequate to fully address this issue, with errors up to 4 years in any given age assignment. Additionally it seems that both zooxanthellae and endolithic algae should have some linkage in their activity/prosperity, however the  $\delta^{13}$ C record from this coral remains unexplained. The potential climate record in the timing of endolithic algal colonization remains unknown, however band formation in this colony may be unique to the specific shallow, warm water environment of *Diploastrea* core LH, given the lack of such algal re-infestation reported in the literature. Clearly more work is necessary, probably from a biological perspective, to gain a better understanding of how these algae live and die and what controls their infestation into coral skeletons before a climate linkage can be found.

## **CHAPTER 4**

# A PALEOCLIMATIC EVALUATION OF THE INDO-PACIFIC CORAL DIPLOASTREA HELIOPORA IN FIJI: A PROMISING NEW ARCHIVE OF PACIFIC CLIMATE VARIABILITY

### ABSTRACT

A new 225-year oxygen isotope record is presented from the massive coral *Diploastrea* from Fiji that provides a long temperature and rainfall history for an important region with sparse climate records. *Diploastrea* has not previously been utilized for climate reconstructions but may potentially contain longer uninterrupted records of climate than *Porites*, the genus commonly used in Pacific climate studies. Neighboring *Diploastrea* and *Porites* coral  $\delta^{18}$ O time series from Fiji are used to show that *Diploastrea* is as effective as *Porites* in recording the interannual environmental history of the region, but potentially more accurate at recording lower-frequency variability. The trend in *Diploastrea*  $\delta^{18}$ O at this location is more representative of the long-term trend in regional SST than *Porites*. Additionally, *Diploastrea* faithfully captures climate variability related to the Interdecadal Pacific Oscillation (IPO), and offers evidence supporting the idea that El Ni o Southern Oscillation (ENSO)- and IPO-scale variability are distinct phenomena, although fundamentally linked.

### **INTRODUCTION**

In the tropical Pacific, reliable continuous measurements of physical ocean properties such as sea surface temperature (SST) and sea surface salinity (SSS) generally do not span more than the last 50 years, a period likely already influenced by human activities. Scleractinian corals are uniquely suited for extending the instrumental record to pre-anthropogenic times because climate-driven variability in ocean conditions is in many cases recorded in the chemistry of their aragonite skeletons. Additionally, corals probably provide the best marine archive of changes in SST, SSS and the  $\delta^{18}O$ composition of seawater (Dunbar and Wellington, 1981; Cole et al., 1993; Quinn et al., 1993; Linsley et al., 1994; Charles et al., 1997; Linsley et al., 2000b; LeBec et al., 2000, to cite a few) with sufficient time resolution to study in detail phenomena like the ENSO and more recently, interdecadal climate variability.

The coral genus *Porites* has been the primary Pacific coral archive of climate variability for many years. With an annual extension rate of approximately 1 cm per year, near monthly or finer sample resolution is possible. Despite the past success using the genus *Porites* in coral-based paleoclimate reconstruction, several significant limitations of using these archives remain, including interpretation of decadal and trend modes of variance, potential biological artifacts, and the fact that most *Porites* colonies are only 200-300 years in length. Examination of ENSO-scale variability has been the main success of coral proxy records to date but there exist only a few multi-century length Pacific *Porites* records that can begin to address climate variability with decadal and multi-decadal periodicity (Cole et al., 1993; Linsley et al., 1994; Dunbar et al., 1994;

Boiseau et al., 1998; Quinn et al., 1998; Cole et al., 2000; Linsley et al., 2000a; Urban et al., 2000).

The massive coral genus *Diploastrea*, however, has a much slower annual extension rate (4-6 mm/yr), which in itself suggests that *Diploastrea* colonies can yield longer proxy records than *Porites* colonies of the same length. *Diploastrea* has a dense skeletal structure which is rarely damaged by bioeroders, supporting a long lifespan, longer than any other coral in the Faviidae family (Vernon, 1986), with colonies up to 3 meters high known to exist in the western Pacific (T. Quinn, per. comm.). Additionally, *Diploastrea* s presence in the fossil record extends as far back as the Cretaceous, a full 10 million years before *Porites*.

Here three coral cores collected from the same bay in Fiji are used for a unique calibration study, inter-genus comparison, and simultaneous investigation of South Pacific Convergence Zone (SPCZ) activity and Pacific interdecadal climate variability. In Chapter 2 these same corals were used to document the reproducibility of  $\delta^{18}$ O at this site over the past 30 years. The 225-year *Diploastrea* time series  $\delta^{18}$ O results are discussed here and compared to both multi time-scale indices of climate variability, and to the *Porites* record of Linsley et al. (in review) to document long-term reproducibility of  $\delta^{18}$ O and to examine the potential use of *Diploastrea* as a paleoclimate archive. In April 1997 a 30 cm coral core from a colony of *Diploastrea* was collected by hydraulic drill from ~10 m water depth and in December 2001 a 1.3 m coral core was collected from a second colony in 2 m of water, both from the outer edge of Savusavu Bay on the south side of Vanua Levu, Fiji (16... 49 S, 179... 14 E). These *Diploastrea* res are compared to a 217-year-long *Porites* core collected from the middle of Savusavu Bay in

April 1997 (Linsley et al., in review). Core preparation and isotopic analyses follow the procedures of Linsley et al. (2000a). External precision for  $\delta^{18}$ O, based on repeated analysis of NBS-19 over the course of this study, is better than 0.04 (1  $\sigma$ ).

### METHODS

With no evaluation of *Diploastrea* s paleoclimatic utility in the literature when this calibration work began, the large-polyped, massive Caribbean coral *Montastrea annularis* studied by Leder et al. (1996) was used as the closest analogue on which such an evaluation has been made. For these *Diploastrea* cores, it was determined that sample track width and its affect on time averaging was just as important as the inherent heterogeneity of different skeletal elements on the amplitude of the annual  $\delta^{18}$ O cycle. Given the difficulty in separating the effects of each, it was decided to sample only exothecal material following the results of Leder et al. (1996). Recently, however, a detailed study demonstrating *Diploastrea* s skeletal isotope heterogeneity has suggested that endothecal material provides the best climate signal for capturing the annual cycle (Watanabe et al., 2003). The results presented in Chapter 2 are consistent with the conclusions of Watanabe et al. (2003), but it should be pointed out that different sampling methods for Fiji *Diploastrea* all yield comparable interannual signals and should not affect the lower frequency trends discussed here.

Given *Diploastrea* s slow annual extension rate, and the ability to extract useful interannual and interdecadal climate signals from this coral with roughly bimonthly resolution, both *Diploastrea* cores were sampled at 1 mm intervals. At this location high summer SST s (March) slow coral growth and form a high-density band, while lower

winter SST s (August) create more optimal growth conditions and low-density band formation. The constant sampling interval therefore yields more samples each year from the faster-growing low-density band. Thus, these Fiji *Diploastrea* time series have a bias toward austral winter given that nearly 2/3 of the samples each year are from winter skeleton, with the annual  $\delta^{18}$ O amplitude suppressed by an approximately equal fraction.

The annual periodicity of skeletal  $\delta^{18}$ O was used to develop the chronology for the cores presented here. The  $\delta^{18}$ O maxima and minima were tuned to those of the 2... x 2... gridded CACSST dataset for this site (Reynolds and Smith, 1994) following the procedures of Linsley et al., (2000b).

Singular Spectrum Analysis (SSA) software written by E. Cook of the Lamont-Doherty Earth Observatory was used in the analysis of the coral  $\delta^{18}$ O time series. SSA eigenvectors define the dominant modes of variability in a time series while reconstructed components allow for examination and extraction of the original signal s different frequency components. This technique is described in detail by Vautard and Ghil (1989) and Vautard et al. (1992), and has been used to examine the time scales of ENSO variability (Rasmusson et al., 1990), the recent warming trend in global temperature data (Ghil and Vautard, 1991), and has been applied to coral isotopic time series to identify ENSO-scale variability (Dunbar et al., 1994; Charles et al., 1997; Linsley et al., 2000a).

Wavelet analysis, using the interactive website of Torrence and Compo (1998) (http://paos.colorado.edu/research/wavelets/), was used to further examine the variability in the Fiji coral  $\delta^{18}$ O records. Not only can the dominant modes of variability be identified as in SSA, but by decomposing a time series into time-frequency space, their contributions over time can be evaluated, which SSA is not able to do. Wavelet analysis

has the unique ability to resolve the time history of the interdecadal components of interest in the Fiji  $\delta^{18}$ O records. While SSA uses a set window length whereby small windows tend to coalesce frequencies and large windows separate frequencies, wavelet analysis uses a mother wavelet that is stretched or compressed to change the size of the window, making it possible to analyze a signal at different scales, analogous to a telephoto lens. The result is an analysis technique able to equally resolve both high and low frequencies over time, decomposing a time series into time-frequency space and allowing determination of when different modes of variability are more or less dominant in the time series being analyzed. This technique is described in detail by Hubbard (1998) and by Lau and Weng (1995). Wavelet analysis has not been fully exploited in examining climate data despite the fact that wavelets are well suited to the nonstationary nature of the earth s climate system. Recently, however, wavelet analysis has been used on instrumental data to examine various features of the atmospheric and oceanic systems (Meyers et al., 1993; Weng and Lau, 1994; Foufoula-Georgiou and Kumar, 1994; Torrence and Compo, 1998; Torrence and Webster, 1999). Wavelet analysis has seen much more limited use on paleoclimate records but has had impressive results (Lau and Weng, 1995; Moy et al., 2002), opening the door for paleoclimate applications in the future.

### **RESULTS AND DISCUSSION**

### A record of interannual SPCZ-induced climate variability

The coral  $\delta^{18}$ O data were tuned to the SST record for age assignment, but it is well known that coral skeletal  $\delta^{18}$ O is affected by both SST and  $\delta^{18}$ O<sub>seawater</sub>. At this site SST and precipitation are highly correlated (r = 0.80), as are skeletal  $\delta^{18}$ O and Sr/Ca in cores 4F1 and LH (r = 0.75 and 0.56, respectively), suggesting that either tracer is suitable for tuning to the timing of SST changes in developing the chronology. Such a high correlation between SST and precipitation is not unexpected given Fiji s location with respect to the axis of maximum SPCZ rainfall for 1958-1998, which extends from New Guinea towards French Polynesia, passing just north of Fiji. The SPCZ is perhaps the most dominant feature of the Southern Hemisphere subtropics, and its position and activity are modulated by the ENSO and the Interdecadal Pacific Oscillation (IPO) (Kiladis et al., 1989; Vincent, 1994; Folland et al., 2002). When the SPCZ migrates to the northeast during El Ni o events, drier than average conditions exist in Fiji, while southwest displacement of the SPCZ during La Ni a events brings wetter than average conditions (Salinger et al., 1995). Both phases are predicted to alter the  $\delta^{18}O_{seawater}$  in the region. Because Fiji lies near the hinge point of the Southern Oscillation and near the position of southernmost displacement of the SPCZ, this region should experience smaller ENSO-related SST anomalies and relatively large precipitation and  $\delta^{18}O_{seawater}$ anomalies on ENSO time scales.

Therefore, because coral  $\delta^{18}$ O records both  $\delta^{18}$ O<sub>seawater</sub> and SST changes, the rainfall activity of the SPCZ should be amplified in *Diploastrea* skeletal  $\delta^{18}$ O relative to SST on these time scales. Coral  $\delta^{18}$ O data are compared to two indices of SPCZ activity (Fig. 12), one based on rainfall, and the second based on a sea level pressure gradient. The SPCZ rainfall index is an average of station records for December, January, and February (DJF) (17.5...S-22.5...S, 182.5...E-170...W), frogridtled dataset of Dai et al. (1997), as compiled by Deser (2000). The SPCZ Position Index (SPI) is a station sea



Figure 12. (A) The sea level pressure-based SPCZ Position Index (SPI) of Folland et al. (2002) (solid line) and the rainfall-based SPCZ index of Deser (2000) (dashed line). (B) Annual average skeletal  $\delta^{18}$ O for *Diploastrea* core LH (black) and 4F1 (gray). Positive values of the SPI correspond to displacement of the SPCZ toward Samoa while negative values indicate displacement toward Fiji. Positive (negative) values of the SPCZ index correspond to increased (decreased) rainfall over the Fiji region. Movement of the SPCZ toward Fiji, largely associated with ENSO on these interannual time scales, and the large precipitation anomalies which follow, are recorded as negative shifts in the skeletal  $\delta^{18}$ O of both *Diploastrea* corals at this site.

level pressure-based index which defines the position of the SPCZ, calculated as the normalized seasonal difference in msl pressure between Suva, Fiji and Apia, Samoa (Folland et al., 2002, and provided by J. Salinger). Annual averaged *Diploastrea*  $\delta^{18}$ O accurately record SPCZ activity, capturing nearly all major transitions in both precipitation- and pressure-based indices (Fig. 12), illustrating the region s and *Diploastrea* s sensitivity to SPCZ-induced rainfall on interannual time scales.

### **Comparison of Fiji cores**

The oxygen isotope time series from all three Fiji cores are presented in Figure 13. The 1945-1995 mean  $\delta^{18}$ O has been subtracted from all values and the centered series filtered with a running average (14-month window) to highlight the interannual variability and common variance in the cores. Figure 13 shows that both coral genera share the same common interannual variance and are positively correlated over the entire 225-year time series (r = 0.51). One of the noticeable inter-genus differences, however, is the strong trend toward lighter  $\delta^{18}$ O values in the Fiji *Porites* record, a feature of many Porites-generated coral records (Druffel and Griffin, 1993; Linsley et al., 1994; Quinn et al., 1998; Urban et al., 2000; Hendy et al., 2002). In this *Porites* record, the trend is ~60% greater than the trend in the *Diploastrea* record (Fig. 13). Additionally, the trend in *Diploastrea* is steeper in the first 100 years of the record, and flattens out around 1880, closely following the trend in annual extension rate (Fig. 14). A climatic source of the strong trend component in many coral records is elusive, as is the link between skeletal  $\delta^{18}$ O and growth effects (Land et al., 1975; McConnaughey, 1989; Leder et al., 1996; Boiseau et al., 1998; Quinn et al., 1998). The high growth rate of Porites colonies relative to *Diploastrea* may account for the stronger trend in the Fiji *Porites*  $\delta^{18}$ O time



Figure 13. The full  $\delta^{18}$ O time series from *Diploastrea* core 4F1 (gray) and LH (black) (A) and *Porites* corals (B). Isotope data have been centered by subtracting the 1945-1995 mean from all values and smoothed with a running average (14 month window) to highlight the shared intra- and inter-genus interannual variance. The long term trend in *Diploastrea* is about half as steep as that for *Porites*. SST anomaly data near Suva, Fiji (Folland et al., in press) (C). Using the working assumption that skeletal  $\delta^{18}$ O is controlled solely by SST and that the linear best fit equations shown best represent the observed trends, *Diploastrea* and *Porites* indicate a rise in SST of 0.68° and 1.13°C, respectively, over the period 1875-2000, while SST near Suva has risen only 0.29°C in the same time period. While both corals overestimate the observed rise in SST, *Diploastrea*  $\delta^{18}$ O time series may be less influenced by growth effects due to the coral's slower extension rate and may more accurately depict the long-term trend in SST.



Figure 14. Growth rate (black) and  $\delta^{18}$ O (gray) time series for *Diploastrea* core LH. While these two parameters are not highly correlated on an annual scale, both show steeper trends in the pre-1900 section of the core, which then flatten in the twentieth century. The concurrent trends in growth rate and  $\delta^{18}$ O suggest that early in the colony's life higher growth rates, and perhaps not climate, produced the observed  $\delta^{18}$ O trend in the first approximately 100 years of the record. Such a relationship may explain why *Porites*, which grows faster than *Diploastrea*, may contain a more pronounced  $\delta^{18}$ O trend. Quinn et al. (1993) observed a similar growth rate change at the end of the 1800's corresponding to a major shift in  $\delta^{18}$ O in a coral from Vanuatu, except with an opposite relationship to growth rate.

series, while the trend in the early part of the *Diploastrea* record may be due to higher extension rates that this coral experienced earlier in its life. Quinn et al. (1993) noted a similar relationship between extension rate and oxygen isotopes in a *Platygyra lamellina* coral from Vanuatu around 1870, suggesting a possible link between growth rate and  $\delta^{18}$ O trends. The timing of this change however is interesting and may have climatic significance given the evidence for a fairly abrupt decrease in atmospheric circulation and trade winds coming out of the Little Ice Age (Thompson et al., 1986; Keigwin, 1996; Kreutz et al., 1997; Black et al., 1999) that may have freshened the surface ocean in the South Pacific (Hendy et al., 2002) by reducing evaporation.

If it is assumed, for the purposes of discussion, that coral skeletal  $\delta^{18}$ O is purely a function of SST, and a linear best fit equation best represents the long-term trend, *Porites*  $\delta^{18}$ O from 1875-2000 translates to a 1.13...C rise in SST and that o*Diploastrea* to a 0.68...C rise, using the widely recognized laboratory calibration of 0.22 /...C (Epstein et al., 1953) (Fig. 13). Meanwhile, examination of long-term SST at Suva, Fiji (Folland et al., in press) indicates a rise in SST of only 0.29...C over the same period, indicating that the  $\delta^{18}$ O signals in both coral genera are amplified by some other process. Long-term precipitation at Suva shows a slight decrease over the twentieth century (Vose et al., 1998), indicating that  $\delta^{18}O_{seawater}$  may not be implicated in the amplified  $\delta^{18}O$  signals despite the strong link between *Diploastrea*  $\delta^{18}O$  and SPCZ-related rainfall. This leaves the extension rate as a likely contributor to the observed trends given the similarities of its long-term trend to that of  $\delta^{18}O$ . Both *Diploastrea* corals have experienced the same environmental history as a neighboring *Porites* colony, contain similar interannual variance, but a lower amplitude  $\delta^{18}O$  trend which is most similar to the observed rise in

SST, suggesting that *Diploastrea* s  $\delta^{18}$ O time series, due to a slower extension rate, may be more accurately recording the long-term secular trend at this site.

### South Pacific interdecadal climate variability

Here it is demonstrated that SST and the position of the SPCZ, important in driving Fiji s interannual climate variability, also affect the interdecadal climate variability at this site. Recently, examination of South Pacific instrumental climate data for the twentieth century has revealed the SPCZ s equally important link to the phasing of the IPO, the Pacific-wide manifestation of the Pacific Decadal Oscillation (PDO) (Folland et al., 2002). With a spatial pattern broadly similar to ENSO, but operating on multi-decadal periods, the positive phase of the IPO would tend to correspond to times of more frequent El Ni os and a northeast displacement of the SPCZ. During the negative phase of the IPO, La Ni a-like conditions persist and the SPCZ is displaced to the southwest (Fig. 2).

Utilizing SSA, the interdecadal components of all three Fiji  $\delta^{18}$ O time series have been extracted, with periods between 17 years and the long-term trend, calling this mode of variability the IPO band. A window length (m value) of 300 (~50 years) was used for the 225-year-long *Diploastrea* core LH to resolve the interdecadal components of the  $\delta^{18}$ O time series, and because *Diploastrea* core 4F1 is ~60 years long, a proportional m value was set at 108 (~18 years). The IPO band accounts for up to 10% and 21% of the variance in the original 4F1 and LH *Diploastrea* time series respectively (Tables 4 and 5). Both *Diploastrea*  $\delta^{18}$ O records align well with each other and both faithfully record the timing of all major transitions of the IPO, while the *Porites* record is only in phase with the IPO and the *Diploastrea* records between ~1880 and 1950 (Fig. 15). This

| Eigen vector   | Period (years) | Variance (%) | Cummulative Variance (%) |
|----------------|----------------|--------------|--------------------------|
| 1,2            | 1              | 37.05        | 37.05                    |
| 3,4,7,8,       |                |              |                          |
| 11,12,13,14,15 | 3-9            | 35.242       | 72.292                   |
| 5              | 56             | 4.976        | 77.268                   |
| 6              | 24             | 4.357        | 81.625                   |
| 9              | 13             | 3.191        | 84.816                   |
| 10             | 10             | 2.704        | 87.52                    |

Table 4. Singular Spectrum Analysis of unfiltered Diploastrea 4F1  $\delta$ 180 time series (m=108).

Table 5. Singular Spectrum Analysis of unfiltered Diploastrea LH δ18O time series (m=300).

| Eigen vector                                 | Period (years) | Variance (%) | Cummulative Variance (%) |
|----------------------------------------------|----------------|--------------|--------------------------|
| 1                                            | trend          | 12.737       | 12.737                   |
| 2, 3                                         | 1              | 20.252       | 32.989                   |
| 4                                            | 83             | 6.634        | 39.623                   |
| 5                                            | 42             | 4.185        | 43.808                   |
| 6                                            | 33             | 3.89         | 47.698                   |
| 7                                            | 24             | 2.932        | 50.63                    |
| 8,9,10,11,12,13,17,1<br>8,21,22,23,24,25,26, |                |              |                          |
| 27,28,29,30                                  | 3-9            | 23.678       | 74.308                   |
| 14,15                                        | 15-18          | 3.339        | 77.647                   |
| 16, 19,20                                    | 11-13          | 4.048        | 81.695                   |



Figure 15. (A) The Interdecadal Pacific Oscillation (IPO) time series which characterizes decadal climate variability in the Pacific. (B) Decadal components of Fiji coral  $\delta^{18}$ O time series, extracted using SSA (*Diploastrea*) in black, Porites in gray). A window length of 50 and 18 years was used for cores LH and 4F1, respectively, and components with periods between 17 years and the long-term trend were combined to create this "IPO band"  $\delta^{18}$ O record. *Diploastrea* skeletal  $\delta^{18}$ O faithfully records all major transitions of the IPO, an index of Pacific-wide climate variability. The Porites record (1F) of Linsley et al. (in review) agrees with the IPO and the Diploastrea record only between ~1880 and 1950 and is distinctly out of phase with Diploastrea before 1850, indicating stronger interdecadal variability during the period of concordance. Because the IPO is based on SST and the long-term SSTA data show no large decadal changes in this 70-year period, the observed large amplitude decadal variability in these corals must be amplified by  $\delta^{18}O_{seawater}$  due to the SPI's stong relationship to the polarity of the IPO (Folland et al., 2002).

analysis alone suggests that the inter-genus differences before 1880 and after 1950 are likely due to weakened IPO-related variability in favor of strengthened ENSO-scale variability.

Wavelet analysis reveals the time history of variability in a climatic time series. The interactive website of Torrence and Compo (1998) was used for examination of the time history of variability in the *Diploastrea*  $\delta^{18}$ O record, the Ni o-3 SST anomaly index and the Maiana  $\delta^{18}$ O record of Urban et al. (2000). The wavelet power spectra were calculated using the Morlet wavelet with a wavenumber of six and plotted relative to the global wavelet spectrum to examine changes in interdecadal scale variance through time. A red noise background was used to further test the significance of the wavelet spectral estimates, because red noise characterizes the spectra in many climatic time series. The wavelet power spectrum of the long *Diploastrea* isotope record demonstrates that interdecadal variability is strongest between ~1880 and 1950 (Fig. 16), the only period where the Porites and Diploastrea IPO bands concur (Fig. 15), and a known period of weakened interannual ENSO variability (Torrence and Compo, 1998; Torrence and Webster, 1999). The well-documented ENSO quiet period between 1920 and 1960 is evident in the wavelet power spectrum of the Ni o-3 index (Fig. 17). Such analysis also reveals that decadal and interdecadal variability are present in the tropics, suggesting some degree of connection to IPO-scale variance. Strong decadal variance in the late 1800 s, as observed for Fiji Diploastrea, was also observed in a coral record from equatorial Maiana (Urban et al., 2000), clearly visible in the wavelet power spectrum (Fig. 18).



Figure 16. (A) *Diploastrea* LH  $\delta^{18}$ O time series with the annual cycle and trend components subtracted using SSA. (B) The wavelet power spectrum calculated using the Morlet wavelet and scaled by the global wavelet spectrum. Black contour is the 10% significance level, using a red-noise background spectrum. The cross-hatched region is the cone of influence, where zero padding on the ends of the time series has reduced the variance. Much of the significant power is concentrated in both the ENSO and IPO bands of variability, with increased IPO-related power between roughly1880 and 1950 in this record. Because IPO variance does not increase at the expense of ENSO variance, rather they occur simultaneously, these modes of variability are likely separate phenomena although the splitting of spectral power around 1880 into both characteristic ENSO and IPO-scale variance suggests are more intimate link between these two modes of variability.



Figure 17. (A) Time series of the Niño-3 SST anomaly Index. (B) The wavelet power spectrum of the Niño-3 SST Index calculated using the Morlet wavelet and scaled by the global wavelet spectrum. Black contour is the 10% significance level, using a red-noise background spectrum. The cross-hatched region is the cone of influence, where zero padding on the ends of the time series has reduced the variance. Most of the significant spectral power lies in the interannual band, with a distinctive quiet period from 1920-1960. Although ENSO is known to operate with a roughly 3-8 year periodicity, there is decadal and interdecadal power centered around the turn of the 20th century, although not within the 10% significance level.


Figure 18. (A) Time series  $\delta^{18}$ O results of Urban et al. (2000) from equatorial Maiana. (B) The wavelet power spectrum of Maiana  $\delta^{18}$ O of Urban et al. (2000) calculated using the Morlet wavelet and scaled by the global wavelet spectrum. Black contour is the 10% significance level, using a red-noise background spectrum. The cross-hatched region is the cone of influence, where zero padding on the ends of the time series has reduced the variance. Much of the significant power is concentrated in the ENSO band of variability with less significant interdecadal power in the late 1800s, very similar to the Niño-3 index, as expected given Maiana's equatorial location.

Around 1880, ENSO-scale variability in the Fiji Diploastrea record splits into two dominant modes, its characteristic interannual signal as well as interdecadal-scale variance. Around 1950, the interdecadal variance starts to bleed back toward ENSO time scales, although this transition occurs near the cone of influence and is not as statistically significant. The fact that the 10% significance (90% confidence) contour encircles the 1880 transition suggests that these modes of variance are not totally separate climate features. However, because IPO-scale power does not increase at the expense of ENSO-scale power, these modes of variability likely operate as separate phenomena. Both oceanic and atmospheric mechanisms that export interannual tropical SST anomalies to higher latitude decadal variability have been described by Alexander et al. (1999) and Alexander et al. (2002) which lend support for a fundamental linkage between ENSO and IPO/PDO variability. Deser and Blackmon (1995), in studying instrumental Pacific SST, noted two significant North Pacific modes, one linked to and one independent of ENSO. Finally, Newman et al. (submitted to J. Climate) note that PDO variance results from a reddened response to atmospheric noise and ENSO anomalies and that such higher latitude decadal variability is significantly dependent upon ENSO. The power spectrum of *Diploastrea*  $\delta^{18}$ O cannot specifically address this issue as well as the instrumental record because coral  $\delta^{18}$ O is a mixed signal of temperature and salinity/rainfall while Fiji s location records both interannual and interdecadal variability. However the *Diploastrea*  $\delta^{18}$ O power spectrum provides support for the tropically forced mechanisms described in the literature and the conclusions of Newman et al. (submitted to J. Climate) on the observed interdecadal variability.

#### CONCLUSIONS

Interannual climate variability, strongly driven from the tropics, is recorded in Diploastrea skeletal  $\delta^{18}$ O and is comparable to that recorded in Porites  $\delta^{18}$ O, the backbone of coral-based paleoclimate research for many years. However, the trend component of *Diploastrea*  $\delta^{18}$ O is significantly smaller than for *Porites*  $\delta^{18}$ O. One possible explanation is that the sampling regime preferentially captures winter conditions, and that some feature of austral summer/wet season conditions, suppressed in *Diploastrea* time series, is responsible for the trend to more negative  $\delta^{18}$ O in *Porites*. Alternatively, high growth rates alone may impart stronger growth effects on skeletal  $\delta^{18}$ O. The source of interdecadal climate variability has been elusive to many contemporary studies because short instrumental records in this region contain few realizations of the IPO cycle. *Diploastrea*  $\delta^{18}$ O time series faithfully record the same interdecadal mode of Pacific-wide climate variability as is defined by the IPO, with concurrent results from a neighboring *Porites* colony. The discordance in the first 100 and last 50 years of each record provide evidence for weakened IPO-scale variance. The nature of the transitions between ENSO and IPO-scale variance suggests that these modes of variability have a fundamental linkage although they appear to be operating as separate phenomena. It is concluded that *Diploastrea* is a dependable archive of Pacific climate variability due to a combination of winter season sampling bias and inherent inter-genus growth differences. Such features indicate that this coral holds tremendous future potential for additional insight into lower-frequency climate variability, and extending proxy climate records far beyond that which is possible using *Porites*.

# **CHAPTER 5**

## CONCLUSIONS AND TOPICS FOR FUTURE WORK

This study has begun the calibration of a new coral genus (*Diploastrea*) for use in Indo-Pacific paleoclimate reconstructions, demonstrating this coral s success in recording interannual through secular trend-scale modes of environmental variance. Additionally, this study has provided a multi-century coral record that contributes to the establishment of a network of long proxy climate records that can collectively provide a spatial reconstruction of long-term tropical and subtropical climate variability. This final chapter summarizes the main conclusions of this study and offers suggestions for future work.

Two *Diploastrea* coral records from Fiji have shown that sampling of a single skeletal element and/or utilizing a narrow sample path yields oxygen isotope values with higher seasonal amplitude and therefore a better climate signal than a sampling regime which includes more than one skeletal element or excessively cross-cuts the uneven growth surface. *Diploastrea*  $\delta^{18}$ O time series are biased toward winter conditions because bulk sampling methods at a constant interval preferentially capture skeletal material from the region of fastest growth, which in Fiji occurs during austral winter. This bias would be reduced with a higher density sampling resolution and for in-depth study of the intra-annual variability it is recommended that sampling resolution be finer than monthly, while a viable interannual and interdecadal signal can be extracted with roughly bimonthly sample resolution.

The potential for bands of endolithic algae in coral skeleton to be induced by climate change is significant. The observed recurrence interval of algal bands in the *Diploastrea* skeleton presented here suggests a link to the ENSO system. Detailed knowledge of algal life cycles, and growth regime relative to the coral tissue layer are

however necessary to make any significant conclusions about the record of climate change contained in the timing of algal colonization.

Outside the heart of equatorial ENSO-related SST variability, Fiji experiences significant interannual precipitation anomalies associated with SPCZ activity, intimately linked to ENSO and the IPO. On these interannual time scales tropically-driven climate variability, mostly associated with ENSO and the SPCZ, is recorded in *Diploastrea* skeletal  $\delta^{18}$ O and is comparable to *Porites*, the primary coral-based paleoclimate archive in the Pacific. Such reproducibility of  $\delta^{18}$ O time series both within and between coral genera is crucial in confirming the observed variance in times before instrumental climate records are available for comparison.

The two genera however paint a very different picture of low-frequency climate variability at this site over the last two centuries. The source of the long-term trends in many Pacific *Porites* coral  $\delta^{18}$ O records remains unsettled. Such trends usually overestimate any observed long-term rise in SST, precipitation, or salinity. In Fiji, *Diploastrea* skeletal  $\delta^{18}$ O has a long-term trend half as steep as that in a neighboring *Porites* record and is more similar to the observed trend in SST for this region, while there is no apparent trend in regional precipitation. Skeletal growth rates are the likely cause of observed inter-genus differences in long-term trend, *Porites* having a growth rate twice as high as *Diploastrea*. Such a relationship fuels the debate over the potential biological artifacts imprinted upon tracers in so many *Porites*-generated coral records. The slow growth rate of *Diploastrea* may provide an archive that is not as clouded by long-term biological artifacts as *Porites*.

The source of interdecadal climate variability has not been fully determined as many studies remain unable to separate the relative importance of tropical versus high latitude forcing. Diploastrea  $\delta^{18}$ O time series faithfully record the same interdecadal mode of Pacific-wide climate variability as is defined by the IPO, with equal or more success as a neighboring *Porites* colony. Unfortunately data from the two coral genera do not concur in the first 100 years of the  $\delta^{18}$ O time series, times without the instrumental IPO index to determine whether one coral genera preferentially captures this interdecadal mode of variability. However, this disagreement in itself may support a breakdown of interdecadal scale climate variability before the late 1800 s, documented by other researchers utilizing both contemporary and proxy climate data. Wavelet analysis of the Fiji coral  $\delta^{18}$ O time series may lend some evidence for a tropical forcing of the observed interdecadal variance due to the nature of the transitions between ENSO-scale and interdecadal-scale variance through time, although these modes are observed to operate separately. Because the northern pole of the IPO s spatial response pattern lies in the extreme North Pacific (far north of Hawaiian coral reefs) while the southern pole lies in the South Pacific, coral records from this region are uniquely suited to reconstructing the history of IPO-related climate variability. A more spatially complete reconstruction from this region utilizing multiple archives and proxies is necessary to resolve the source of the observed variability in the Pacific basin or if it is simply low frequency ENSO variability.

*Diploastrea* s long lifespan and fossil history give this coral great potential in extending our understanding of Pacific climate variability to as much as 600-800 years before present. Before its potential can be fully realized, however, further work is necessary to both confirm and advance the initial results presented here. Not fully

appreciating the effect of sample track width, this study is unable to separate its influence from that of heterogeneous skeletal material on the amplitude of the seasonal  $\delta^{18}$ O cycle. Future work should specifically address this issue through very high-resolution sampling (micro-milling or ion microprobe techniques) and/or comparison of skeletal elements in equal-width sample transects in a manner similar to Watanabe et al. (2003). Nonetheless, as demonstrated in this study, bulk sampling methods with resolution as low as 6 samples per year can generate records able to accurately resolve both interannual and interdecadal scale variability despite some sacrifice of the annual cycle s amplitude. *Diploastrea* s greatest potential may therefore lie in yielding information about low frequency climate variability over the last several centuries and into windows of the late Quaternary with fossil reef sequences.

#### REFERENCES

- Alexander, M.A., Deser, C., and Timlin, M.S., 1999, The reemergence of SST anomalies in the North Pacific Ocean, *Journal of Climate*, vol. 12, pp. 2419-2433.
- Alexander, M.A., Blad, I., Newman, M., Lanzante, J.R., Lau, N.C., and Scott, J.D.,
  2002, The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans, *Journal of Climate*, vol. 15, pp. 2205-2231.
- Alibert, C. and McCulloch, M.T., 1997, Strontium/calcium ratios in modern *Porites* corals from the Great Barrier Reef as a proxy for sea surface temperature:
  Calibration of the thermometer and monitoring of ENSO, *Paleoceanography*, vol. 12, pp. 345-363.
- Barnes, D.J., Taylor, R.B., and Lough, J.M., 1995, On the inclusion of trace materials into massive coral skeletons. Part II: distortions in skeletal records of annual climate cycles due to growth processes, *Journal of Experimental Marine Biology and Ecology*, vol. 194, pp. 251-275.
- Beck, J.W., Edwards, R.L., Ito, E., Taylor, F.W., Recy, J., Rougerie, F., Joannot, P., and Henin, C., 1992, Sea-surface temperature from coral skeletal strontium/calcium ratios, *Science*, vol. 257, pp. 644-647.
- Biondi, F., Gershunov, A., and Cayan, D.R., 2001, North Pacific decadal climate variability since 1661, *Journal of Climate*, vol. 14, pp. 5-10.
- Black, D.E., Peterson, L.C., Overpeck, J.T., Kaplan, A., Evans, M.N., and Kashgarian,
  M., 1999, Eight centuries of North Atlantic ocean atmosphere variability, *Science*,
  vol. 286, pp. 1709-1713.

- Boiseau, M., Juillet-Leclerc, A., Yiou, P., Salvat, B., Isdale, P., and Guillaume, M., 1998, Atmospheric and oceanic evidences of El Ni o-Southern Oscillation events in the south central Pacific Ocean from coral stable isotopic records over the last 137 years, *Paleoceanography*, vol. 13, pp. 671-685.
- Buddemeier, R.W., Maragos, J.E., and Knutson, D.W., 1974, Radiographic studies of reef coral exoskeletons: Rates and patterns of coral growth, *Journal of Experimental Marine Biology and Ecology*, vol. 14, pp. 179-200.
- Charles, C.D., Hunter, D.E., and Fairbanks, R.G., 1997, Interaction between the ENSO and the Asian Monsoon in a coral record of tropical climate, *Science*, vol. 277, pp. 925-928.
- Cohen, A.L., and Hart, S.R., 1997, The effect of colony topography on climate signals in coral skeleton, *Geochimica et Cosmochimica Acta*, vol. 61, pp. 3905-3912.
- Cohen, A.L., Layne, G.D., and Hart, S.R., 2001, Kinetic control of skeletal Sr/Ca in a symbiotic coral: Implications for the paleotemperature proxy, *Paleoceanography*, vol. 16, pp. 20-26.
- Cole, J.E., and Fairbanks, R.G., 1990, The Southern Oscillation recorded in the  $\delta^{18}$ O of corals from Tarawa Atoll, *Paleoceanography*, vol. 5, pp. 669-683.
- Cole, J.E., Fairbanks, R.G., and Shen, G.T., 1993, Recent variability in the Southern Oscillation: Isotopic results from a Tarawa Atoll coral, *Science*, vol. 260, pp. 1790-1793.
- Cole, J.E., Dunbar, R.B., McClanahan, T.R., and Muthiga, N.A., 2000, Tropical Pacific forcing of decadal SST variability in the western Indian Ocean over the past two centuries, *Science*, vol. 287, pp. 617-619.

- Corr ge, T., Delcroix, T., R cy, J., Beck, W., Cabioch, G., and LeCornec, F., 2000,
  Evidence for stronger El Ni o-Southern Oscillation (ENSO) events in a mid-Holocene massive coral, *Paleoceanography*, vol. 15, pp. 465-470.
- Crowley, T.J., Quinn, T.M., and Hyde, W.T., 1999, Validation of coral temperature calibrations, *Paleoceanography*, vol. 14, pp. 605-615.
- Dai, A., Fung, I.Y., and Del Genio, A.D., 1997, Surface observed global land precipitation variations during 1900-88, *Journal of Climate*, vol. 10, pp. 2943-2962.
- D Arrigo, R., Villaba, R., and Wiles, G., 2001, Tree-ring estimates of Pacific decadal climate variability, *Climate Dynamics*, vol. 18, pp. 219-224.
- Deser, C. and Blackmon, M.L., 1995, On the relationship between tropical and North Pacific sea surface temperature variations, *Journal of Climate*, vol. 8, pp. 1677-1680.
- Deser, C., 2000, Proceedings of the NCAR Summer Colloquium Dynamics of Decadal to Centennual Climate Variability, Boulder, CO.
- deVilliers, S., Shen, G.T., and Nelson, B.K., 1994, The Sr/Ca temperature relationship in coralline aragonite: influence of variability in (Sr/Ca)<sub>seawater</sub> and skeletal growth parameters, *Geochimica et Cosmochimica Acta*, vol. 58, pp. 197-208.
- deVilliers, S., Nelson, B.K., and Chivas, A.R., 1995, Biological controls on coral Sr/Ca and  $\delta^{18}$ O reconstructions of sea surface temperatures, *Science*, vol. 269, pp. 1247-1249.
- Dodge, R.E., Szmant, A.M., Garcia, R., Swart, P.K., Forester, A., and Leder, J.J., 1992, Skeletal structural basis of density banding in the reef coral *Montastrea*

*Annularis, Proceedings of the Seventh International Coral Reef Symposium,* Guam, vol. 1., pp. 186-195.

- Druffel, E.R.M., and Griffin, S., 1993, Large variations of surface ocean radiocarbon:
   Evidence of circulation changes in the southwestern Pacific, *Journal of Geophysical Research*, vol. 98, pp. 20246-20259.
- Dunbar, R.B. and Wellington, G.M., 1981, Stable isotopes in a branching coral monitor seasonal temperature variation, *Nature*, vol. 293, pp. 453-455.
- Dunbar, R.B., Wellington, G.M., Colgan, M.W., and Glynn, P.W., 1994, Eastern Pacific sea surface temperature since 1600 A.D.: The  $\delta^{18}$ O record of climate variability in Gal pagos corals, *Paleoceanography*, vol. 9, pp.291-315.
- Epstein, S., Buchsbaum, R., Lowenstam, H.A., and Urey, H.C., 1953, Revised carbonate-water isotopic temperature scale, *Geological Society of America Bulletin*, vol. 64, pp. 1315-1326.
- Fairbanks, R.G., Evans, M.N., Rubenstone, J.L., Mortlock, R.A., Broad, K., Moore,
  M.D., and Charles, C.D., 1997, Evaluating climate indices and their geochemical proxies measured in corals, *Coral Reefs*, 16, pp. 93-100.
- Folland, C.K., Renwick, J.A., Salinger, M.J., and Mullan, A.B., 2002, Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific
   Convergence Zone, *Geophysical Research Letters*, vol. 29, pp. 21-1-21-4.
- Folland, C.K., Salinger, M.J., Jiang, N., and Rayner, N.A., (in press), Trends and variations in south Pacific island and ocean surface temperatures, *Journal of Climate*.

- Fork, D.C., and Larkum, A.W.D., 1989, Light harvesting in the green alga Ostreobium sp., a coral symbiont adapted to extreme shade, Marine Biology, vol. 103, pp. 381-385.
- Foufoula-Geogiou, E., and Kumar, P., 1994, Wavelets in geophysics, Academic Press, San Diego, California.
- Gagan, M.K., Ayliffe, L.K, Beck, J.W., Cole, J.E., Druffel, E.R.M., Dunbar, R.B., and Schrag, D.P., 2000, New views of tropical paleoclimates from corals, *Quaternary Science Reviews*, vol. 19, pp. 45-64.
- Garreaud, R.D., and Battisti, D.S., 1999, Interannual (ENSO) and interdecadal (ENSOlike) variability in the southern hemisphere tropospheric circulation, *Journal of Climate*, vol. 12, p. 2113-2123.
- Ghil, M., and Vautard, R., 1991, Interdecadal oscillations and the warming trend in global temperature time series, *Nature*, vol. 350, pp. 324-327.

Gouriou, Y., and Delcroix, T., 2002, Seasonal and ENSO variations of sea surface salinity and temperature in the South Pacific Convergence Zone during 1976-2000, *Journal of Geophysical Research*, vol. 107, C12, 8011, doi:101029/2001JC000830.

- Halldal, P., 1968, Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia, *Biological Bulletin*, vol. 134, pp. 411-424.
- Hendy, E.J., Gagan, M.K., Alibert, C.A., McCulloch, M.T., Lough, J.M., and Isdale, P.J.,
  2002, Abrupt decrease in tropical Pacific sea surface salinity at the end of the
  Little Ice Age, *Science*, vol. 295, pp. 1511-1514.

- Highsmith, R.C., 1981, Lime-boring algae in hermatypic coral skeletons, *Journal of Experimental Marine Biology and Ecology*, vol. 55, pp. 267-281.
- Hubbard, B.B., 1998, The world according to wavelets: The story of a mathematical technique in the making 2<sup>nd</sup> ed., A. K. Peters Ltd., Natick, Massachusetts, 330 p.
- Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M.,
  Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins,
  W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R.,
  Jenne, R., and Joseph, D., 1996, The NCEP/NCAR 40-year reanalysis project, *Bulletin of the American Meteorological Society*, vol. 77, pp. 431-437.
- Kanwisher, J.W., and Wainwright, S.A., 1967, Oxygen balance in some reef corals, *Biological Bulletin*, vol. 135, pp. 378-390.
- Kaplan, A., Cane, M., Kushnir, Y., Clement, A, Blumenthal, M., and Rajagopalan, B.,
  1998, Analyses of global sea surface temperature 1856-1991, *Journal of Geophysical Research*, vol., 103, pp. 18567-18589.
- Keigwin, L.D., 1996, The Little Ice Age and Medieval Warm Period in the Sargasso Sea, *Science*, vol. 274, pp. 1504-1508.
- Kiladis, G.N., von Storch, H., and van Loon, H., 1989, Origin of the South Pacific Convergence Zone, *Journal of Climate*, vol. 2, pp. 1185-1195.
- Kreutz, K.J., Mayewski, P.A, Meeker, L.D., Twickler, M.S., Whitlow, S.I., and Pittalwala, I.I., 1997, Bipolar changes in atmospheric circulation during the Little Ice Age, *Science*, vol. 277, pp. 1294-1296.

- Land, L.S., Lang, J.C., and Barnes, D.J., 1975, Extension rate: A primary control on the isotopic composition of West Indian (Jamaican) scleractinian reef coral skeletons, *Marine Biology*, vol. 33, pp. 221-233.
- Latif, M., and Barnett, T.P., 1994, Causes of decadal climate variability over the North Pacific and North America, *Science*, vol. 266, p. 634-637.
- Lau, K.M., and Weng, H., 1995, Climate signal detection using wavelet transform: How to make a time series sing, *Bulletin of the American Meteorological Society*, vol. 76, pp. 2391-2402.
- Lea, D.W., Pak, D.K., and Spero, H.J., 2000, Climate impact of late Quaternary equatorial Pacific sea surface temperature variations, *Science*, vol. 289, pp. 1719-1724.
- LeBec, N., Juillet-Leclerc, A., Corr ge, T., Blamart, D., and Delcroix, T., 2000, A coral  $\delta^{18}$ O record of ENSO driven sea surface salinity variability in Fiji (south-western tropical Pacific), *Geophysical Research Letters*, vol. 27, pp. 3897-3900.
- Le Campion-Alsumard, T., Golubic, S., and Hutchings, P., 1995, Microbial endoliths in skeletons of live and dead corals: *Porites lobata* (Moorea, French Polynesia), *Marine Ecology Progress Series*, vol. 117, pp. 149-157.
- Leder, J.J., Swart, P.K., Szmant, A.M., and Dodge, R.E., 1996, The origin and variations in the isotopic record of scleractinian corals: I. Oxygen, *Geochimica et Cosmochimica Acta*, vol. 60, pp. 2857-2870.
- Linsley, B.K., Dunbar, R.B., Wellington, G.M., and Mucciarone, D.A., 1994, A coralbased reconstruction of Intertropical Convergence Zone variability over Central

America since 1707, *Journal of Geophysical Research*, vol. 99(C5), pp. 9977-9994.

- Linsley, B.K., Messier, R.G., and Dunbar, R.B., 1999, Assessing between-colony oxygen isotope variability in the coral *Porites lobata* at Clipperton Atoll, *Coral Reefs*, vol. 18, pp. 13-27.
- Linsley, B.K., Wellington, G.M., and Schrag, D.P., 2000a, Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 A.D., *Science*, vol. 290, pp. 1145-1148.
- Linsley, B.K., Ren, L., Dunbar, R.B., and Howe, S.S., 2000b, El Ni o Southern Oscillation (ENSO) and decadal-scale climate variability at 10...N in the eastern Pacific from 1893 to 1994: A coral-based reconstruction from Clipperton Atoll, *Paleoceanography*, vol. 15, pp. 322-335.
- Linsley, B.K., Wellington, G.M., Schrag, D.P., Ren, L., Salinger, M.J., and Tudhope,
  A.W., in review, Coral evidence for variations in the spatial coherence of South
  Pacific interdecadal climate variability over the last 300 years, *Climate Dynamics*.
- Lukas, K.J., 1974, Two species of the chlorophyte genus *Ostreobium* from skeletons of Atlantic and Caribbean reef corals, *Journal of Phycology*, vol. 10, pp. 331-335.
- Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., and Francis, R.C., 1997, A Pacific interdecadal climate oscillation with impacts in salmon production, *Bulletin of the American Meteorological Society*, vol. 78, pp. 1069-1079.
- McConnaughey, T.A., 1989, <sup>13</sup>C and <sup>18</sup>O isotopic disequilibria in biological carbonates, I, Patterns, *Geochimica et Cosmochimica Acta*, vol.53, pp. 151-162.

- McCulloch, M.T., Gagan, M.K., Mortimer, G.E., Chivas, A.R., and Isdale, P.J., 1994, A high-resolution Sr/Ca and  $\delta^{18}$ O coral record from the Great Barrier Reef, Australia, and the 1982-83 El Ni o, *Geochimica et Cosmochimica Acta*, vol. 58, pp. 2747-2754.
- Meyers, S.D., Kelly, B.G., and O Brien, J.J., 1993, An introduction to wavelet analysis in oceanography and meteorology: With applications to the dispersion of Yanai Waves, *Monthly Weather Review*, vol. 121, pp. 2858-2866.
- Mitsuguchi, T., Matsumoto, E., Abe, O., Uchida, T., and Isdale, P.J., 1996, Mg/Ca thermometry in coral skeletons, *Science*, vol. 274, pp. 961-963.
- Moy, C.M, Seltzer, G.O., Rodbell, D.T., and Anderson, D.A., 2002, Variability of El Ni o/Southern Oscillation activity at millenni al timescales during the Holocene epoch, *Nature*, vol. 420, pp. 162-165.
- Newman, M., Compo, G.P., and Alexander, M.A., submitted, ENSO-forced variability of the Pacific Decadal Oscillation, *Journal of Climate*.
- Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V., 1999a, Inter-decadal modulation of the impact of ENSO on Australia, *Climate Dynamics*, vol. 15, pp. 319-324.
- Power, S., Tseitkin, F., Mehta, V., Lavery, B., Torok, S., and Holbrook, N., 1999b, Decadal climate variability in Australia during the twentieth century, *International Journal of Climatology*, vol. 19, pp. 169-184.
- Quinn, T.M., Taylor, F.W., and Crowley, T.J., 1993, A 173 year stable isotope record from a tropical South Pacific coral, *Quaternary Science Reviews*, vol. 12, pp. 407-418.

- Quinn, T.M., Taylor, F.W., Crowley, T.J., and Link, S.M., 1996, Evaluation of sampling resolution in coral stable isotope records: A case study using records from New Caledonia and Tarawa, *Paleoceanography*, vol. 11, pp. 529-542.
- Quinn, T.M., Crowley, T.J., Taylor, F.W., Henin, C., Joannot, P., and Join, Y., 1998, A multicentury stable isotope record from a New Caledonia coral: Interannual and decadal sea surface temperature variability in the southwest Pacific since 1657
  A.D., *Paleoceanography*, vol. 13, pp. 412-426.
- Quinn, W.H., Neal, V.T., and Antunez de Mayolo, S.E., 1987, El Ni o occurrences over the past four and a half centuries, *Journal of Geophysical Research*, vol. 92, pp. 14449-14461.
- Rasmusson, E.M., Wang, X., and Ropelewski, C.F., 1990, The biennial component of ENSO variability, *Journal of Marine Systems*, vol. 1, pp. 71-96.
- Reynolds, R.W., and Smith, T.M., 1994, Improved global sea surface temperature analyses, *Journal of Climate*, vol. 7, pp. 929-948.
- Salinger, M.J., Basher, R.E., Fitzharris, B.B., Hay, J.E., Jones, P.D., Macveigh, J.P., and Schmidely-Leleu, I., 1995, Climate trends in the South-West Pacific, *International Journal of Climatology*, vol. 15, pp. 285-302.
- Salinger, M.J., Renwick, J.A., and Mullan, A.B., 2001, The Interdecadal Pacific
  Oscillation and South Pacific climate, *International Journal of Climatology*, vol. 21, p. 1705-1721.
- Schrag, D.P., 1999, Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates, *Paleoceanography*, vol. 14, pp. 97-102.

- Seltzer, G.O., Rodbell, D.T., Baker, P.A., Fritz, S.C., Tapia, P.M., Rowe, H.D., and Dunbar, R.B., 2002, Early warming of tropical South America at the last glacialinterglacial transition, *Science*, vol. 296, pp. 1685-1686.
- Shashar, N., Banaszak, A.T., Lesser, M.P., and Amrami, D., 1997, Coral endolithic algae: Life in a protected environment, *Pacific Science*, vol. 51, pp. 167-173.
- Shen, C.C., Lee, T., Chen, C.Y., Wang, C.H., Dai, C.F., and Li, L.A., 1996, The calibration of D[Sr/Ca] versus sea surface temperature relationship for *Porites* corals, *Geochimica et Cosmochimica Acta*, vol. 60, pp. 3849-3858.
- Shen, G.T., Cole, J.E., Lea, D.W., Linn, L.J., McConnaughey, T.A., and Fairbanks, R.G., 1992, Surface ocean variability at Galapagos from 1936-1982: Calibration of geochemical tracers in corals, *Paleoceanography*, vol. 7, pp. 563-588.
- Shibata, K., and Haxo, F.T., 1969, Light transmission and spectral distribution through epi- and endozoic algal layers in the brain coral, *Favia*, *Biological Bulletin*, vol. 136, pp. 461-468.
- Smith, S.V., Buddemeier, R.W., Redalje, R.C., and Houck, J.E., 1979, Strontium-calcium thermometry in coral skeletons, *Science*, vol. 204, pp. 404-407.
- Swart, P.K., Leder, J.J., Szmant, A.M., and Dodge, R.E., 1996, The origin of variations in the isotopic record of scleractinian corals II. Carbon, *Geochimica et Cosmochimica Acta*, vol. 60, pp. 2871-2885.
- Thompson, L.G., Mosley-Thompson, E., Dansgaard, W., and Grootes, P.M., 1986, The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya ice cap, *Science*, vol. 234, pp. 361-364.

- Torrence, C., and Compo, G.P., 1998, A practical guide to wavelet analysis, *Bulletin of the American Meteorological Society*, vol. 79, pp. 61-78.
- Torrence, C. and Webster, P.J., 1999, Interdecadal changes in the ENSO-Monsoon system, *Journal of Climate*, vol. 12, pp. 2679-2690.
- Trenberth, K.E., 1976, Spatial and temporal variations of the Southern Oscillation, *Quarterly Journal of the Royal Meteorological Society*, vol. 102, pp. 639-653.
- Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W., Lough, J.M., and Shimmield, G.B., 2001, Variability in the El Ni o-Southern Oscillation through a glacial-interglacial cycle, *Science*, vol. 291, pp. 1511-1517.
- Urban, F.E., Cole, J.E., and Overpeck, J.T., 2000, Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record, *Nature*, vol. 407, pp. 989-993.
- Vautard, R., and Ghil, M., 1989, Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series, *Physica D*, vol. 35, pp. 395-424.
- Vautard, R., Yiou, P., and Ghil, M., 1992, Singular spectrum analysis: A toolkit for short, noisy chaotic signals, *Physica D*, vol. 58, pp. 95-126.
- Vernon, J.E.N., 1986, Corals of Australia and the Indo-Pacific, University of Hawaii Press, Honolulu, pp. 512-513.
- Vincent, D.G., 1994, The South Pacific Convergence Zone (SPCZ): A review, *Monthly Weather Review*, vol. 122, pp. 1949-1970.
- Vose, R.S., Peterson, T.C., and Hulme, M., 1998, The Global Historical Climatology Network precipitation database: Version 2.0, In *Proceedings of Ninth Symposium*

*on Global Change Studies*, American Meteorological Society, Boston, Massachusetts.

- Watanabe, T., Gagan, M.K., Corr ge, T., Scott- Gagan, H., Cowley, J., and Hantoro,
  W.S., 2003, Oxygen isotope systematics in *Diploastrea heliopora*: New coral archive of tropical paleoclimate, *Geochimica et Cosmochimica Acta*, vol. 67, pp. 1349-1358.
- Wellington, G.M., Dunbar, R.B., and Merlen, G., 1996, Calibration of stable isotope signatures in Galapagos corals, *Paleoceanography*, vol. 11, p. 467-480.
- Weng, H., and Lau, K.M., 1994, Wavelets, period doubling, and time-frequency localization with application to organization of convection over the tropical western Pacific, *Journal of the Atmospheric Sciences*, vol. 51, pp. 2523-2541.
- Zhang, Y., Wallace, J.M., and Battisti, D.S., 1997, ENSO-like interdecadal variability: 1900-93, *Journal of Climate*, vol. 10, p. 1004-1020.

## FIJI CORE 4F1 MIXED SKELETON

## **STABLE ISOTOPE DATA**

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 0.5        | 1997.35       | -0.186                       | -5.282                       |
| 1.0        | 1997.25       | -0.089                       | -5.175                       |
| 1.5        | 1997.14       | -0.289                       | -5.262                       |
| 2.0        | 1997.04       | -0.188                       | -5.313                       |
| 2.5        | 1996.94       | -0.048                       | -5.208                       |
| 3.0        | 1996.83       | -0.036                       | -5.158                       |
| 3.5        | 1996.73       | -0.006                       | -5.030                       |
| 4.0        | 1996.62       | 0.010                        | -4.933                       |
| 4.5        | 1996.52       | -0.150                       | -4.966                       |
| 5.0        | 1996.42       | -0.363                       | -5.108                       |
| 5.5        | 1996.31       | -0.406                       | -5.080                       |
| 6.0        | 1996.21       | -0.183                       | -5.151                       |
| 6.5        | 1996.10       | -0.032                       | -5.080                       |
| 7.0        | 1995 98       | 0.078                        | -5 128                       |
| 7.5        | 1995 87       | 0.281                        | -4 846                       |
| 8.0        | 1995 76       | 0.181                        | -4 953                       |
| 85         | 1995.65       | 0 301                        | -4 801                       |
| 9.0        | 1995 54       | 0.325                        | -4 622                       |
| 95         | 1995 47       | 0 1 9 4                      | -4 713                       |
| 10.0       | 1995 41       | 0.168                        | -4 847                       |
| 10.5       | 1995 34       | 0.205                        | -4 835                       |
| 11.0       | 1995.27       | 0.254                        | -4 795                       |
| 11.5       | 1995 21       | 0.337                        | -4 956                       |
| 12.0       | 1995.08       | 0 264                        | -4 746                       |
| 12.5       | 1994.96       | 0.236                        | -4.549                       |
| 13.0       | 1994 83       | 0.085                        | -4 610                       |
| 13.5       | 1994.71       | 0.095                        | -4.503                       |
| 14.0       | 1994.62       | -0.191                       | -4.647                       |
| 14.5       | 1994.54       | -0.144                       | -4.592                       |
| 15.0       | 1994.46       | -0.276                       | -4.742                       |
| 15.5       | 1994.37       | -0.228                       | -4.785                       |
| 16.0       | 1994.29       | -0.127                       | -4.801                       |
| 16.5       | 1994.21       | 0.019                        | -4.830                       |
| 17.0       | 1994.08       | 0.046                        | -4.668                       |
| 17.5       | 1993 96       | 0.039                        | -4 464                       |
| 18.0       | 1993.83       | 0.020                        | -4.456                       |
| 18.5       | 1993 71       | -0.146                       | -4 448                       |
| 19.0       | 1993.62       | -0.224                       | -4.637                       |
| 19.5       | 1993 54       | -0.242                       | -4 706                       |
| 20.0       | 1993 46       | -0.238                       | -4 732                       |
| 20.5       | 1993 37       | -0.432                       | -4 869                       |
| 21.0       | 1993 29       | -0.233                       | -4 866                       |
| 21.5       | 1993 21       | -0 144                       | -4 877                       |
| 22.0       | 1993 11       | -0.038                       | -4 803                       |
| 22.5       | 1993.01       | 0.027                        | -4 683                       |
| 23.0       | 1992.92       | -0.060                       | -4.644                       |
| 23.5       | 1992 82       | -0.169                       | -4 798                       |
| 24.0       | 1992.72       | -0.239                       | -4.676                       |
| 24.5       | 1992.62       | -0.297                       | -4.613                       |
| 25.0       | 1992.52       | -0.516                       | -4.798                       |
|            |               | 0.010                        |                              |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 25.5       | 1992.42       | -0.443                       | -4.800                       |
| 26.0       | 1992.32       | -0.300                       | -4.889                       |
| 26.5       | 1992.22       | -0.163                       | -4.854                       |
| 27.0       | 1992.12       | -0.047                       | -4.903                       |
| 27.5       | 1992.02       | 0.009                        | -4.865                       |
| 28.0       | 1991.92       | 0.051                        | -4.765                       |
| 28.5       | 1991.81       | -0.065                       | -4.783                       |
| 29.0       | 1991.71       | -0.207                       | -4.764                       |
| 29.5       | 1991.61       | -0.336                       | -4.827                       |
| 30.0       | 1991.51       | -0.435                       | -4.867                       |
| 30.5       | 1991.41       | -0.436                       | -4.794                       |
| 31.0       | 1991.31       | -0.584                       | -4.944                       |
| 31.5       | 1991.21       | -0.523                       | -5.048                       |
| 32.0       | 1991.06       | -0.371                       | -5.014                       |
| 32.5       | 1990.92       | -0.144                       | -4.951                       |
| 33.0       | 1990.77       | -0.042                       | -4.914                       |
| 33.5       | 1990.62       | -0.084                       | -4.839                       |
| 34.0       | 1990.56       | -0.304                       | -4.853                       |
| 34.5       | 1990.50       | -0.363                       | -4.854                       |
| 35.0       | 1990.44       | -0.481                       | -4.847                       |
| 35.5       | 1990.37       | -0.599                       | -4.943                       |
| 36.0       | 1990.31       | -0.648                       | -5.084                       |
| 36.5       | 1990.25       | -0.670                       | -5.091                       |
| 37.0       | 1990.19       | -0.480                       | -5.151                       |
| 37.5       | 1990.12       | -0.480                       | -5.353                       |
| 38.0       | 1990.00       | 0.050                        | -5.128                       |
| 38.5       | 1989.87       | 0.118                        | -5.245                       |
| 39.0       | 1989.75       | -0.071                       | -5.325                       |
| 39.5       | 1989.62       | -0.100                       | -5.075                       |
| 40.0       | 1989.53       | -0.374                       | -5.224                       |
| 40.5       | 1989.43       | -0.517                       | -5.177                       |
| 41.0       | 1989.33       | -0.599                       | -5.213                       |
| 41.5       | 1989.23       | -0.570                       | -5.319                       |
| 42.0       | 1989.14       | -0.354                       | -5.368                       |
| 42.5       | 1989.04       | -0.255                       | -5.453                       |
| 43.0       | 1988.94       | 0.217                        | -5.147                       |
| 43.5       | 1988.83       | 0.195                        | -5.160                       |
| 44.0       | 1988.73       | 0.202                        | -4.961                       |
| 44.5       | 1988.62       | 0.204                        | -4.871                       |
| 45.0       | 1988.54       | -0.025                       | -4.939                       |
| 45.5       | 1988.46       | -0.202                       | -4.891                       |
| 46.0       | 1988.37       | -0.437                       | -4.902                       |
| 46.5       | 1988.29       | -0.686                       | -5.002                       |
| 47.0       | 1988.21       | -0.891                       | -5.222                       |
| 47.5       | 1988.12       | -0.732                       | -5.263                       |
| 48.0       | 1988.01       | -0.096                       | -5.152                       |
| 48.5       | 1987.89       | 0.220                        | -5.129                       |
| 49.0       | 1987.77       | 0.451                        | -4.781                       |
| 49.5       | 1987.66       | 0.323                        | -4.741                       |
| 50.0       | 1987.54       | 0.322                        | -4.647                       |

### FIJI CORE 4F1 ENDOTHECAL SKELETON

### **STABLE ISOTOPE DATA**

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 0.5        | 1997.35       | -0.074                       | -4.987                       |
| 1.0        | 1997.25       | -0.148                       | -4.966                       |
| 1.5        | 1997.14       | -0.196                       | -4.921                       |
| 2.0        | 1997.04       | -0.537                       | -5.129                       |
| 2.5        | 1996.94       | -0.181                       | -4.913                       |
| 3.0        | 1996.83       | -0.113                       | -4.792                       |
| 3.5        | 1996.73       | 0.013                        | -4.763                       |
| 4.0        | 1996.62       | 0.201                        | -4.491                       |
| 4.5        | 1996.56       | 0.003                        | -4.622                       |
| 5.0        | 1996.50       | -0.282                       | -4.546                       |
| 5.5        | 1996.44       | -0.490                       | -4.813                       |
| 6.0        | 1996.39       | -0.614                       | -4.932                       |
| 6.5        | 1996.33       | -0.523                       | -4.888                       |
| 7.0        | 1996.27       | -0.398                       | -5.150                       |
| 7.5        | 1996.21       | -0.304                       | -5.254                       |
| 8.0        | 1995.98       | 0.184                        | -4.637                       |
| 8.5        | 1995.76       | 0.303                        | -4.793                       |
| 9.0        | 1995.54       | 0.304                        | -4.398                       |
| 9.5        | 1995.47       | 0.092                        | -4.536                       |
| 10.0       | 1995.41       | -0.001                       | -4.612                       |
| 10.5       | 1995.34       | -0.005                       | -4.792                       |
| 11.0       | 1995.27       | -0.096                       | -4.797                       |
| 11.5       | 1995.21       | 0.171                        | -4.797                       |
| 12.0       | 1995.08       | 0.093                        | -4.777                       |
| 12.5       | 1994.96       | 0.340                        | -4.438                       |
| 13.0       | 1994.83       | 0.116                        | -4.519                       |
| 13.5       | 1994.71       | 0.128                        | -4.342                       |
| 14.0       | 1994.62       | -0.016                       | -4.453                       |
| 14.5       | 1994.54       | -0.105                       | -4.416                       |
| 15.0       | 1994.46       | -0.421                       | -4.693                       |
| 15.5       | 1994.37       | -0.485                       | -4.780                       |
| 16.0       | 1994.29       | -0.543                       | -4.912                       |
| 16.5       | 1994.21       | -0.230                       | -4.994                       |
| 17.0       | 1994.08       | -0.013                       | -4.803                       |
| 17.5       | 1993.96       | 0.253                        | -4.388                       |
| 18.0       | 1993.83       | 0.178                        | -4.352                       |
| 18.5       | 1993.71       | 0.001                        | -4.276                       |
| 19.0       | 1993.61       | -0.057                       | -4.280                       |
| 19.5       | 1993.51       | -0.028                       | -4.481                       |
| 20.0       | 1993.41       | 0.042                        | -4.755                       |
| 20.5       | 1993.31       | -0.298                       | -4.824                       |
| 21.0       | 1993.21       | -0.191                       | -4.896                       |
| 21.5       | 1993.11       | -0.193                       | -4.883                       |
| 22.0       | 1993.01       | -0.031                       | -4.805                       |
| 22.5       | 1992.92       | 0.008                        | -4.648                       |
| 23.0       | 1992.82       | 0.168                        | -4.563                       |
| 23.5       | 1992.72       | 0.119                        | -4.455                       |
| 24.0       | 1992.62       | 0.103                        | -4.398                       |
| 24.5       | 1992.54       | -0.162                       | -4.443                       |
| 25.0       | 1992.46       | -0.263                       | -4.532                       |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 25.5       | 1992.37       | -0.195                       | -4.656                       |
| 26.0       | 1992.29       | -0.014                       | -4.654                       |
| 26.5       | 1992.21       | -0.088                       | -4.784                       |
| 27.0       | 1992.12       | 0.080                        | -4.810                       |
| 27.5       | 1992.04       | 0.233                        | -4.661                       |
| 28.0       | 1991.96       | 0.253                        | -4.537                       |
| 28.5       | 1991.87       | 0.044                        | -4.487                       |
| 29.0       | 1991.79       | 0.076                        | -4.440                       |
| 29.5       | 1991.71       | -0.089                       | -4.423                       |
| 30.0       | 1991.58       | -0.265                       | -4.568                       |
| 30.5       | 1991.46       | -0.322                       | -4.699                       |
| 31.0       | 1991.33       | -0.437                       | -4.814                       |
| 31.5       | 1991.21       | -0.460                       | -4.970                       |
| 32.0       | 1991.06       | -0.267                       | -4.909                       |
| 32.5       | 1990.92       | 0.170                        | -4.653                       |
| 33.0       | 1990.77       | 0.259                        | -4.571                       |
| 33.5       | 1990.62       | 0.156                        | -4.418                       |
| 34.0       | 1990.54       | 0.023                        | -4.572                       |
| 34.5       | 1990.46       | 0.153                        | -4.533                       |
| 35.0       | 1990.37       | 0.171                        | -4.632                       |
| 35.5       | 1990.29       | -0.109                       | -4.746                       |
| 36.0       | 1990.21       | -0.099                       | -4.831                       |
| 36.5       | 1990.12       | 0.001                        | -4.956                       |
| 37.0       | 1990.02       | 0.052                        | -4.920                       |
| 37.5       | 1989.92       | 0.335                        | -4.833                       |
| 38.0       | 1989.82       | 0.393                        | -4.770                       |
| 38.5       | 1989.72       | 0.361                        | -4.766                       |
| 39.0       | 1989.62       | 0.099                        | -4.639                       |
| 39.5       | 1989.48       | -0.332                       | -4.743                       |
| 40.0       | 1989.33       | -0.103                       | -4.785                       |
| 40.5       | 1989.19       | -0.401                       | -4.908                       |
| 41.0       | 1989.04       | -0.449                       | -5.026                       |
| 41.5       | 1988.97       | -0.204                       | -5.022                       |
| 42.0       | 1988.90       | 0.196                        | -4.927                       |
| 42.5       | 1988.83       | 0.422                        | -4.727                       |
| 43.0       | 1988.76       | 0.288                        | -4.796                       |
| 43.5       | 1988.69       | 0.189                        | -4.746                       |
| 44.0       | 1988.62       | 0.077                        | -4.643                       |
| 44.5       | 1988.46       | -0.209                       | -4.782                       |
| 45.0       | 1988.29       | -0.371                       | -4.790                       |
| 45.5       | 1988.12       | -0.645                       | -5.061                       |
| 46.0       | 1988.05       | -0.410                       | -4.839                       |
| 46.5       | 1987.98       | -0.527                       | -5.038                       |
| 47.0       | 1987.90       | -0.117                       | -4.924                       |
| 47.5       | 1987.83       | 0.332                        | -4.766                       |
| 48.0       | 1987.76       | 0.636                        | -4.512                       |
| 48.5       | 1987.69       | 0.564                        | -4.405                       |
| 49.0       | 1987.61       | 0.361                        | -4.427                       |
| 49.5       | 1987.54       | 0.435                        | -4.282                       |
| 50.0       | 1987.47       | 0.283                        | -4.463                       |

## FIJI CORE 4F1 EXOTHECAL SKELETON

### **STABLE ISOTOPE AND Sr/Ca DATA**

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) | Sr/Ca (mmol/mol) |
|------------|---------------|------------------------------|------------------------------|------------------|
| 0.5        | 1997.11       | -0.367                       | -5.213                       | 8.999            |
| 1.0        | 1997.04       | -0.270                       | -5.327                       | 9.038            |
| 1.5        | 1996.97       | -0.328                       | -5.367                       | 8.990            |
| 2.0        | 1996.90       | -0.033                       | -5.101                       | 9.049            |
| 2.5        | 1996.83       | -0.135                       | -5.243                       | 9.050            |
| 3.0        | 1996.76       | 0.027                        | -5.151                       | 9.090            |
| 3.5        | 1996.69       | 0.110                        | -4.986                       | 9.163            |
| 4.0        | 1996.62       | -0.024                       | -4.924                       | 9.142            |
| 4.5        | 1996.52       | -0.342                       | -5.066                       | 9.145            |
| 5.0        | 1996.42       | -0.587                       | -5.121                       | 9.108            |
| 5.5        | 1996.31       | -0.683                       | -5.246                       | 9.055            |
| 6.0        | 1996.21       | -0.232                       | -5.341                       | 9.085            |
| 6.5        | 1996.04       | 0.036                        | -5.372                       | 9.103            |
| 7.0        | 1995.87       | 0.205                        | -5.138                       | 9.150            |
| 7.5        | 1995.71       | 0.299                        | -4.893                       | 9.176            |
| 8.0        | 1995.54       | 0.224                        | -4.838                       | 9.206            |
| 8.5        | 1995.46       | -0.047                       | -5.007                       | 9.177            |
| 9.0        | 1995.37       | -0.012                       | -4.948                       | 9.169            |
| 9.5        | 1995.29       | -0.014                       | -5.049                       | 9.133            |
| 10.0       | 1995.21       | 0.127                        | -5.333                       | 9.124            |
| 10.5       | 1995.12       | 0.300                        | -4.927                       | 9.134            |
| 11.0       | 1995.04       | 0.236                        | -4.901                       | 9.137            |
| 11.5       | 1994.96       | -0.057                       | -4.845                       | 9.149            |
| 12.0       | 1994.87       | -0.058                       | -4.605                       | 9.199            |
| 12.5       | 1994.79       | -0.096                       | -4.513                       | 9.228            |
| 13.0       | 1994.71       | -0.255                       | -4.549                       | 9.229            |
| 13.5       | 1994.58       | -0.469                       | -4.699                       | 9.179            |
| 14.0       | 1994.46       | -0.553                       | -4.692                       | 9.142            |
| 14.5       | 1994.33       | -0.666                       | -4.988                       | 9.154            |
| 15.0       | 1994.21       | -0.433                       | -5.020                       | 9.133            |
| 15.5       | 1994.08       | -0.140                       | -4.956                       | 9.164            |
| 16.0       | 1993.96       | -0.153                       | -4.878                       | 9.195            |
| 16.5       | 1993.83       | -0.165                       | -4.583                       | 9.251            |
| 17.0       | 1993.71       | -0.349                       | -4.514                       | 9.262            |
| 17.5       | 1993.62       | -0.289                       | -4.523                       | 9.258            |
| 18.0       | 1993.54       | -0.359                       | -4.727                       | 9.266            |
| 18.5       | 1993.46       | -0.530                       | -4.947                       | 9.219            |
| 19.0       | 1993.37       | -0.504                       | -4.903                       | 9.195            |
| 19.5       | 1993.29       | -0.539                       | -4.962                       | 9.121            |
| 20.0       | 1993.21       | -0.694                       | -5.098                       | 9.133            |
| 20.5       | 1993.16       | -0.360                       | -4.987                       | 9.138            |
| 21.0       | 1993.11       | -0.400                       | -4.976                       |                  |
| 21.5       | 1993.06       | -0.278                       | -4.977                       | 9.179            |
| 22.0       | 1993.01       | -0.387                       | -4.907                       | 9.187            |
| 22.5       | 1992.96       | -0.311                       | -4.774                       | 9.194            |
| 23.0       | 1992.92       | -0.480                       | -4.830                       | 9.231            |
| 23.5       | 1992.87       | -0.457                       | -4.727                       | 9.200            |
| 24.0       | 1992.82       | -0.568                       | -4.814                       | 9.174            |
| 24.5       | 1992.77       | -0.619                       | -4.758                       | 9.148            |
| 25.0       | 1992.72       | -0.652                       | -4.921                       | 9.138            |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) | Sr/Ca (mmol/mol) |
|------------|---------------|------------------------------|------------------------------|------------------|
| 25.5       | 1992.67       | -0.421                       | -4.718                       | 9.103            |
| 26.0       | 1992.62       | -0.233                       | -4.772                       | 9.099            |
| 26.5       | 1992.37       | -0.172                       | -5.046                       | 9.122            |
| 27.0       | 1992.12       | -0.032                       | -4.789                       | 9.149            |
| 27.5       | 1992.02       | -0.283                       | -4.853                       | 9.140            |
| 28.0       | 1991.92       | -0.304                       | -4.773                       | 9.177            |
| 28.5       | 1991.81       | -0.393                       | -4.655                       | 9.198            |
| 29.0       | 1991.71       | -0.360                       | -4.688                       | 9.177            |
| 29.5       | 1991.62       | -0.692                       | -4.820                       | 9.151            |
| 30.0       | 1991.54       | -0.676                       | -4.749                       | 9.120            |
| 30.5       | 1991.46       | -0.631                       | -4.980                       | 9.088            |
| 31.0       | 1991.37       | -0.541                       | -5.070                       | 9.062            |
| 31.5       | 1991.29       | -0.541                       | -5.035                       | 9.062            |
| 32.0       | 1991.21       | -0.315                       | -5.043                       | 9.112            |
| 32.5       | 1991.06       | -0.355                       | -4.829                       | 9.143            |
| 33.0       | 1990.92       | -0.452                       | -4.836                       | 9.145            |
| 33.5       | 1990.77       | -0.530                       | -4.740                       | 9.132            |
| 34.0       | 1990.62       | -0.505                       | -4.783                       | 9.135            |
| 34.5       | 1990.50       | -0.662                       | -4.960                       | 9.111            |
| 35.0       | 1990.37       | -0.724                       | -5.077                       |                  |
| 35.5       | 1990.25       | -0.658                       | -5.171                       |                  |
| 36.0       | 1990.12       | -0.571                       | -5.255                       | 9.030            |
| 36.5       | 1990.00       | -0.108                       | -5.088                       | 9.074            |
| 37.0       | 1989.87       | 0.078                        | -5.086                       | 9.055            |
| 37.5       | 1989.75       | 0.147                        | -5.010                       | 9.142            |
| 38.0       | 1989.62       | 0.074                        | -4.908                       | 9.135            |
| 38.5       | 1989.53       | -0.238                       | -4.906                       | 9.141            |
| 39.0       | 1989.43       | -0.603                       | -5.031                       | 9.131            |
| 39.5       | 1989.33       | -0.647                       | -5.103                       | 9.122            |
| 40.0       | 1989.23       | -0.777                       | -5.242                       | 9.066            |
| 40.5       | 1989.14       | -0.786                       | -5.113                       | 9.054            |
| 41.0       | 1989.04       | -0.677                       | -5.234                       | 9.055            |
| 41.5       | 1988.97       | -0.331                       | -5.217                       | 9.095            |
| 42.0       | 1988.90       | -0.098                       | -5.057                       | 9.054            |
| 42.5       | 1988.83       | -0.102                       | -5.072                       | 9.109            |
| 43.0       | 1988.76       | 0.030                        | -4.890                       | 9.163            |
| 43.5       | 1988.69       | -0.022                       | -4.820                       | 9.125            |
| 44.0       | 1988.62       | -0.029                       | -4.620                       | 9.167            |
| 44.5       | 1988.54       | -0.349                       | -4.778                       |                  |
| 45.0       | 1988.46       | -0.593                       | -4.877                       | 9.125            |
| 45.5       | 1988.37       | -0.985                       | -5.084                       | 9.067            |
| 46.0       | 1988.29       | -0.915                       | -5.104                       | 9.087            |
| 46.5       | 1988.21       | -0.874                       | -5.126                       | 9.066            |
| 47.0       | 1988.12       | -0.413                       | -5.046                       | 9.060            |
| 47.5       | 1988.03       | -0.090                       | -4.958                       | 9.139            |
| 48.0       | 1987.93       | 0.296                        | -4.741                       | 9.202            |
| 48.5       | 1987.83       | 0.213                        | -4.622                       | 9.190            |
| 49.0       | 1987.73       | 0.131                        | -4.607                       | 9.211            |
| 49.5       | 1987.64       | 0.157                        | -4.477                       | 9.265            |
| 50.0       | 1987.54       | 0.044                        | -4.494                       | 9.236            |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) | Sr/Ca (mmol/mol) |
|------------|---------------|------------------------------|------------------------------|------------------|
| 51         | 1987.43       | -0.072                       | -4.620                       | 9.204            |
| 52         | 1987.32       | 0.034                        | -4.871                       | 9.114            |
| 53         | 1987.21       | 0.417                        | -4.971                       | 9.176            |
| 54         | 1986.92       | 0.506                        | -4.829                       | 9.201            |
| 55         | 1986.62       | 0.126                        | -4.747                       | 9.198            |
| 56         | 1986.48       | -0.253                       | -4.784                       | 9.164            |
| 57         | 1986.35       | -0.508                       | -5.087                       | 9.122            |
| 58         | 1986.21       | -0.016                       | -5.156                       | 9.113            |
| 59         | 1985.92       | 0.281                        | -5.096                       | 9.168            |
| 60         | 1985.62       | 0.089                        | -4.788                       | 9.190            |
| 61         | 1985.46       | -0.380                       | -4.886                       |                  |
| 62         | 1985.29       | -0.258                       | -4.918                       | 9.120            |
| 63         | 1985.12       | 0.042                        | -5.131                       | 9.148            |
| 64         | 1984.96       | 0.462                        | -5.014                       | 9.185            |
| 65         | 1984.79       | 0.256                        | -4.857                       | 9.211            |
| 66         | 1984.62       | -0.081                       | -4.856                       | 9.150            |
| 67         | 1984.46       | -0.384                       | -5.116                       | 9.130            |
| 68         | 1984.29       | -0.287                       | -5.068                       | 9.109            |
| 69         | 1984.12       | -0.052                       | -5.202                       | 9.120            |
| 70         | 1983.96       | 0.420                        | -4.890                       | 9.175            |
| 71         | 1983.79       | 0.182                        | -4.615                       | 9.204            |
| 72         | 1983.62       | -0.198                       | -4.596                       | 9.207            |
| 73         | 1983.48       | -0.458                       | -4.738                       | 9.126            |
| 74         | 1983.35       | -0.308                       | -4.882                       | 9.113            |
| 75         | 1983.21       | 0.083                        | -4.940                       | 9.160            |
| 76         | 1982.96       | 0.365                        | -4.849                       | 9.175            |
| 77         | 1982.71       | 0.369                        | -4.813                       | 9.207            |
| 78         | 1982.48       | 0.005                        | -4.859                       | 9.161            |
| 79         | 1982.26       | -0.320                       | -5.068                       | 9.082            |
| 80         | 1982.04       | -0.168                       | -5.172                       |                  |
| 81         | 1981.79       | 0.264                        | -5.079                       | 9.092            |
| 82         | 1981.54       | 0.693                        | -4.761                       | 9.182            |
| 83         | 1981.46       | 0.254                        | -4.814                       | 9.200            |
| 84         | 1981.37       | 0.069                        | -4.881                       | 9.177            |
| 85         | 1981.29       | 0.141                        | -5.134                       | 9.139            |
| 86         | 1981.21       | 0.554                        | -5.140                       | 9.166            |
| 87         | 1980.62       | 0.361                        | -4.801                       | 9.168            |
| 88         | 1980.56       | 0.094                        | -4.862                       | 9.173            |
| 89         | 1980.50       | -0.036                       | -4.810                       | 9.175            |
| 90         | 1980.44       | 0.418                        | -4.832                       | 9.170            |
| 91         | 1980.39       | 0.621                        | -4.886                       | 9.206            |
| 92         | 1980.33       | 0.435                        | -4.957                       | 9.200            |
| 93         | 1980.27       | 0.000                        | -5.079                       | 9.138            |
| 94         | 1980.21       | -0.018                       | -5.160                       | 9.125            |
| 95         | 1979.71       | 0.513                        | -4.893                       | 9.169            |
| 96         | 1979.58       | 0.343                        | -5.001                       | 9.184            |
| 97         | 1979.46       | 0.167                        | -4.920                       | 9.213            |
| 98         | 1979.33       | -0.059                       | -4.930                       | 9.140            |
| 99         | 1979.21       | -0.072                       | -5.011                       | 9.092            |
| 100        | 1979.01       | 0.252                        | -4.941                       | 9.128            |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) | Sr/Ca (mmol/mol) |
|------------|---------------|------------------------------|------------------------------|------------------|
| 101        | 1978.82       | 0.429                        | -4.880                       | 9.220            |
| 102        | 1978.62       | 0.168                        | -4.702                       | 9.170            |
| 103        | 1978.46       | -0.287                       | -4.884                       | 9.191            |
| 104        | 1978.29       | -0.265                       | -4.922                       | 9.110            |
| 105        | 1978.12       | -0.445                       | -5.179                       | 9.099            |
| 106        | 1977.96       | 0.111                        | -5.068                       | 9.107            |
| 107        | 1977.79       | 0.246                        | -4.919                       | 9.225            |
| 108        | 1977.62       | 0.128                        | -4.855                       | 9.179            |
| 109        | 1977.50       | -0.214                       | -5.100                       | 9.157            |
| 110        | 1977.37       | -0.376                       | -5.301                       | 9.108            |
| 111        | 1977.25       | -0.253                       | -5.228                       | 9.058            |
| 112        | 1977.12       | 0.094                        | -5.329                       | 9.039            |
| 113        | 1977.00       | 0.270                        | -5.206                       | 9.112            |
| 114        | 1976.87       | -0.009                       | -5.161                       | 9.182            |
| 115        | 1976.75       | -0.148                       | -5.056                       | 9.105            |
| 116        | 1976.62       | -0.144                       | -4.990                       | 9.121            |
| 117        | 1976.42       | -0.138                       | -5.213                       | 9.056            |
| 118        | 1976.21       | 0.209                        | -5.368                       | 9.037            |
| 119        | 1975.98       | 0.526                        | -5.168                       | 9.100            |
| 120        | 1975.76       | 0.454                        | -5.070                       | 9.119            |
| 121        | 1975.54       | 0.413                        | -4.969                       | 9.165            |
| 122        | 1975.40       | -0.152                       | -5.114                       | 9.065            |
| 123        | 1975.26       | -0.136                       | -5.115                       | 9.051            |
| 124        | 1975.12       | 0.208                        | -5.111                       | 9.072            |
| 125        | 1974.79       | 0.508                        | -5.037                       | 9.138            |
| 126        | 1974.46       | 0.770                        | -4.863                       | 9.179            |
| 127        | 1974.32       | 0.465                        | -4.941                       | 9.143            |
| 128        | 1974.18       | -0.002                       | -5.023                       | 9.099            |
| 129        | 1974.04       | -0.168                       | -5.112                       | 9.085            |
| 130        | 1973.87       | 0.151                        | -4.961                       | 9.169            |
| 131        | 1973.71       | 0.272                        | -4.825                       | 9.182            |
| 132        | 1973.54       | 0.252                        | -4.683                       | 9.216            |
| 133        | 1973.40       | 0.133                        | -4.891                       | 9.145            |
| 134        | 1973.26       | 0.214                        | -5.080                       | 9.100            |
| 135        | 1973.12       | 0.108                        | -5.448                       | 9.023            |
| 136        | 1972.93       | 0.380                        | -5.301                       | 9.082            |
| 137        | 1972.73       | 0.290                        | -5.157                       | 9.159            |
| 138        | 1972.54       | 0.335                        | -4.963                       | 9.141            |
| 139        | 1972.33       | 0.053                        | -5.016                       | 9.132            |
| 140        | 1972.12       | -0.105                       | -5.154                       | 9.070            |
| 141        | 1971.93       | 0.276                        | -5.115                       | 9.090            |
| 142        | 1971.73       | 0.607                        | -4.837                       | 9.164            |
| 143        | 1971.54       | 0.415                        | -4.596                       |                  |
| 144        | 1971.40       | 0.108                        | -4.680                       | 9.171            |
| 145        | 1971.26       | -0.089                       | -4.948                       | 9.122            |
| 146        | 1971.12       | 0.051                        | -5.047                       | 9.084            |
| 147        | 1970.98       | 0.608                        | -4.962                       | 9.061            |
| 148        | 1970.85       | 0.685                        | -4.756                       | 9.165            |
| 149        | 1970.71       | 0.520                        | -4.531                       | 9.261            |
| 150        | 1970.48       | 0.298                        | -4.590                       | 9.203            |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) | Sr/Ca (mmol/mol) |
|------------|---------------|------------------------------|------------------------------|------------------|
| 151        | 1970.26       | 0.059                        | -4.726                       | 9.192            |
| 152        | 1970.04       | 0.383                        | -5.146                       | 9.156            |
| 153        | 1969.79       | 0.431                        | -4.994                       | 9.170            |
| 154        | 1969.54       | 0.432                        | -4.872                       | 9.230            |
| 155        | 1969.40       | 0.023                        | -4.972                       | 9.176            |
| 156        | 1969.26       | -0.153                       | -5.221                       | 9.098            |
| 157        | 1969.12       | -0.046                       | -5.383                       | 9.084            |
| 158        | 1968.93       | 0.378                        | -5.148                       | 9.119            |
| 159        | 1968.73       | 0.491                        | -4.879                       | 9.151            |
| 160        | 1968.54       | 0.364                        | -4.690                       | 9.211            |
| 161        | 1968.40       | -0.015                       | -4.934                       | 9.206            |
| 162        | 1968.26       | -0.046                       | -4.876                       | 9.103            |
| 163        | 1968.12       | -0.182                       | -5.113                       | 9.090            |
| 164        | 1967.93       | 0.300                        | -5.024                       | 9.112            |
| 165        | 1967.73       | 0.359                        | -4.771                       | 9.172            |
| 166        | 1967.54       | 0.365                        | -4.594                       | 9.272            |
| 167        | 1967.40       | 0.002                        | -4.831                       | 9.151            |
| 168        | 1967.26       | 0.029                        | -4.963                       | 9.150            |
| 169        | 1967.12       | 0.589                        | -5.089                       | 9.129            |
| 170        | 1966.83       | 0.919                        | -4.850                       | 9.180            |
| 171        | 1966.54       | 0.440                        | -4.601                       | 9.238            |
| 172        | 1966.40       | -0.023                       | -4.939                       | 9.145            |
| 173        | 1966.26       | -0.151                       | -5.077                       | 9.092            |
| 174        | 1966.12       | 0.037                        | -5.175                       | 9.103            |
| 175        | 1965.83       | -0.043                       | -5.130                       | 9.100            |
| 176        | 1965.54       | 0.217                        | -4.703                       | 9.123            |
| 177        | 1965.40       | -0.029                       | -4.734                       | 9.162            |
| 178        | 1965.26       | 0.113                        | -4.960                       | 9.123            |
| 179        | 1965.12       | 0.374                        | -4.954                       | 9.102            |
| 180        | 1964.83       | 0.571                        | -4.879                       | 9.173            |
| 181        | 1964.54       | 0.365                        | -4.806                       | 9.198            |
| 182        | 1964.40       | 0.119                        | -4.822                       | 9.184            |
| 183        | 1964.26       | -0.127                       | -5.199                       |                  |
| 184        | 1964.12       | 0.417                        | -5.333                       | 9.132            |
| 185        | 1963.83       | 0.842                        | -4.956                       | 9.157            |
| 186        | 1963.54       | 0.465                        | -4.889                       | 9.223            |
| 187        | 1963.33       | 0.051                        | -5.300                       | 9.109            |
| 188        | 1963.12       | 0.323                        | -5.320                       | 9.124            |
| 189        | 1962.83       | 0.434                        | -5.100                       |                  |
| 190        | 1962.54       | 0.437                        | -4.924                       |                  |
| 191        | 1962.40       | 0.045                        | -5.060                       |                  |
| 192        | 1962.26       | -0.148                       | -5.106                       |                  |
| 193        | 1962.12       | -0.054                       | -5.304                       |                  |
| 194        | 1961.93       | 0.265                        | -5.133                       |                  |
| 195        | 1961.73       | 0.280                        | -5.026                       |                  |
| 196        | 1961.54       | 0.373                        | -4.900                       |                  |
| 197        | 1961.33       | 0.250                        | -5.172                       |                  |
| 198        | 1961.12       | 0.317                        | -5.287                       |                  |
| 199        | 1960.93       | 0.414                        | -5.065                       |                  |
| 200        | 1960.73       | 0.320                        | -4.897                       |                  |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 201        | 1960.54       | 0.065                        | -4.819                       |
| 202        | 1960.12       | -0.218                       | -5.031                       |
| 203        | 1959.98       | 0.064                        | -5.030                       |
| 204        | 1959.83       | 0.550                        | -4.782                       |
| 205        | 1959.69       | 0.517                        | -4.641                       |
| 206        | 1959.54       | 0.252                        | -4.562                       |
| 207        | 1959.44       | 0.019                        | -4.726                       |
| 208        | 1959.33       | 0.087                        | -4.859                       |
| 209        | 1959.23       | 0.404                        | -4.763                       |
| 210        | 1959.12       | 0.276                        | -4.862                       |
| 211        | 1958.54       | 0.173                        | -4.780                       |
| 212        | 1958.40       | 0.076                        | -4.812                       |
| 213        | 1958.26       | -0.151                       | -5.081                       |
| 214        | 1958.12       | -0.182                       | -5.286                       |
| 215        | 1957.83       | 0.087                        | -5.268                       |
| 216        | 1957.54       | 0.297                        | -5.022                       |
| 217        | 1957.40       | 0.041                        | -5.153                       |
| 218        | 1957.26       | -0.272                       | -5.320                       |
| 219        | 1957.12       | -0.196                       | -5.427                       |
| 220        | 1956.93       | 0.237                        | -5.270                       |
| 221        | 1956.73       | 0.325                        | -5.275                       |
| 222        | 1956.54       | 0.129                        | -5.081                       |
| 223        | 1956.40       | -0.091                       | -5.096                       |
| 224        | 1956.26       | -0.226                       | -5.162                       |
| 225        | 1956.12       | -0.169                       | -5.349                       |
| 226        | 1955.98       | 0.011                        | -5.260                       |
| 227        | 1955.83       | 0.003                        | -4.960                       |
| 228        | 1955.69       | -0.034                       | -4.920                       |
| 229        | 1955.54       | -0.095                       | -4.865                       |
| 230        | 1955.12       | -0.353                       | -5.199                       |
| 231        | 1954.93       | -0.089                       | -5.054                       |
| 232        | 1954.73       | 0.178                        | -4.842                       |
| 233        | 1954.54       | 0.327                        | -4.699                       |
| 234        | 1954.44       | 0.064                        | -4.756                       |
| 235        | 1954.33       | -0.232                       | -4.774                       |
| 236        | 1954.23       | -0.442                       | -4.934                       |
| 237        | 1954.12       | -0.528                       | -5.328                       |
| 238        | 1954.01       | 0.068                        | -5.097                       |
| 239        | 1953.89       | 0.154                        | -4.915                       |
| 240        | 1953.77       | 0.338                        | -4.921                       |
| 241        | 1953.66       | 0.158                        | -4.901                       |
| 242        | 1953.54       | 0.081                        | -4.885                       |
| 243        | 1953.33       | -0.007                       | -4.986                       |
| 244        | 1953.12       | 0.350                        | -5.178                       |
| 245        | 1952.83       | 0.694                        | -4.953                       |
| 246        | 1952.54       | 0.732                        | -4.765                       |
| 247        | 1952.44       | 0.455                        | -4.845                       |
| 248        | 1952.33       | -0.047                       | -5.260                       |
| 249        | 1952.23       | -0.177                       | -5.365                       |
| 250        | 1952.12       | -0.018                       | -5.398                       |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 251        | 1951.83       | 0.386                        | -5.037                       |
| 252        | 1951.54       | 0.331                        | -4.963                       |
| 253        | 1951.40       | 0.140                        | -5.137                       |
| 254        | 1951.26       | -0.060                       | -5.339                       |
| 255        | 1951.12       | 0.046                        | -5.422                       |
| 256        | 1950.93       | 0.428                        | -5.240                       |
| 257        | 1950.73       | 0.313                        | -5.065                       |
| 258        | 1950.54       | 0.288                        | -4.796                       |
| 259        | 1950.33       | -0.043                       | -5.175                       |
| 260        | 1950.12       | -0.029                       | -5.406                       |
| 261        | 1949.83       | 0.296                        | -5.008                       |
| 262        | 1949.54       | 0.310                        | -4.784                       |
| 263        | 1949.44       | 0.112                        | -4.808                       |
| 264        | 1949.33       | -0.156                       | -5.083                       |
| 265        | 1949.23       | 0.002                        | -5.107                       |
| 266        | 1949.12       | 0.097                        | -5.268                       |
| 267        | 1948.93       | 0.457                        | -5.112                       |
| 268        | 1948.73       | 0.532                        | -4.963                       |
| 269        | 1948 54       | 0.292                        | -4 682                       |
| 270        | 1948 40       | -0.170                       | -4 975                       |
| 271        | 1948.26       | -0.248                       | -5.016                       |
| 272        | 1948 12       | -0.166                       | -5 317                       |
| 273        | 1947 93       | 0.100                        | -5 079                       |
| 274        | 1947 73       | 0.312                        | _4 941                       |
| 275        | 1947.75       | 0.255                        | -4 738                       |
| 276        | 1947.04       | -0.071                       | -5.006                       |
| 270        | 1047.26       | -0.071                       | -5.000                       |
| 279        | 1947.20       | -0.147                       | -3.237                       |
| 270        | 1947.12       | -0.013                       | -5.207                       |
| 280        | 1046 72       | 0.342                        | -3.110                       |
| 200        | 1940.75       | 0.409                        | -4.972                       |
| 201        | 1940.54       | 0.221                        | -4.005                       |
| 202        | 1940.55       | -0.155                       | -3.030                       |
| 203        | 1940.12       | -0.234                       | -3.320                       |
| 204        | 1945.65       | 0.117                        | -5.241                       |
| 205        | 1945.54       | 0.459                        | -4.920                       |
| 286        | 1945.46       | 0.082                        | -5.043                       |
| 287        | 1945.37       | -0.301                       | -5.223                       |
| 288        | 1945.29       | -0.309                       | -5.254                       |
| 289        | 1945.21       | 0.073                        | -5.347                       |
| 290        | 1945.12       | 0.403                        | -5.387                       |
| 291        | 1944.83       | 0.479                        | -4.977                       |
| 292        | 1944.54       | 0.387                        | -4.893                       |
| 293        | 1944.12       | 0.090                        | -5.137                       |
| 294        | 1943.93       | 0.324                        | -5.078                       |
| 295        | 1943.73       | 0.415                        | -4.779                       |
| 296        | 1943.54       | 0.294                        | -4.761                       |
| 297        | 1943.12       | 0.006                        | -5.033                       |
| 298        | 1942.98       | 0.214                        | -4.899                       |
| 299        | 1942.83       | 0.473                        | -4.858                       |
| 300        | 1942.69       | 0.462                        | -4.815                       |
| 301        | 1942.54       | 0.126                        | -4.686                       |
| 302        | 1942.33       | -0.072                       | -4.883                       |
| 303        | 1942.12       | -0.006                       | -4.887                       |
| 304        | 1941.54       | 0.193                        | -4.793                       |

## FIJI CORE LH EXOTHECAL SKELETON

# STABLE ISOTOPE AND Sr/Ca DATA
| Depth (mm) | Calendar Year | <b>d</b> ¹³C (‰) | <b>d</b> <sup>18</sup> O (‰) | Sr/Ca (mmol/mol) |
|------------|---------------|------------------|------------------------------|------------------|
| 0.5        | 2001.96       | -0.168           | -4.654                       | 9.102            |
| 1.0        | 2001.79       | -0.223           | -4.694                       | 9.096            |
| 1.5        | 2001.63       | -0.244           | -4.623                       | 9.081            |
| 2.0        | 2001.46       | -0.469           | -4.796                       | 9.051            |
| 2.5        | 2001.29       | -0.707           | -5.051                       | 9.012            |
| 3.0        | 2001.13       | -0.540           | -5.059                       | 8.935            |
| 3.5        | 2000.96       | -0.656           | -5.069                       | 8.954            |
| 4.0        | 2000.79       | -0.458           | -4.808                       | 9.022            |
| 4.5        | 2000.21       | -0.667           | -5.120                       | 9.066            |
| 5.0        | 2000.01       | -0.307           | -4.898                       | 9.077            |
| 5.5        | 1999.82       | -0.194           | -4.794                       | 9.037            |
| 6.0        | 1999.63       | -0.153           | -4.740                       | 9.198            |
| 6.5        | 1999.29       | -0.250           | -4.949                       | 9.171            |
| 7.0        | 1999.14       | 0.036            | -4.636                       | 9.157            |
| 7.5        | 1999.00       | -0.257           | -4.770                       | 9.174            |
| 8.0        | 1998.85       | -0.244           | -4.637                       | 9.119            |
| 8.5        | 1998.71       | 0.095            | -4.128                       | 9.176            |
| 9.0        | 1998.65       | 0.055            | -4.178                       | 9.188            |
| 9.5        | 1998.60       | -0.533           | -4.329                       | 9.199            |
| 10.0       | 1998.54       | -0.174           | -4.191                       | 9.201            |
| 10.5       | 1998.48       | -0.281           | -4.201                       | 9.149            |
| 11.0       | 1998.43       | -0.505           | -4.417                       | 9.153            |
| 11.5       | 1998.37       | -0.309           | -4.311                       | 9.197            |
| 12.0       | 1998.32       | -0.410           | -4.583                       | 9.166            |
| 12.5       | 1998.26       | -0.397           | -4.719                       | 9.088            |
| 13.0       | 1998.21       | -0.230           | -4.777                       | 9.086            |
| 13.5       | 1998.11       | -0.184           | -4.541                       | 9.104            |
| 14.0       | 1998.01       | 0.008            | -4.625                       | 9.070            |
| 14.5       | 1997.91       | 0.075            | -4.568                       | 9.134            |
| 15.0       | 1997.81       | 0.034            | -4.438                       | 9.163            |
| 15.5       | 1997.71       | -0.066           | -4.220                       | 9.144            |
| 16.0       | 1997.60       | -0.177           | -4.388                       | 9.179            |
| 16.5       | 1997.48       | -0.352           | -4.416                       | 9.170            |
| 17.0       | 1997.37       | -0.601           | -4.447                       | 9.211            |
| 17.5       | 1997.26       | 0.101            | -4.421                       | 9.119            |
| 18.0       | 1997.15       | -0.618           | -4.964                       | 9.106            |
| 18.5       | 1997.04       | -0.840           | -5.097                       | 9.168            |
| 19.0       | 1996.93       | -0.646           | -5.075                       | 9.036            |
| 19.5       | 1996.83       | -0.569           | -5.007                       | 9.085            |
| 20.0       | 1996.73       | -0.186           | -4.945                       | 9.050            |
| 20.5       | 1996.63       | 0.106            | -4.737                       | 9.097            |
| 21.0       | 1996.56       | -0.180           | -4.755                       | 9.057            |
| 21.5       | 1996.49       | -0.248           | -4.749                       | 9.113            |
| 22.0       | 1996.42       | -0.287           | -4.855                       | 9.105            |
| 22.5       | 1996.35       | -0.264           | -4.751                       | 9.114            |
| 23.0       | 1996.28       | -0.203           | -4.775                       | 9.104            |
| 23.5       | 1996.21       | -0.569           | -5.047                       | 9.116            |
| 24.0       | 1995.98       | -0.154           | -4.849                       | 9.123            |
| 24.5       | 1995.76       | 0.437            | -4.662                       | 9.198            |
| 25.0       | 1995.54       | 0.848            | -4.531                       | 9.269            |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) | Sr/Ca (mmol/mol) |
|------------|---------------|------------------------------|------------------------------|------------------|
| 25.0       | 1995.54       | 0.848                        | -4.531                       | 9.269            |
| 25.5       | 1995.50       | 0.576                        | -4.560                       | 9.226            |
| 26.0       | 1995.45       | 0.075                        | -4.802                       | 9.214            |
| 26.5       | 1995.41       | -0.176                       | -4.548                       | 9.241            |
| 27.0       | 1995.37       | -0.214                       | -4.670                       | 9.268            |
| 27.5       | 1995.33       | -0.625                       | -4.790                       | 9.235            |
| 28.0       | 1995.29       | -0.431                       | -4.792                       | 9.167            |
| 28.5       | 1995.25       | -0.187                       | -4.911                       | 9.184            |
| 29.0       | 1995.21       | -0.082                       | -4.952                       | 9.180            |
| 29.5       | 1995.12       | 0.003                        | -4.714                       | 9.205            |
| 30.0       | 1995.04       | 0.209                        | -4.707                       | 9.187            |
| 30.5       | 1994.96       | -0.062                       | -4.592                       | 9.178            |
| 31.0       | 1994.87       | -0.150                       | -4.477                       | 9.206            |
| 31.5       | 1994.79       | -0.187                       | -4.434                       | 9.252            |
| 32.0       | 1994.71       | 0.056                        | -4.359                       | 9.279            |
| 32.5       | 1994.64       | -0.249                       | -4.394                       | 9.219            |
| 33.0       | 1994.56       | -0.212                       | -4.364                       | 9.244            |
| 33.5       | 1994.49       | -0.288                       | -4.681                       | 9.192            |
| 34.0       | 1994.42       | -0.302                       | -4.830                       | 9.136            |
| 34.5       | 1994.35       | -0.409                       | -4.882                       | 9.113            |
| 35.0       | 1994.28       | -0.401                       | -5.055                       | 9.096            |
| 35.5       | 1994.21       | -0.226                       | -5.103                       | 9.004            |
| 36.0       | 1994.11       | 0.386                        | -4.786                       | 9.109            |
| 36.5       | 1994.01       | 0.452                        | -4.781                       | 9.143            |
| 37.0       | 1993.91       | 0.160                        | -4.528                       | 9.211            |
| 37.5       | 1993.81       | -0.175                       | -4.604                       | 9.268            |
| 38.0       | 1993.71       | -0.312                       | -4.433                       | 9.240            |
| 38.5       | 1993.61       | -0.629                       | -4.708                       | 9.237            |
| 39.0       | 1993.51       | -0.507                       | -4.628                       | 9.242            |
| 39.5       | 1993.41       | -0.554                       | -5.016                       | 9.162            |
| 40.0       | 1993.31       | -0.631                       | -4.840                       | 9.162            |
| 40.5       | 1993.21       | -0.547                       | -5.056                       | 9.154            |
| 41.0       | 1993.12       | -0.207                       | -4.971                       | 9.125            |
| 41.5       | 1993.04       | -0.329                       | -4.772                       | 9.132            |
| 42.0       | 1992.96       | -0.314                       | -4.742                       | 9.157            |
| 42.5       | 1992.88       | -0.127                       | -4.596                       | 9.208            |
| 43.0       | 1992.79       | -0.236                       | -4.588                       | 9.258            |
| 43.5       | 1992.71       | -0.362                       | -4.611                       | 9.201            |
| 44.0       | 1992.63       | -0.242                       | -4.534                       | 9.183            |
| 44.5       | 1992.56       | -0.570                       | -4.680                       | 9.177            |
| 45.0       | 1992.50       | -0.688                       | -4.726                       | 9.165            |
| 45.5       | 1992.44       | -0.968                       | -4.954                       | 9.125            |
| 46.0       | 1992.38       | -0.656                       | -4.804                       | 9.105            |
| 46.5       | 1992.31       | -0.635                       | -5.017                       | 9.078            |
| 47.0       | 1992.25       | -0.642                       | -5.065                       | 9.059            |
| 47.5       | 1992.19       | -0.375                       | -4.963                       | 9.040            |
| 48.0       | 1992.13       | -0.255                       | -5.083                       | 9.035            |
| 48.5       | 1992.02       | -0.033                       | -5.024                       | 9.117            |
| 49.0       | 1991.92       | -0.265                       | -4.952                       | 9.068            |
| 49.5       | 1991.81       | -0.416                       | -4.956                       | 9.107            |
| 50.0       | 1991.71       | -0.444                       | -4.672                       | 9.145            |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) | Sr/Ca (mmol/mol) |
|------------|---------------|------------------------------|------------------------------|------------------|
| 51         | 1991.54       | -0.666                       | -4.960                       | 9.137            |
| 52         | 1991.37       | -0.637                       | -4.793                       | 9.128            |
| 53         | 1991.21       | -0.729                       | -5.057                       | 9.073            |
| 54         | 1991.01       | -0.622                       | -5.028                       | 9.093            |
| 55         | 1990.82       | -0.569                       | -4.921                       | 9.121            |
| 56         | 1990.63       | -0.810                       | -4.899                       |                  |
| 57         | 1990.54       | -0.675                       | -4.939                       | 9.145            |
| 58         | 1990.46       | -0.246                       | -5.082                       | 9.161            |
| 59         | 1990.38       | 0.074                        | -5.047                       | 9.113            |
| 60         | 1990.29       | -0.090                       | -5.093                       | 9.117            |
| 61         | 1990.21       | -0.285                       | -5.048                       | 9.088            |
| 62         | 1990.13       | -0.704                       | -5.209                       | 9.088            |
| 63         | 1989.63       | -0.949                       | -5.045                       | 9.070            |
| 64         | 1989.33       | -0.808                       | -5.357                       | 9.133            |
| 65         | 1989.04       | -0.906                       | -5.388                       | 8.991            |
| 66         | 1988.90       | -0.195                       | -5.074                       | 9.084            |
| 67         | 1988.76       | -0.206                       | -5.069                       | 9.090            |
| 68         | 1988.63       | -0.182                       | -4.977                       | 9.122            |
| 69         | 1988.13       | -0.295                       | -4.977                       | 9.102            |
| 70         | 1987.98       | -0.202                       | -4.895                       | 9.128            |
| 71         | 1987.83       | 0.180                        | -4.519                       | 9.194            |
| 72         | 1987.68       | 0.210                        | -4.307                       | 9.248            |
| 73         | 1987.54       | -0.042                       | -4.248                       | 9.311            |
| 74         | 1987.37       | -0.198                       | -4.524                       | 9.248            |
| 75         | 1987.21       | 0.311                        | -4.612                       | 9.187            |
| 76         | 1987.01       | 0.418                        | -4.568                       | 9.132            |
| 77         | 1986.82       | 0.387                        | -4.441                       | 9.168            |
| 78         | 1986.63       | 0.193                        | -4.373                       | 9.225            |
| 79         | 1986.49       | -0.300                       | -4.656                       | 9.187            |
| 80         | 1986.35       | -0.429                       | -4.709                       | 9.136            |
| 81         | 1986.21       | -0.184                       | -4.779                       | 9.131            |
| 82         | 1986.01       | 0.573                        | -4.655                       | 9.181            |
| 83         | 1985.82       | -0.109                       | -4.650                       | 9.199            |
| 84         | 1985.63       | -0.162                       | -4.643                       | 9.200            |
| 85         | 1985.46       | -0.430                       | -4.857                       | 9.145            |
| 86         | 1985.29       | -0.555                       | -5.079                       | 9.109            |
| 87         | 1985.13       | -0.310                       | -5.145                       | 9.082            |
| 88         | 1984.88       | 0.158                        | -4.997                       | 9.092            |
| 89         | 1984.63       | 0.252                        | -4.780                       | 9.135            |
| 90         | 1984.49       | 0.275                        | -4.834                       | 9.141            |
| 91         | 1984.35       | 0.050                        | -4.749                       | 9.089            |
| 92         | 1984.21       | 0.083                        | -4.879                       | 9.135            |
| 93         | 1984.06       | 0.355                        | -4.748                       | 9.086            |
| 94         | 1983.92       | 0.540                        | -4.558                       | 9.180            |
| 95         | 1983.77       | -0.048                       | -4.452                       | 9.219            |
| 96         | 1983.63       | -0.069                       | -4.444                       | 9.221            |
| 97         | 1983.42       | -0.013                       | -4.610                       | 9.172            |
| 98         | 1983.21       | 0.357                        | -4.704                       | 9.137            |
| 99         | 1983.04       | 0.618                        | -4.674                       | 9.147            |
| 100        | 1982.87       | 0.181                        | -4.655                       | 9.204            |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) | Sr/Ca (mmol/mol) |
|------------|---------------|------------------------------|------------------------------|------------------|
| 101        | 1982.71       | 0.370                        | -4.501                       | 9.220            |
| 102        | 1982.37       | 0.258                        | -4.905                       | 9.167            |
| 103        | 1982.04       | 0.571                        | -4.928                       | 9.112            |
| 104        | 1981.79       | 1.063                        | -4.732                       | 9.194            |
| 105        | 1981.54       | 0.959                        | -4.487                       | 9.230            |
| 106        | 1981.37       | 0.418                        | -4.637                       | 9.229            |
| 107        | 1981.21       | 0.358                        | -4.966                       |                  |
| 108        | 1981.01       | 1.238                        | -4.943                       | 9.229            |
| 109        | 1980.82       | 0.767                        | -4.628                       | 9.232            |
| 110        | 1980.63       | 0.251                        | -4.442                       | 9.248            |
| 111        | 1980.49       | 0.069                        | -4.592                       | 9.178            |
| 112        | 1980.35       | -0.135                       | -4.861                       | 9.090            |
| 113        | 1980.21       | 0.167                        | -5.108                       | 9.142            |
| 114        | 1979.96       | 0.939                        | -4.787                       | 9.183            |
| 115        | 1979.71       | 0.060                        | -4.693                       | 9.219            |
| 116        | 1979.46       | -0.366                       | -4.748                       | 9.153            |
| 117        | 1979.21       | -0.437                       | -5.018                       | 9.039            |
| 118        | 1979.06       | -0.048                       | -5.013                       | 9.067            |
| 119        | 1978.92       | 0.370                        | -4.943                       | 9.112            |
| 120        | 1978.77       | 0.278                        | -4.527                       | 9.144            |
| 121        | 1978.63       | 0.223                        | -4.442                       | 9.205            |
| 122        | 1978.46       | -0.223                       | -4.590                       | 9.167            |
| 123        | 1978.29       | -0.210                       | -4.873                       | 9.129            |
| 124        | 1978.13       | -0.398                       | -4.925                       | 9.058            |
| 125        | 1978.02       | 0.023                        | -4.853                       | 9.110            |
| 126        | 1977.92       | 0.324                        | -4.601                       | 9.164            |
| 127        | 1977.81       | 0.090                        | -4.446                       | 9.209            |
| 128        | 1977.71       | -0.119                       | -4.386                       | 9.138            |
| 129        | 1977.54       | -0.458                       | -4.762                       | 9.141            |
| 130        | 1977.37       | -0.446                       | -4.776                       | 9.114            |
| 131        | 1977.21       | -0.336                       | -5.082                       | 9.091            |
| 132        | 1977.04       | 0.177                        | -4.917                       | 9.120            |
| 133        | 1976.87       | -0.034                       | -4.786                       | 9.160            |
| 134        | 1976.71       | 0.233                        | -4.568                       | 9.128            |
| 135        | 1976.57       | -0.144                       | -4.831                       | 9.125            |
| 136        | 1976.43       | -0.141                       | -5.148                       | 9.043            |
| 137        | 1976.29       | -0.054                       | -5.207                       | 9.083            |
| 138        | 1976.12       | 0.778                        | -5.208                       | 9.119            |
| 139        | 1975.96       | 0.604                        | -4.900                       | 9.174            |
| 140        | 1975.79       | -0.056                       | -4.940                       | 9.179            |
| 141        | 1975.63       | -0.233                       | -4.855                       | 9.156            |
| 142        | 1975.49       | -0.299                       | -5.081                       | 9.116            |
| 143        | 1975.35       | -0.353                       | -5.108                       | 9.145            |
| 144        | 1975.21       | 0.257                        | -5.225                       | 9.175            |
| 145        | 1974.98       | 0.660                        | -4.956                       | 9.138            |
| 146        | 1974.76       | 0.383                        | -4.965                       | 9.132            |
| 147        | 1974.54       | 0.140                        | -4.864                       | 9.156            |
| 148        | 1974.33       | 0.034                        | -5.036                       | 9.081            |
| 149        | 1974.13       | -0.090                       | -5.235                       | 9.078            |
| 150        | 1973.96       | 0.613                        | -4.954                       | 9.078            |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) | Sr/Ca (mmol/mol) |
|------------|---------------|------------------------------|------------------------------|------------------|
| 151        | 1973.79       | 0.918                        | -4.573                       | 9.205            |
| 152        | 1973.63       | 0.419                        | -4.540                       | 9.165            |
| 153        | 1973.49       | -0.244                       | -4.712                       | 9.159            |
| 154        | 1973.35       | -0.320                       | -4.990                       | 9.090            |
| 155        | 1973.21       | -0.254                       | -5.033                       | 9.072            |
| 156        | 1973.01       | 0.396                        | -4.780                       | 9.108            |
| 157        | 1972.82       | 0.142                        | -4.638                       | 9.173            |
| 158        | 1972.63       | -0.184                       | -4.615                       | 9.194            |
| 159        | 1972.49       | -0.106                       | -4.722                       | 9.180            |
| 160        | 1972.35       | -0.082                       | -5.100                       | 9.078            |
| 161        | 1972.21       | 0.196                        | -5.213                       | 9.081            |
| 162        | 1972.01       | 0.408                        | -4.960                       | 9.115            |
| 163        | 1971.82       | 0.405                        | -4.942                       | 9.115            |
| 164        | 1971.63       | 0.102                        | -4.798                       | 9.128            |
| 165        | 1971.38       | 0.222                        | -4.819                       | 9.080            |
| 166        | 1971.13       | -0.018                       | -5.059                       | 9.133            |
| 167        | 1970.96       | 0.055                        | -4.768                       | 9.095            |
| 168        | 1970.79       | -0.313                       | -4.599                       | 9.108            |
| 169        | 1970.57       | -0.390                       | -4.668                       | 9.155            |
| 170        | 1970.35       | -0.543                       | -4.686                       | 9.114            |
| 171        | 1970.13       | -0.486                       | -4.886                       | 9.061            |
| 172        | 1970.00       | -0.041                       | -4.744                       | 9.076            |
| 173        | 1969.87       | 0.181                        | -4.812                       | 9.137            |
| 174        | 1969.74       | 0.517                        | -4.415                       | 9.256            |
| 175        | 1969.62       | 0.183                        | -4.331                       | 9.224            |
| 176        | 1969.41       | -0.153                       | -4.619                       | 9.221            |
| 177        | 1969.21       | 0.263                        | -4.840                       | 9.136            |
| 178        | 1969.06       | 1.206                        | -4.739                       | 9.218            |
| 179        | 1968.91       | 0.951                        | -4.722                       | 9.226            |
| 180        | 1968.76       | -0.063                       | -4.950                       | 9.180            |
| 181        | 1968.62       | -0.139                       | -4.669                       | 9.179            |
| 182        | 1968.41       | -0.087                       | -4.821                       | 9.134            |
| 183        | 1968.21       | 0.349                        | -4.956                       | 9.088            |
| 184        | 1968.01       | 0.205                        | -4.811                       | 9.155            |
| 185        | 1967.81       | 0.014                        | -4.736                       | 9.198            |
| 186        | 1967.62       | -0.205                       | -4.644                       | 9.190            |
| 187        | 1967.21       | -0.204                       | -4.673                       | 9.189            |
| 188        | 1967.01       | 0.411                        | -4.608                       | 9.100            |
| 189        | 1966.81       | 0.394                        | -4.449                       | 9.009            |
| 190        | 1966.62       | 0.163                        | -4.418                       | 9.155            |
| 191        | 1966.41       | -0.032                       | -4.437                       | 9.120            |
| 192        | 1966.21       | -0.132                       | -4.695                       | 9.142            |
| 193        | 1965.91       | 0.436                        | -4.579                       | 9.154            |
| 194        | 1965.62       | 0.586                        | -4.332                       | 9.209            |
| 195        | 1965.51       | 0.551                        | -4.487                       | 9.194            |
| 196        | 1965.41       | 0.162                        | -4.612                       | 9.238            |
| 197        | 1965.31       | 0.063                        | -4.742                       | 9.176            |
| 198        | 1965.21       | 0.249                        | -4.888                       |                  |
| 199        | 1965.06       | 0.215                        | -4.756                       |                  |
| 200        | 1964.91       | -0.044                       | -4.787                       |                  |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 201        | 1964.76       | 0.020                        | -4.609                       |
| 202        | 1964.62       | 0.192                        | -4.583                       |
| 203        | 1964.48       | 0.510                        | -4.678                       |
| 204        | 1964.34       | 0.619                        | -4.685                       |
| 205        | 1964.21       | 0.246                        | -4.842                       |
| 206        | 1964.01       | 0.303                        | -4.701                       |
| 207        | 1963.81       | 0.537                        | -4.690                       |
| 208        | 1963.62       | 0.976                        | -4.594                       |
| 209        | 1963.41       | 0.760                        | -4.695                       |
| 210        | 1963.21       | 0.623                        | -4.825                       |
| 211        | 1962.91       | 1.094                        | -4.835                       |
| 212        | 1962.62       | 1.016                        | -4.714                       |
| 213        | 1962.48       | 0.877                        | -4.747                       |
| 214        | 1962.34       | 0.507                        | -4.805                       |
| 215        | 1962.21       | 0.623                        | -4.907                       |
| 216        | 1961.62       | 0.935                        | -4.710                       |
| 217        | 1961.41       | 0.581                        | -4.848                       |
| 218        | 1961.21       | 0.395                        | -4.897                       |
| 219        | 1961.11       | 0.470                        | -4.891                       |
| 220        | 1961.01       | 0.528                        | -4.865                       |
| 221        | 1960.91       | 0.592                        | -4.658                       |
| 222        | 1960.81       | 0.396                        | -4.639                       |
| 223        | 1960.72       | 0.409                        | -4.616                       |
| 224        | 1960.62       | 0.318                        | -4.509                       |
| 225        | 1960.21       | 0.413                        | -4.778                       |
| 226        | 1959.91       | 0.669                        | -4.598                       |
| 227        | 1959.62       | 0.542                        | -4.322                       |
| 228        | 1959.48       | 0.148                        | -4.372                       |
| 229        | 1959.34       | 0.115                        | -4.529                       |
| 230        | 1959.21       | 0.258                        | -4.648                       |
| 231        | 1958.91       | 0.441                        | -4.556                       |
| 232        | 1958.62       | 0.826                        | -4.354                       |
| 233        | 1958.48       | 0.366                        | -4.672                       |
| 234        | 1958.34       | 0.211                        | -4.818                       |
| 235        | 1958.21       | 0.307                        | -5.045                       |
| 236        | 1957.62       | 0.649                        | -4.483                       |
| 237        | 1957.48       | 0.306                        | -4.800                       |
| 238        | 1957.34       | 0.147                        | -5.074                       |
| 239        | 1957.21       | 0.136                        | -5.102                       |
| 240        | 1957.06       | 0.302                        | -5.064                       |
| 241        | 1956.91       | 0.336                        | -4.944                       |
| 242        | 1956.76       | 0.354                        | -4.943                       |
| 243        | 1956.62       | 0.578                        | -4.882                       |
| 244        | 1956.21       | 0.194                        | -5.161                       |
| 245        | 1956.01       | 0.355                        | -4.993                       |
| 246        | 1955.81       | 0.531                        | -4.719                       |
| 247        | 1955.62       | 0.401                        | -4.454                       |
| 248        | 1955.41       | 0.025                        | -4.715                       |
| 249        | 1955.21       | -0.163                       | -4.870                       |
| 250        | 1955.06       | 0.323                        | -4.678                       |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 251        | 1954.91       | 0.469                        | -4.504                       |
| 252        | 1954.76       | 0.265                        | -4.476                       |
| 253        | 1954.62       | 0.138                        | -4.417                       |
| 254        | 1954.41       | 0.137                        | -4.641                       |
| 255        | 1954.21       | -0.030                       | -4.867                       |
| 256        | 1954.06       | 0.528                        | -4.629                       |
| 257        | 1953.91       | 0.423                        | -4.566                       |
| 258        | 1953.76       | -0.112                       | -4.659                       |
| 259        | 1953.62       | -0.095                       | -4.512                       |
| 260        | 1953.41       | 0.034                        | -4.752                       |
| 261        | 1953.21       | -0.142                       | -4.963                       |
| 262        | 1952.91       | 0.163                        | -4.865                       |
| 263        | 1952.62       | 0.115                        | -4.592                       |
| 264        | 1952.48       | 0.037                        | -4.695                       |
| 265        | 1952.34       | -0.060                       | -4.864                       |
| 266        | 1952.21       | 0.084                        | -5.077                       |
| 267        | 1952.01       | 0.357                        | -5.036                       |
| 268        | 1951.81       | 0.416                        | -4.850                       |
| 269        | 1951.62       | 0.256                        | -4.753                       |
| 270        | 1951.41       | 0.022                        | -4.827                       |
| 271        | 1951.21       | 0.203                        | -4.938                       |
| 272        | 1951.01       | 0.586                        | -4.884                       |
| 273        | 1950.81       | 0.536                        | -4.703                       |
| 274        | 1950.62       | 0.298                        | -4.678                       |
| 275        | 1950.41       | 0.146                        | -4.885                       |
| 276        | 1950.21       | 0.240                        | -5.109                       |
| 277        | 1949.91       | 0.458                        | -5.045                       |
| 278        | 1949.62       | 0.930                        | -4.773                       |
| 279        | 1949.41       | 0.506                        | -4.845                       |
| 280        | 1949.21       | 0.389                        | -4.966                       |
| 281        | 1949.06       | 0.410                        | -4.835                       |
| 282        | 1948.91       | 0.717                        | -4.835                       |
| 283        | 1948.76       | 0.658                        | -4.752                       |
| 284        | 1948.62       | 0.296                        | -4.655                       |
| 285        | 1948.41       | 0.150                        | -4.847                       |
| 286        | 1948.21       | 0.424                        | -4.920                       |
| 287        | 1947.91       | 0.867                        | -4.837                       |
| 288        | 1947.62       | 0.544                        | -4.603                       |
| 289        | 1947.41       | 0.626                        | -4.627                       |
| 290        | 1947.21       | 0.699                        | -5.020                       |
| 291        | 1946.91       | 1.151                        | -4.833                       |
| 292        | 1946.62       | 0.692                        | -4.580                       |
| 293        | 1946.41       | 0.630                        | -4.716                       |
| 294        | 1946.21       | 0.653                        | -4.851                       |
| 295        | 1945.91       | 0.921                        | -4.807                       |
| 296        | 1945.62       | 0.319                        | -4.725                       |
| 297        | 1945.54       | -0.040                       | -4.800                       |
| 298        | 1945.45       | -0.323                       | -4.966                       |
| 299        | 1945.37       | 0.022                        | -5.021                       |
| 300        | 1945.29       | 0.197                        | -5.137                       |
| 301        | 1945.21       | -0.044                       | -5.199                       |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 301        | 1945.21       | -0.044                       | -5.199                       |
| 302        | 1944.91       | -0.022                       | -4.908                       |
| 303        | 1944.62       | -0.021                       | -4.841                       |
| 304        | 1944.41       | -0.191                       | -4.963                       |
| 305        | 1944.21       | -0.190                       | -5.178                       |
| 306        | 1944.06       | 0.281                        | -5.092                       |
| 307        | 1943.91       | 0.177                        | -4.863                       |
| 308        | 1943.76       | 0.126                        | -4.652                       |
| 309        | 1943.62       | -0.063                       | -4.590                       |
| 310        | 1943.41       | -0.182                       | -4.760                       |
| 311        | 1943.21       | 0.007                        | -4.776                       |
| 312        | 1943.01       | 0.601                        | -4.767                       |
| 313        | 1942.81       | 0.386                        | -4.537                       |
| 314        | 1942.62       | -0.031                       | -4.454                       |
| 315        | 1942.48       | -0.282                       | -4.576                       |
| 316        | 1942.34       | -0.247                       | -4.576                       |
| 317        | 1942.21       | 0.429                        | -4.800                       |
| 318        | 1942.01       | 0.736                        | -4.525                       |
| 319        | 1941.81       | 0.257                        | -4.536                       |
| 320        | 1941.62       | 0.078                        | -4.494                       |
| 321        | 1941.41       | -0.166                       | -4.725                       |
| 322        | 1941.21       | 0.029                        | -4.815                       |
| 323        | 1940.91       | 0.355                        | -4.809                       |
| 324        | 1940.62       | 0.204                        | -4.686                       |
| 325        | 1940.54       | 0.206                        | -4.702                       |
| 326        | 1940.45       | 0.130                        | -4.715                       |
| 327        | 1940.37       | -0.302                       | -4.924                       |
| 328        | 1940.29       | 0.235                        | -4.947                       |
| 329        | 1940.21       | 0.249                        | -4.976                       |
| 330        | 1939.91       | 0.073                        | -4.797                       |
| 331        | 1939.62       | 0.004                        | -4.586                       |
| 332        | 1939.21       | -0.158                       | -4.713                       |
| 333        | 1939.01       | 0.159                        | -4.703                       |
| 334        | 1938.81       | 0.557                        | -4.631                       |
| 335        | 1938.62       | 0.748                        | -4.471                       |
| 336        | 1938.51       | 0.503                        | -4.553                       |
| 337        | 1938.41       | 0.399                        | -4.795                       |
| 338        | 1938.31       | 0.595                        | -4.861                       |
| 339        | 1938.21       | 0.668                        | -4.897                       |
| 340        | 1937.91       | 1.002                        | -4.585                       |
| 341        | 1937.62       | 0.565                        | -4.560                       |
| 342        | 1937.41       | 0.787                        | -4.654                       |
| 343        | 1937.21       | 1.160                        | -4.733                       |
| 344        | 1937.01       | 1.173                        | -4.505                       |
| 345        | 1936.81       | 0.972                        | -4.364                       |
| 346        | 1936.62       | 0.599                        | -4.128                       |
| 347        | 1936.41       | 0.588                        | -4.453                       |
| 348        | 1936.21       | 1.038                        | -4.628                       |
| 349        | 1936.01       | 1.466                        | -4.322                       |
| 350        | 1935.81       | 1.051                        | -4.377                       |

| Depth (mm) | Calendar Year | <b>d</b> ¹³C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------|------------------------------|
| 351        | 1935.62       | 1.230            | -4.281                       |
| 352        | 1935.51       | 1.571            | -4.286                       |
| 353        | 1935.41       | 0.615            | -4.345                       |
| 354        | 1935.31       | 0.184            | -4.612                       |
| 355        | 1935.21       | 0.350            | -4.798                       |
| 356        | 1935.01       | 1.062            | -4.787                       |
| 357        | 1934.81       | 0.571            | -4.418                       |
| 358        | 1934.62       | 0.579            | -4.405                       |
| 359        | 1934.21       | 0.784            | -4.522                       |
| 360        | 1934.01       | 1.030            | -4.482                       |
| 361        | 1933.81       | 0.602            | -4.444                       |
| 362        | 1933.62       | 0.221            | -4.415                       |
| 363        | 1933.21       | -0.002           | -4.439                       |
| 364        | 1933.06       | 0.754            | -4.174                       |
| 365        | 1932.91       | 0.341            | -4.209                       |
| 366        | 1932.76       | 0.200            | -4.072                       |
| 367        | 1932.62       | 0.261            | -4.067                       |
| 368        | 1932.21       | 0.214            | -4.423                       |
| 369        | 1931.91       | 0.593            | -4.388                       |
| 370        | 1931.62       | 0.749            | -3.958                       |
| 371        | 1931.48       | 0.138            | -4.213                       |
| 372        | 1931.34       | 0.176            | -4.243                       |
| 373        | 1931.21       | 0.200            | -4.511                       |
| 374        | 1931.01       | 0.512            | -4.463                       |
| 375        | 1930.81       | 1.113            | -4.267                       |
| 376        | 1930.62       | 0.993            | -4.252                       |
| 377        | 1930.48       | 0.406            | -4.304                       |
| 378        | 1930.34       | 0.311            | -4.475                       |
| 379        | 1930.21       | 0.073            | -4.705                       |
| 380        | 1930.06       | 0.048            | -4.606                       |
| 381        | 1929.91       | 0.144            | -4.689                       |
| 382        | 1929.76       | 0.227            | -4.637                       |
| 383        | 1929.62       | 0.075            | -4.481                       |
| 384        | 1929.48       | 0.032            | -4.503                       |
| 385        | 1929.34       | 0.043            | -4.670                       |
| 386        | 1929.21       | -0.127           | -4.961                       |
| 387        | 1929.06       | -0.121           | -4.951                       |
| 388        | 1928.91       | 0.312            | -4.588                       |
| 389        | 1928.76       | 0.342            | -4.422                       |
| 390        | 1928.62       | 0.088            | -4.218                       |
| 391        | 1928.41       | -0.353           | -4.340                       |
| 392        | 1928.21       | -0.196           | -4.472                       |
| 393        | 1927.62       | 0.688            | -4.171                       |
| 394        | 1927.41       | 0.329            | -4.467                       |
| 395        | 1927.21       | 0.329            | -4.471                       |
| 396        | 1926.62       | 0.017            | -4.455                       |
| 397        | 1926.51       | -0.054           | -4.508                       |
| 398        | 1926.41       | -0.236           | -4.561                       |
| 399        | 1926.31       | -0.199           | -4.654                       |
| 400        | 1926.21       | 0.239            | -4.749                       |

| Depth (mm) | Calendar Year | <b>d</b> ¹³C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------|------------------------------|
| 401        | 1925.91       | 0.397            | -4.602                       |
| 402        | 1925.62       | 0.158            | -4.474                       |
| 403        | 1925.51       | -0.244           | -4.555                       |
| 404        | 1925.41       | -0.331           | -4.478                       |
| 405        | 1925.31       | 0.375            | -4.586                       |
| 406        | 1925.21       | 0.698            | -4.596                       |
| 407        | 1924.62       | 0.282            | -4.338                       |
| 408        | 1924.48       | 0.109            | -4.622                       |
| 409        | 1924.34       | -0.205           | -4.656                       |
| 410        | 1924.21       | 0.095            | -4.861                       |
| 411        | 1923.62       | 0.919            | -4.606                       |
| 412        | 1923.51       | 0.522            | -4.702                       |
| 413        | 1923.41       | 0.270            | -4.652                       |
| 414        | 1923.31       | 0.147            | -4.837                       |
| 415        | 1923.21       | 0.059            | -5.110                       |
| 416        | 1923.01       | 0.438            | -4.849                       |
| 417        | 1922.81       | 0.193            | -4.850                       |
| 418        | 1922.62       | 0.326            | -4.463                       |
| 419        | 1922.48       | 0.283            | -4.513                       |
| 420        | 1922.34       | 0.139            | -4.916                       |
| 421        | 1922.21       | 0.429            | -5.028                       |
| 422        | 1921.91       | 0.704            | -4.638                       |
| 423        | 1921.62       | 0.576            | -4.486                       |
| 424        | 1921.48       | 0.160            | -4.536                       |
| 425        | 1921.34       | 0.022            | -4.669                       |
| 426        | 1921.21       | 0.439            | -4.731                       |
| 427        | 1920.91       | 0.413            | -4.591                       |
| 428        | 1920.62       | 0.690            | -4.292                       |
| 429        | 1920.48       | 0.319            | -4.359                       |
| 430        | 1920.34       | 0.413            | -4.366                       |
| 431        | 1920.21       | 0.629            | -4.724                       |
| 432        | 1919.91       | 0.807            | -4.696                       |
| 433        | 1919.62       | 0.403            | -4.633                       |
| 434        | 1919.48       | 0.076            | -4.672                       |
| 435        | 1919.34       | -0.079           | -4.842                       |
| 436        | 1919.21       | 0.231            | -4.990                       |
| 437        | 1919.01       | 0.448            | -4.989                       |
| 438        | 1918.81       | 0.251            | -4.930                       |
| 439        | 1918.62       | 0.070            | -4.878                       |
| 440        | 1918.48       | 0.184            | -4.930                       |
| 441        | 1918.34       | 0.072            | -5.082                       |
| 442        | 1918.21       | 0.147            | -5.141                       |
| 443        | 1918.01       | 0.365            | -5.050                       |
| 444        | 1917.81       | 0.450            | -5.070                       |
| 445        | 1917.62       | 0.234            | -4.851                       |
| 446        | 1917.48       | 0.106            | -4.948                       |
| 447        | 1917.34       | -0.078           | -4.933                       |
| 448        | 1917.21       | -0.207           | -5.042                       |
| 449        | 1917.01       | 0.106            | -5.001                       |
| 450        | 1916.81       | 0.008            | -4.974                       |

| Depth (mm) | Calendar Year | <b>d</b> ¹³C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------|------------------------------|
| 451        | 1916.62       | 0.107            | -4.522                       |
| 452        | 1916.48       | 0.084            | -4.719                       |
| 453        | 1916.34       | -0.016           | -4.713                       |
| 454        | 1916.21       | 0.144            | -4.790                       |
| 455        | 1916.06       | 0.739            | -4.645                       |
| 456        | 1915.91       | 0.883            | -4.688                       |
| 457        | 1915.76       | 0.515            | -4.496                       |
| 458        | 1915.62       | 0.121            | -4.403                       |
| 459        | 1915.41       | -0.069           | -4.743                       |
| 460        | 1915.21       | 0.032            | -4.867                       |
| 461        | 1915.06       | 0.442            | -4.701                       |
| 462        | 1914.91       | 0.127            | -4.607                       |
| 463        | 1914.76       | 0.154            | -4.541                       |
| 464        | 1914.62       | 0.062            | -4.522                       |
| 465        | 1914.41       | 0.100            | -4.739                       |
| 466        | 1914.21       | 0.068            | -5.059                       |
| 467        | 1914.01       | 0.456            | -4.874                       |
| 468        | 1913.81       | 0.108            | -4.729                       |
| 469        | 1913.62       | 0.231            | -4.370                       |
| 470        | 1913.51       | 0.034            | -4.524                       |
| 471        | 1913.41       | -0.167           | -4.672                       |
| 472        | 1913.31       | -0.229           | -4.804                       |
| 473        | 1913.21       | 0.133            | -4.939                       |
| 474        | 1912.91       | 0.230            | -4.852                       |
| 475        | 1912.62       | 0.434            | -4.695                       |
| 476        | 1912.48       | 0.255            | -4.920                       |
| 477        | 1912.34       | 0.428            | -4.945                       |
| 478        | 1912.21       | 0.497            | -5.191                       |
| 479        | 1911.91       | 0.653            | -4.887                       |
| 480        | 1911.62       | 0.338            | -4.829                       |
| 481        | 1911.41       | 0.045            | -4.914                       |
| 482        | 1911.21       | -0.186           | -5.026                       |
| 483        | 1911.01       | 0.911            | -4.812                       |
| 484        | 1910.81       | 0.256            | -5.021                       |
| 485        | 1910.62       | 0.439            | -4.765                       |
| 486        | 1910.51       | 0.558            | -4.859                       |
| 487        | 1910.41       | 0.101            | -4.773                       |
| 488        | 1910.31       | 0.569            | -4.835                       |
| 489        | 1910.21       | 0.257            | -4.921                       |
| 490        | 1909.62       | 0.322            | -4.655                       |
| 491        | 1909.41       | -0.004           | -4.895                       |
| 492        | 1909.21       | -0.072           | -5.072                       |
| 493        | 1908.91       | 0.095            | -5.018                       |
| 494        | 1908.62       | 0.025            | -4.463                       |
| 495        | 1908.48       | 0.088            | -4.562                       |
| 496        | 1908.34       | -0.251           | -4.737                       |
| 497        | 1908.21       | -0.382           | -5.359                       |
| 498        | 1908.06       | 0.403            | -5.177                       |
| 499        | 1907.91       | 0.422            | -4.854                       |
| 500        | 1907.76       | 0.367            | -4.594                       |

| Calendar Year | <b>d</b> ¹³C (‰)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>d</b> <sup>18</sup> O (‰)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1907.62       | -0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1907.21       | -0.119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1907.01       | 0.592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1906.81       | 0.775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1906.62       | 0.357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1906.21       | -0.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1905.62       | -0.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1905.48       | 0.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1905.34       | 0.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1905.21       | -0.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1904.91       | -0.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1904.62       | -0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1904.51       | -0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1904.41       | 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1904.31       | 0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1904.21       | 0.316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1903.62       | -0.081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1903.21       | -0.305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1903.06       | -0.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1902.91       | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1902.76       | 0.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1902.62       | 0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1902.48       | -0.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1902.34       | -0.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1902.21       | 0.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1901.91       | 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1901.62       | 0.420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1901.48       | 0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1901.34       | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1901.21       | 0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1900.91       | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1900.62       | 0.342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1900.48       | 0.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1900.34       | 0.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1900.21       | 0.469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1899.91       | 0.810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1899.62       | 0.453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1899.48       | 0.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1899.34       | 0.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1899.21       | 0.548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1898.91       | 0.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1898.62       | 0.314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1898.48       | -0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1898.34       | -0.298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1898.21       | -0.276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1898.11       | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1898.01       | 0.288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1897.91       | 0.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1897.81       | 0.237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1897.72       | -0.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | Calendar Year<br>1907.62<br>1907.21<br>1907.01<br>1906.81<br>1906.62<br>1905.21<br>1905.48<br>1905.34<br>1905.21<br>1904.91<br>1904.62<br>1904.51<br>1904.41<br>1904.21<br>1903.62<br>1903.21<br>1903.06<br>1902.91<br>1902.76<br>1902.76<br>1902.76<br>1902.48<br>1902.34<br>1902.34<br>1902.34<br>1902.21<br>1901.91<br>1901.62<br>1901.48<br>1901.34<br>1901.21<br>1900.62<br>1900.48<br>1900.34<br>1900.21<br>1899.91<br>1899.62<br>1899.48<br>1899.34<br>1899.34<br>1899.34<br>1898.11<br>1898.11<br>1898.11<br>1897.81<br>1897.81<br>1897.72 | Calendar Yeard13C (%0)1907.62-0.0911907.21-0.1191907.010.5921906.810.7751906.620.3571906.21-0.3541905.62-0.2531905.480.0661905.340.2591905.21-0.1061904.91-0.0981904.62-0.0121904.51-0.0261904.410.0801904.210.3161903.21-0.3051904.210.3161903.62-0.0811902.760.2791902.620.1361902.760.2791902.620.1361902.48-0.2311902.34-0.1621902.48-0.2311902.480.0951901.620.4201901.480.0951901.480.0951901.480.0951901.340.701901.210.2511900.910.4171900.620.3421900.480.1991900.340.3311900.210.4691899.910.8101899.440.4621899.210.5481898.21-0.2761898.110.0191898.010.2881897.910.2831897.810.2371897.72-0.221 |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 551        | 1897.62       | -0.307                       | -4.634                       |
| 552        | 1897.21       | 0.157                        | -4.839                       |
| 553        | 1896.62       | 0.207                        | -4.520                       |
| 554        | 1896.48       | -0.021                       | -4.634                       |
| 555        | 1896.34       | -0.170                       | -4.711                       |
| 556        | 1896.21       | 0.024                        | -5.096                       |
| 557        | 1896.01       | 0.371                        | -4.936                       |
| 558        | 1895.81       | -0.011                       | -4.841                       |
| 559        | 1895.62       | -0.214                       | -4.786                       |
| 560        | 1895.41       | -0.577                       | -5.000                       |
| 561        | 1895.21       | -0.719                       | -5.311                       |
| 562        | 1894.62       | -0.014                       | -4.841                       |
| 563        | 1894.51       | -0.079                       | -4.988                       |
| 564        | 1894.41       | -0.057                       | -4.968                       |
| 565        | 1894.31       | 0.230                        | -5.035                       |
| 566        | 1894.21       | 0.677                        | -5.111                       |
| 567        | 1893.62       | 0.221                        | -5.053                       |
| 568        | 1893.41       | -0.088                       | -5.084                       |
| 569        | 1893.21       | -0.441                       | -5.416                       |
| 570        | 1893.09       | -0.101                       | -5.194                       |
| 571        | 1892.97       | -0.442                       | -5.138                       |
| 572        | 1892.85       | -0.434                       | -5.020                       |
| 573        | 1892.74       | -0.348                       | -4.838                       |
| 574        | 1892.62       | -0.244                       | -4.775                       |
| 575        | 1892.41       | -0.177                       | -4.960                       |
| 576        | 1892.21       | 0.628                        | -5.058                       |
| 577        | 1892.01       | -0.064                       | -5.010                       |
| 578        | 1891.81       | -0.257                       | -4.847                       |
| 579        | 1891.62       | -0.433                       | -4.772                       |
| 580        | 1891.41       | -0.481                       | -5.062                       |
| 581        | 1891.21       | -0.260                       | -5.134                       |
| 582        | 1891.06       | -0.127                       | -5.038                       |
| 583        | 1890.91       | -0.147                       | -5.021                       |
| 584        | 1890.76       | 0.076                        | -4.697                       |
| 585        | 1890.62       | -0.272                       | -4.665                       |
| 586        | 1890.48       | -0.449                       | -4.853                       |
| 587        | 1890.34       | -0.667                       | -4.998                       |
| 588        | 1890.21       | -0.431                       | -5.162                       |
| 589        | 1890.01       | 0.031                        | -4.930                       |
| 590        | 1889.81       | -0.080                       | -4.654                       |
| 591        | 1889.62       | -0.013                       | -4.415                       |
| 592        | 1889.41       | 0.355                        | -4.542                       |
| 593        | 1889.21       | 0.475                        | -4.593                       |
| 594        | 1888.62       | 0.274                        | -4.536                       |
| 595        | 1888.48       | -0.089                       | -4.745                       |
| 596        | 1888.34       | 0.048                        | -4.880                       |
| 597        | 1888.21       | -0.146                       | -5.032                       |
| 598        | 1888.01       | 0.375                        | -4.871                       |
| 599        | 1887.81       | 0.326                        | -4.857                       |
| 600        | 1887.62       | 0.264                        | -4.590                       |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 601        | 1887.48       | 0.056                        | -4.751                       |
| 602        | 1887.34       | 0.154                        | -4.750                       |
| 603        | 1887.21       | 0.427                        | -4.951                       |
| 604        | 1887.01       | 0.416                        | -4.846                       |
| 605        | 1886.81       | 0.472                        | -4.593                       |
| 606        | 1886.62       | 0.345                        | -4.466                       |
| 607        | 1886.41       | 0.234                        | -4.575                       |
| 608        | 1886.21       | 0.570                        | -4.704                       |
| 609        | 1886.01       | 0.671                        | -4.408                       |
| 610        | 1885.81       | 0.742                        | -4.217                       |
| 611        | 1885.62       | 0.508                        | -4.136                       |
| 612        | 1885.48       | 0.435                        | -4.410                       |
| 613        | 1885.34       | 0.520                        | -4.554                       |
| 614        | 1885.21       | 0.587                        | -4.566                       |
| 615        | 1884.62       | 0.626                        | -4.260                       |
| 616        | 1884.48       | 0.379                        | -4.406                       |
| 617        | 1884.34       | 0.477                        | -4.513                       |
| 618        | 1884.21       | 0.613                        | -4.659                       |
| 619        | 1883.91       | 1.190                        | -4.537                       |
| 620        | 1883.62       | 0.736                        | -4.323                       |
| 621        | 1883.48       | 0.269                        | -4.524                       |
| 622        | 1883.34       | 0.392                        | -4.817                       |
| 623        | 1883.21       | 0.598                        | -4.843                       |
| 624        | 1883.01       | 0.729                        | -4.572                       |
| 625        | 1882.81       | 0.549                        | -4.592                       |
| 626        | 1882.62       | 0.364                        | -4.582                       |
| 627        | 1882.48       | 0.163                        | -5.053                       |
| 628        | 1882.34       | 0.476                        | -4.958                       |
| 629        | 1882.21       | 0.609                        | -5.134                       |
| 630        | 1882.01       | 0.489                        | -4.886                       |
| 631        | 1881.81       | 0.416                        | -4.870                       |
| 632        | 1881.62       | 0.213                        | -4.611                       |
| 633        | 1881.48       | 0.144                        | -4.838                       |
| 634        | 1881.34       | 0.020                        | -4.879                       |
| 635        | 1881.21       | 0.381                        | -5.008                       |
| 636        | 1880.62       | 0.479                        | -4.588                       |
| 637        | 1880.51       | 0.298                        | -4.712                       |
| 638        | 1880.41       | 0.226                        | -5.008                       |
| 639        | 1880.31       | 0.329                        | -5.142                       |
| 640        | 1880.21       | 0.378                        | -5.174                       |
| 641        | 1880.06       | 0.587                        | -5.024                       |
| 642        | 1879.91       | 0.609                        | -4.953                       |
| 643        | 1879.76       | 0.473                        | -4.641                       |
| 644        | 1879.62       | 0.421                        | -4.615                       |
| 645        | 1879.48       | 0.253                        | -4.649                       |
| 646        | 1879.34       | 0.029                        | -4.839                       |
| 647        | 1879.21       | 0.089                        | -4.856                       |
| 648        | 1879.01       | 0.719                        | -4.733                       |
| 649        | 1878.81       | 0.862                        | -4.548                       |
| 650        | 1878.62       | 0.732                        | -4.205                       |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 651        | 1878.48       | 0.451                        | -4.336                       |
| 652        | 1878.34       | 0.433                        | -4.467                       |
| 653        | 1878.21       | 0.454                        | -4.502                       |
| 654        | 1878.01       | 0.838                        | -4.381                       |
| 655        | 1877.81       | 0.512                        | -4.285                       |
| 656        | 1877.62       | 0.269                        | -4.161                       |
| 657        | 1877.48       | -0.002                       | -4.480                       |
| 658        | 1877.34       | 0.093                        | -4.733                       |
| 659        | 1877.21       | 0.051                        | -4.782                       |
| 660        | 1876.91       | 0.203                        | -4.598                       |
| 661        | 1876.62       | 0.315                        | -4.378                       |
| 662        | 1876.51       | 0.264                        | -4.400                       |
| 663        | 1876.41       | 0.318                        | -4.464                       |
| 664        | 1876.31       | 0.433                        | -4.695                       |
| 665        | 1876.21       | 0.776                        | -4.779                       |
| 666        | 1876.01       | 0.894                        | -4.644                       |
| 667        | 1875.81       | 0.214                        | -4.646                       |
| 668        | 1875.62       | 0.182                        | -4.441                       |
| 669        | 1875.48       | 0.005                        | -4.808                       |
| 670        | 1875.34       | -0.007                       | -4.941                       |
| 671        | 1875.21       | 0.479                        | -4.997                       |
| 672        | 1874.91       | 0.402                        | -4.773                       |
| 673        | 1874.62       | 0.396                        | -4.482                       |
| 674        | 1874.51       | 0.410                        | -4.513                       |
| 675        | 1874.41       | 0.219                        | -4.728                       |
| 676        | 1874.31       | 0.445                        | -4.734                       |
| 677        | 1874.21       | 0.637                        | -4.767                       |
| 678        | 1874.01       | 0.232                        | -4.715                       |
| 679        | 1873.81       | -0.059                       | -4.679                       |
| 680        | 1873.62       | -0.262                       | -4.609                       |
| 681        | 1873.48       | -0.223                       | -4.802                       |
| 682        | 1873.34       | 0.358                        | -4.923                       |
| 683        | 1873.21       | 0.549                        | -4.962                       |
| 684        | 1872.91       | 0.430                        | -4.718                       |
| 685        | 1872.62       | 0.395                        | -4.609                       |
| 686        | 1872.41       | 0.109                        | -4.667                       |
| 687        | 1872.21       | -0.122                       | -5.156                       |
| 688        | 1872.06       | 0.096                        | -5.049                       |
| 689        | 1871.91       | 0.641                        | -4.975                       |
| 690        | 1871.76       | 0.240                        | -4.922                       |
| 691        | 1871.62       | -0.001                       | -4.887                       |
| 692        | 1871.48       | -0.078                       | -5.035                       |
| 693        | 1871.34       | -0.105                       | -5.109                       |
| 694        | 1871.21       | -0.065                       | -5.096                       |
| 695        | 1871.06       | 0.159                        | -5.090                       |
| 696        | 1870.91       | 0.257                        | -4.854                       |
| 697        | 1870.76       | 0.309                        | -4.794                       |
| 698        | 1870.62       | 0.354                        | -4.631                       |
| 699        | 1870.21       | 0.275                        | -4.814                       |
| 700        | 1869.91       | 0.829                        | -4.576                       |

| Depth (mm) | Calendar Year | <b>d</b> ¹³C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------|------------------------------|
| 701        | 1869.62       | 0.522            | -4.294                       |
| 702        | 1869.51       | -0.049           | -4.435                       |
| 703        | 1869.41       | -0.378           | -4.690                       |
| 704        | 1869.31       | -0.350           | -4.833                       |
| 705        | 1869.21       | -0.259           | -4.838                       |
| 706        | 1869.01       | -0.001           | -4.627                       |
| 707        | 1868.81       | 0.479            | -4.542                       |
| 708        | 1868.62       | 0.438            | -4.540                       |
| 709        | 1868.41       | 0.021            | -4.772                       |
| 710        | 1868.21       | -0.174           | -4.869                       |
| 711        | 1868.11       | 0.151            | -4.852                       |
| 712        | 1868.01       | 0.400            | -4.790                       |
| 713        | 1867.91       | 0.527            | -4.529                       |
| 714        | 1867.81       | 0.355            | -4.423                       |
| 715        | 1867.72       | 0.181            | -4.527                       |
| 716        | 1867.62       | 0.326            | -4.399                       |
| 717        | 1867.41       | 0.422            | -4.810                       |
| 718        | 1867.21       | 0.615            | -4.854                       |
| 719        | 1867.01       | 0.640            | -4.567                       |
| 720        | 1866.81       | 0.703            | -4.601                       |
| 721        | 1866.62       | 0.606            | -4.470                       |
| 722        | 1866.21       | 0.221            | -4.701                       |
| 723        | 1866.01       | 0.479            | -4.574                       |
| 724        | 1865.81       | 0.287            | -4.666                       |
| 725        | 1865.62       | 0.607            | -4.471                       |
| 726        | 1865.41       | 0.472            | -4.808                       |
| 727        | 1865.21       | 0.372            | -4.821                       |
| 728        | 1864.91       | 0.477            | -4.660                       |
| 729        | 1864.62       | 0.446            | -4.520                       |
| 730        | 1864.51       | 0.392            | -4.690                       |
| 731        | 1864.41       | 0.380            | -4.548                       |
| 732        | 1864.31       | 0.716            | -4.753                       |
| 733        | 1864.21       | 0.983            | -4.820                       |
| 734        | 1864.01       | 0.739            | -4.735                       |
| 735        | 1863.81       | 0.577            | -4.733                       |
| 736        | 1863.62       | 0.666            | -4.703                       |
| 737        | 1863.21       | 1.122            | -4.834                       |
| 738        | 1862.91       | 0.377            | -4.809                       |
| 739        | 1862.62       | 0.420            | -4.638                       |
| 740        | 1862.41       | 0.154            | -4.846                       |
| 741        | 1862.21       | 0.130            | -4.885                       |
| 742        | 1862.01       | 0.308            | -4.852                       |
| 743        | 1861.81       | -0.004           | -4.724                       |
| 744        | 1861.62       | 0.188            | -4.674                       |
| 745        | 1861.41       | -0.120           | -4.898                       |
| 746        | 1861.21       | -0.183           | -5.055                       |
| 747        | 1861.06       | 0.491            | -4.890                       |
| 748        | 1860.91       | 0.290            | -5.000                       |
| 749        | 1860.76       | -0.001           | -4.602                       |
| 750        | 1860.62       | -0.145           | -4.469                       |

| Depth (mm) | Calendar Year | <b>d</b> ¹³C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------|------------------------------|
| 751        | 1860.48       | -0.130           | -4.729                       |
| 752        | 1860.34       | -0.184           | -4.947                       |
| 753        | 1860.21       | -0.155           | -5.143                       |
| 754        | 1860.06       | 0.064            | -4.999                       |
| 755        | 1859.91       | -0.056           | -4.802                       |
| 756        | 1859.76       | 0.053            | -4.783                       |
| 757        | 1859.62       | -0.011           | -4.572                       |
| 758        | 1859.48       | -0.027           | -4.757                       |
| 759        | 1859.34       | -0.219           | -4.807                       |
| 760        | 1859.21       | -0.206           | -4.910                       |
| 761        | 1859.01       | 0.236            | -4.663                       |
| 762        | 1858.81       | -0.176           | -4.567                       |
| 763        | 1858.62       | 0.052            | -4.477                       |
| 764        | 1858.48       | -0.051           | -4.548                       |
| 765        | 1858.34       | 0.135            | -4.481                       |
| 766        | 1858.21       | 0.071            | -4.994                       |
| 767        | 1858.06       | 0.254            | -4.850                       |
| 768        | 1857.91       | -0.044           | -4.810                       |
| 769        | 1857.76       | -0.311           | -4.818                       |
| 770        | 1857.62       | -0.334           | -4.695                       |
| 771        | 1857.41       | -0.295           | -4.931                       |
| 772        | 1857.21       | -0.276           | -5.192                       |
| 773        | 1857.09       | -0.158           | -5.116                       |
| 774        | 1856.97       | -0.028           | -4.855                       |
| 775        | 1856.85       | -0.158           | -4.845                       |
| 776        | 1856.74       | -0.173           | -4.618                       |
| 777        | 1856.62       | -0.388           | -4.473                       |
| 778        | 1856.48       | -0.207           | -4.679                       |
| 779        | 1856.34       | -0.238           | -4.912                       |
| 780        | 1856.21       | -0.033           | -5.031                       |
| 781        | 1856.01       | 0.111            | -4.687                       |
| 782        | 1855.81       | 0.029            | -4.581                       |
| 783        | 1855.62       | 0.219            | -4.481                       |
| 784        | 1855.51       | -0.112           | -4.541                       |
| 785        | 1855.41       | -0.097           | -4.591                       |
| 786        | 1855.31       | -0.232           | -5.033                       |
| 787        | 1855.21       | 0.096            | -5.141                       |
| 788        | 1855.01       | 0.136            | -4.852                       |
| 789        | 1854.81       | 0.504            | -4.684                       |
| 790        | 1854.62       | 0.212            | -4.582                       |
| 791        | 1854.48       | -0.202           | -4.698                       |
| 792        | 1854.34       | -0.275           | -4.612                       |
| 793        | 1854.21       | 0.150            | -4.728                       |
| 794        | 1854.06       | -0.034           | -4.577                       |
| 795        | 1853.91       | 0.008            | -4.654                       |
| 796        | 1853.76       | -0.153           | -4.682                       |
| 797        | 1853.62       | -0.345           | -4.507                       |
| 798        | 1853.41       | -0.592           | -4.724                       |
| 799        | 1853.21       | -0.570           | -4.868                       |
| 800        | 1853.09       | -0.160           | -4.577                       |

| Depth (mm) | Calendar Year | <b>d</b> ¹³C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------|------------------------------|
| 801        | 1852.97       | -0.037           | -4.642                       |
| 802        | 1852.85       | -0.243           | -4.532                       |
| 803        | 1852.74       | -0.549           | -4.574                       |
| 804        | 1852.62       | -0.276           | -4.506                       |
| 805        | 1852.48       | -0.285           | -4.693                       |
| 806        | 1852.34       | -0.201           | -4.622                       |
| 807        | 1852.21       | -0.036           | -4.870                       |
| 808        | 1852.01       | 0.038            | -4.527                       |
| 809        | 1851.81       | 0.322            | -4.382                       |
| 810        | 1851.62       | 0.360            | -4.325                       |
| 811        | 1851.48       | -0.277           | -4.600                       |
| 812        | 1851.34       | -0.297           | -4.703                       |
| 813        | 1851.21       | -0.243           | -4.880                       |
| 814        | 1850.91       | 0.140            | -4.541                       |
| 815        | 1850.62       | 0.415            | -4.473                       |
| 816        | 1850.51       | 0.006            | -4.544                       |
| 817        | 1850.41       | -0.426           | -4.581                       |
| 818        | 1850.31       | -0.391           | -4.487                       |
| 819        | 1850.21       | -0.099           | -4.597                       |
| 820        | 1850.01       | 0.279            | -4.515                       |
| 821        | 1849.81       | 0.093            | -4.585                       |
| 822        | 1849.62       | 0.132            | -4.467                       |
| 823        | 1849.48       | 0.001            | -4.742                       |
| 824        | 1849.34       | -0.144           | -4.950                       |
| 825        | 1849.21       | -0.300           | -5.112                       |
| 826        | 1849.01       | -0.065           | -4.902                       |
| 827        | 1848.81       | -0.456           | -4.921                       |
| 828        | 1848.62       | -0.200           | -4.691                       |
| 829        | 1848.48       | -0.197           | -4.763                       |
| 830        | 1848.34       | -0.326           | -4.897                       |
| 831        | 1848.21       | -0.675           | -5.155                       |
| 832        | 1848.09       | -0.214           | -5.065                       |
| 833        | 1847.97       | -0.393           | -5.081                       |
| 834        | 1847.85       | -0.200           | -4.893                       |
| 835        | 1847.74       | -0.204           | -4.746                       |
| 836        | 1847.62       | -0.232           | -4.649                       |
| 837        | 1847.41       | -0.220           | -4.870                       |
| 838        | 1847.21       | -0.154           | -5.122                       |
| 839        | 1846.91       | -0.130           | -5.111                       |
| 840        | 1846.62       | -0.090           | -4.573                       |
| 841        | 1846.55       | 0.102            | -4.608                       |
| 842        | 1846.48       | 0.143            | -4.588                       |
| 843        | 1846.41       | -0.152           | -4.848                       |
| 844        | 1846.34       | 0.015            | -4.834                       |
| 845        | 1846.28       | 0.300            | -4.793                       |
| 846        | 1846.21       | -0.106           | -4.855                       |
| 847        | 1845.91       | 0.205            | -4.509                       |
| 848        | 1845.62       | -0.288           | -4.453                       |
| 849        | 1845.48       | -0.191           | -4.547                       |
| 850        | 1845.34       | -0.064           | -4.855                       |

| Depth (mm) | Calendar Year | <b>d</b> ¹³C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------|------------------------------|
| 851        | 1845.21       | -0.026           | -4.978                       |
| 852        | 1845.01       | 0.003            | -4.919                       |
| 853        | 1844.81       | 0.339            | -4.750                       |
| 854        | 1844.62       | 0.380            | -4.433                       |
| 855        | 1844.48       | 0.108            | -4.486                       |
| 856        | 1844.34       | 0.028            | -4.696                       |
| 857        | 1844.21       | 0.126            | -4.947                       |
| 858        | 1844.01       | 0.409            | -4.703                       |
| 859        | 1843.81       | 0.095            | -4.769                       |
| 860        | 1843.62       | 0.136            | -4.610                       |
| 861        | 1843.51       | -0.044           | -4.672                       |
| 862        | 1843.41       | 0.162            | -4.849                       |
| 863        | 1843.31       | -0.166           | -5.042                       |
| 864        | 1843.21       | -0.156           | -5.067                       |
| 865        | 1843.01       | 0.375            | -4.863                       |
| 866        | 1842.81       | 0.380            | -4.854                       |
| 867        | 1842.62       | 0.361            | -4.559                       |
| 868        | 1842.48       | 0.337            | -4.723                       |
| 869        | 1842.34       | 0.361            | -4.855                       |
| 870        | 1842.21       | 0.126            | -5.141                       |
| 871        | 1842.01       | 0.141            | -4.927                       |
| 872        | 1841.81       | 0.403            | -4.564                       |
| 873        | 1841.62       | 0.206            | -4.492                       |
| 874        | 1841.48       | 0.086            | -4.678                       |
| 875        | 1841.34       | 0.448            | -4.701                       |
| 876        | 1841.21       | 0.409            | -4.764                       |
| 877        | 1840.91       | 0.465            | -4.527                       |
| 878        | 1840.62       | 0.496            | -4.430                       |
| 879        | 1840.48       | 0.471            | -4.727                       |
| 880        | 1840.34       | 0.356            | -4.795                       |
| 881        | 1840.21       | 0.454            | -4.799                       |
| 882        | 1839.91       | 0.548            | -4.501                       |
| 883        | 1839.62       | 0.643            | -4.440                       |
| 884        | 1839.48       | 0.402            | -4.471                       |
| 885        | 1839.34       | 0.382            | -4.574                       |
| 886        | 1839.21       | 0.486            | -4.713                       |
| 887        | 1838.91       | 0.545            | -4.639                       |
| 888        | 1838.62       | 0.498            | -4.542                       |
| 889        | 1838.51       | 0.123            | -4.606                       |
| 890        | 1838.41       | -0.054           | -4.780                       |
| 891        | 1838.31       | 0.111            | -4.917                       |
| 892        | 1838.21       | 0.352            | -4.959                       |
| 893        | 1838.06       | 0.210            | -4.667                       |
| 894        | 1837.91       | 0.177            | -4.659                       |
| 895        | 1837.76       | 0.058            | -4.639                       |
| 896        | 1837.62       | -0.004           | -4.543                       |
| 897        | 1837.41       | 0.026            | -4.785                       |
| 898        | 1837.21       | 0.120            | -4.896                       |
| 899        | 1836.91       | 0.062            | -4.763                       |
| 900        | 1836.62       | 0.031            | -4.570                       |

| Depth (mm) | Calendar Year | <b>d</b> ¹³C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------|------------------------------|
| 901        | 1836.51       | -0.007           | -4.646                       |
| 902        | 1836.41       | -0.026           | -4.598                       |
| 903        | 1836.31       | -0.107           | -4.937                       |
| 904        | 1836.21       | -0.065           | -5.037                       |
| 905        | 1836.01       | 0.024            | -4.796                       |
| 906        | 1835.81       | -0.034           | -4.826                       |
| 907        | 1835.62       | -0.054           | -4.539                       |
| 908        | 1835.51       | -0.144           | -4.596                       |
| 909        | 1835.41       | -0.046           | -4.540                       |
| 910        | 1835.31       | 0.149            | -4.868                       |
| 911        | 1835.21       | 0.135            | -5.027                       |
| 912        | 1835.01       | 0.288            | -4.764                       |
| 913        | 1834.81       | 0.348            | -4.512                       |
| 914        | 1834.62       | 0.450            | -4.338                       |
| 915        | 1834.48       | 0.028            | -4.462                       |
| 916        | 1834.34       | 0.089            | -4.629                       |
| 917        | 1834.21       | 0.399            | -4.679                       |
| 918        | 1833.91       | 0.703            | -4.302                       |
| 919        | 1833.62       | 0.556            | -4.289                       |
| 920        | 1833.51       | 0.305            | -4.436                       |
| 921        | 1833.41       | 0.141            | -4.503                       |
| 922        | 1833.31       | -0.101           | -4.892                       |
| 923        | 1833.21       | 0.243            | -4.942                       |
| 924        | 1833.06       | 0.365            | -4.782                       |
| 925        | 1832.91       | 0.087            | -4.712                       |
| 926        | 1832.76       | 0.318            | -4.572                       |
| 927        | 1832.62       | 0.329            | -4.517                       |
| 928        | 1832.51       | 0.253            | -4.714                       |
| 929        | 1832.41       | 0.356            | -4.723                       |
| 930        | 1832.31       | 0.276            | -4.721                       |
| 931        | 1832.21       | 0.060            | -4.713                       |
| 932        | 1831.91       | 0.369            | -4.608                       |
| 933        | 1831.62       | 0.348            | -4.396                       |
| 934        | 1831.48       | -0.078           | -4.624                       |
| 935        | 1831.34       | -0.049           | -4.716                       |
| 936        | 1831.21       | -0.169           | -4.856                       |
| 937        | 1831.09       | 0.073            | -4.773                       |
| 938        | 1830.97       | -0.086           | -4.787                       |
| 939        | 1830.85       | 0.315            | -4.612                       |
| 940        | 1830.74       | 0.324            | -4.723                       |
| 941        | 1830.62       | 0.031            | -4.602                       |
| 942        | 1830.48       | -0.128           | -4.705                       |
| 943        | 1830.34       | -0.201           | -5.013                       |
| 944        | 1830.21       | -0.212           | -5.063                       |
| 945        | 1829.91       | -0.215           | -4.759                       |
| 946        | 1829.62       | 0.358            | -4.611                       |
| 947        | 1829.51       | 0.308            | -4.667                       |
| 948        | 1829.41       | 0.340            | -4.726                       |
| 949        | 1829.31       | 0.092            | -4.911                       |
| 950        | 1829.21       | -0.082           | -5.083                       |

| Depth (mm) | Calendar Year | <b>d</b> ¹³C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------|------------------------------|
| 951        | 1829.01       | 0.270            | -4.653                       |
| 952        | 1828.81       | 0.287            | -4.732                       |
| 953        | 1828.62       | 0.302            | -4.589                       |
| 954        | 1828.41       | 0.036            | -4.777                       |
| 955        | 1828.21       | 0.068            | -4.998                       |
| 956        | 1828.06       | 0.510            | -4.932                       |
| 957        | 1827.91       | 0.509            | -4.556                       |
| 958        | 1827.76       | 0.567            | -4.387                       |
| 959        | 1827.62       | 0.434            | -4.369                       |
| 960        | 1827.41       | 0.041            | -4.762                       |
| 961        | 1827.21       | 0.009            | -4.916                       |
| 962        | 1827.06       | 0.481            | -4.728                       |
| 963        | 1826.91       | 0.973            | -4.642                       |
| 964        | 1826.76       | 1.058            | -4.659                       |
| 965        | 1826.62       | 0.660            | -4.553                       |
| 966        | 1826.41       | 0.633            | -4.779                       |
| 967        | 1826.21       | 0.596            | -4.775                       |
| 968        | 1826.06       | 0.690            | -4.495                       |
| 969        | 1825.91       | 0.987            | -4.326                       |
| 970        | 1825.76       | 0.883            | -4.209                       |
| 971        | 1825.62       | 0.469            | -3.960                       |
| 972        | 1825.41       | 0.690            | -4.056                       |
| 973        | 1825.21       | 0.707            | -4.379                       |
| 974        | 1824.91       | 0.661            | -4.340                       |
| 975        | 1824.62       | 0.666            | -4.255                       |
| 976        | 1824.54       | 0.294            | -4.354                       |
| 977        | 1824.45       | 0.059            | -4.508                       |
| 978        | 1824.37       | 0.316            | -4.740                       |
| 979        | 1824.29       | 0.346            | -4.913                       |
| 980        | 1824.21       | 0.584            | -4.936                       |
| 981        | 1824.06       | 0.133            | -4.809                       |
| 982        | 1823.91       | 0.411            | -4.581                       |
| 983        | 1823.76       | 0.246            | -4.475                       |
| 984        | 1823.62       | 0.110            | -4.470                       |
| 985        | 1823.41       | 0.258            | -4.665                       |
| 986        | 1823.21       | 0.729            | -4.658                       |
| 987        | 1822.91       | 1.057            | -4.525                       |
| 988        | 1822.62       | 0.753            | -4.210                       |
| 989        | 1822.48       | 0.356            | -4.394                       |
| 990        | 1822.34       | 0.337            | -4.464                       |
| 991        | 1822.21       | 0.486            | -4.711                       |
| 992        | 1822.01       | 0.823            | -4.442                       |
| 993        | 1821.81       | 0.807            | -4.489                       |
| 994        | 1821.62       | 0.733            | -4.380                       |
| 995        | 1821.51       | 0.394            | -4.615                       |
| 996        | 1821.41       | 0.678            | -4.604                       |
| 997        | 1821.31       | 1.111            | -4.542                       |
| 998        | 1821.21       | 0.730            | -4.675                       |
| 999        | 1820.91       | 0.376            | -4.630                       |
| 1000       | 1820.62       | 0.287            | -4.580                       |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 1001       | 1820.54       | 0.574                        | -4.672                       |
| 1002       | 1820.45       | 0.771                        | -4.715                       |
| 1003       | 1820.37       | 0.345                        | -4.763                       |
| 1004       | 1820.29       | 0.123                        | -4.899                       |
| 1005       | 1820.21       | 0.007                        | -5.064                       |
| 1006       | 1820.09       | 0.098                        | -4.935                       |
| 1007       | 1819.97       | 0.278                        | -4.923                       |
| 1008       | 1819.85       | 0.217                        | -4.669                       |
| 1009       | 1819.74       | 0.289                        | -4.684                       |
| 1010       | 1819.62       | 0.057                        | -4.428                       |
| 1011       | 1819.48       | -0.285                       | -4.612                       |
| 1012       | 1819.34       | -0.193                       | -4.708                       |
| 1013       | 1819.21       | 0.237                        | -4.711                       |
| 1014       | 1818.91       | 0.327                        | -4.501                       |
| 1015       | 1818.62       | 0.275                        | -4.369                       |
| 1016       | 1818.48       | 0.019                        | -4.475                       |
| 1017       | 1818.34       | 0.069                        | -4.646                       |
| 1018       | 1818.21       | 0.454                        | -4.701                       |
| 1019       | 1818.01       | 0.364                        | -4.642                       |
| 1020       | 1817.81       | 0.288                        | -4.474                       |
| 1021       | 1817.62       | 0.027                        | -4.349                       |
| 1022       | 1817.41       | -0.050                       | -4.561                       |
| 1023       | 1817.21       | -0.090                       | -4.850                       |
| 1024       | 1817.06       | 0.182                        | -4.623                       |
| 1025       | 1816.91       | 0.324                        | -4.532                       |
| 1026       | 1816.76       | 0.361                        | -4.475                       |
| 1027       | 1816.62       | 0.262                        | -4.409                       |
| 1028       | 1816.48       | 0.121                        | -4.588                       |
| 1029       | 1816.34       | 0.294                        | -4.777                       |
| 1030       | 1816.21       | 0.467                        | -4.822                       |
| 1031       | 1815.91       | 0.001                        | -4.573                       |
| 1032       | 1815.62       | 0.259                        | -4.254                       |
| 1033       | 1815.48       | 0.049                        | -4.497                       |
| 1034       | 1815.34       | -0.190                       | -4.704                       |
| 1035       | 1815.21       | 0.043                        | -4.904                       |
| 1036       | 1815.09       | 0.441                        | -4.576                       |
| 1037       | 1814.97       | 0.276                        | -4.571                       |
| 1038       | 1814.85       | 0.395                        | -4.531                       |
| 1039       | 1814.74       | 0.445                        | -4.547                       |
| 1040       | 1814.62       | 0.067                        | -4.405                       |
| 1041       | 1814.41       | 0.004                        | -4.573                       |
| 1042       | 1814.21       | 0.101                        | -4.740                       |
| 1043       | 1814.06       | 0.276                        | -4.694                       |
| 1044       | 1813.91       | 0.405                        | -4.564                       |
| 1045       | 1813.76       | 0.692                        | -4.504                       |
| 1046       | 1813.62       | 0.535                        | -4.488                       |
| 1047       | 1813.41       | 0.431                        | -4.631                       |
| 1048       | 1813.21       | 0.463                        | -4.639                       |
| 1049       | 1813.01       | 0.663                        | -4.402                       |
| 1050       | 1812.81       | 0.609                        | -4.495                       |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 1051       | 1812.62       | 0.682                        | -4.255                       |
| 1052       | 1812.48       | 0.320                        | -4.317                       |
| 1053       | 1812.34       | 0.353                        | -4.457                       |
| 1054       | 1812.21       | 0.254                        | -4.677                       |
| 1055       | 1812.06       | 0.414                        | -4.580                       |
| 1056       | 1811.91       | 0.710                        | -4.374                       |
| 1057       | 1811.76       | 0.717                        | -4.124                       |
| 1058       | 1811.62       | 0.598                        | -4.091                       |
| 1059       | 1811.41       | 0.333                        | -4.180                       |
| 1060       | 1811.21       | 0.114                        | -4.513                       |
| 1061       | 1811.06       | 0.368                        | -4.463                       |
| 1062       | 1810.91       | 0.395                        | -4.368                       |
| 1063       | 1810.76       | 0.410                        | -4.460                       |
| 1064       | 1810.62       | 0.488                        | -4.070                       |
| 1065       | 1810.54       | 0.411                        | -4.299                       |
| 1066       | 1810.45       | 0.109                        | -4.374                       |
| 1067       | 1810.37       | 0.038                        | -4.506                       |
| 1068       | 1810.29       | 0.163                        | -4.569                       |
| 1069       | 1810.21       | 0.227                        | -4.686                       |
| 1070       | 1810.01       | 0.546                        | -4.528                       |
| 1071       | 1809.81       | 0.501                        | -4.342                       |
| 1072       | 1809.62       | 0.399                        | -4.200                       |
| 1073       | 1809.48       | 0.272                        | -4.435                       |
| 1074       | 1809.34       | 0.168                        | -4.629                       |
| 1075       | 1809.21       | 0.270                        | -4.956                       |
| 1076       | 1809.09       | 0.157                        | -4.691                       |
| 1077       | 1808.97       | 0.369                        | -4.707                       |
| 1078       | 1808.85       | 0.364                        | -4.745                       |
| 1079       | 1808.74       | 0.396                        | -4.611                       |
| 1080       | 1808.62       | 0.388                        | -4.574                       |
| 1081       | 1808.21       | 0.045                        | -4.801                       |
| 1082       | 1808.09       | 0.006                        | -4.764                       |
| 1083       | 1807.97       | 0.305                        | -4.723                       |
| 1084       | 1807.85       | 0.310                        | -4.725                       |
| 1085       | 1807.74       | 0.155                        | -4.608                       |
| 1086       | 1807.62       | 0.279                        | -4.512                       |
| 1087       | 1807.48       | -0.026                       | -4.728                       |
| 1088       | 1807.34       | 0.080                        | -4.798                       |
| 1089       | 1807.21       | 0.165                        | -4.888                       |
| 1090       | 1807.06       | 0.473                        | -4.769                       |
| 1091       | 1806.91       | 0.687                        | -4.744                       |
| 1092       | 1806.76       | 0.387                        | -4.746                       |
| 1093       | 1806.62       | 0.234                        | -4.502                       |
| 1094       | 1806.51       | -0.016                       | -4.647                       |
| 1095       | 1806.41       | -0.178                       | -4.674                       |
| 1096       | 1806.31       | -0.011                       | -4.703                       |
| 1097       | 1806.21       | 0.210                        | -4.711                       |
| 1098       | 1806.01       | 0.620                        | -4.327                       |
| 1099       | 1805.81       | 0.590                        | -4.216                       |
| 1100       | 1805.62       | 0.520                        | -3.984                       |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 1101       | 1805.41       | 0.223                        | -4.070                       |
| 1102       | 1805.21       | 0.032                        | -4.277                       |
| 1103       | 1805.09       | 0.231                        | -4.260                       |
| 1104       | 1804.97       | 0.394                        | -4.199                       |
| 1105       | 1804.85       | 0.388                        | -4.268                       |
| 1106       | 1804.74       | 0.440                        | -4.088                       |
| 1107       | 1804.62       | 0.382                        | -4.070                       |
| 1108       | 1804.48       | 0.229                        | -4.416                       |
| 1109       | 1804.34       | 0.036                        | -4.596                       |
| 1110       | 1804.21       | 0.028                        | -4.683                       |
| 1111       | 1804.06       | 0.351                        | -4.587                       |
| 1112       | 1803.91       | 0.371                        | -4.530                       |
| 1113       | 1803.76       | 0.295                        | -4.494                       |
| 1114       | 1803.62       | 0.357                        | -4.389                       |
| 1115       | 1803.51       | 0.213                        | -4.409                       |
| 1116       | 1803.41       | 0.081                        | -4.524                       |
| 1117       | 1803.31       | 0.059                        | -4.827                       |
| 1118       | 1803.21       | 0.196                        | -4.908                       |
| 1119       | 1803.09       | 0.216                        | -4.751                       |
| 1120       | 1802.97       | 0.155                        | -4.833                       |
| 1121       | 1802.85       | 0.301                        | -4.505                       |
| 1122       | 1802.74       | 0.105                        | -4.459                       |
| 1123       | 1802.62       | -0.077                       | -4.310                       |
| 1124       | 1802.48       | -0.116                       | -4.425                       |
| 1125       | 1802.34       | -0.040                       | -4.587                       |
| 1126       | 1802.21       | 0.086                        | -4.603                       |
| 1127       | 1802.01       | 0.165                        | -4.415                       |
| 1128       | 1801.81       | 0.145                        | -4.370                       |
| 1129       | 1801.62       | 0.484                        | -4.232                       |
| 1130       | 1801.48       | 0.281                        | -4.348                       |
| 1131       | 1801.34       | 0.175                        | -4.457                       |
| 1132       | 1801.21       | 0.258                        | -4.577                       |
| 1133       | 1801.01       | 0.535                        | -4.514                       |
| 1134       | 1800.81       | 0.495                        | -4.493                       |
| 1135       | 1800.62       | 0.422                        | -4.248                       |
| 1136       | 1800.51       | 0.325                        | -4.294                       |
| 1137       | 1800.41       | 0.171                        | -4.274                       |
| 1138       | 1800.31       | 0.058                        | -4.412                       |
| 1139       | 1800.21       | 0.097                        | -4.579                       |
| 1140       | 1800.01       | 0.202                        | -4.497                       |
| 1141       | 1799.81       | 0.093                        | -4.261                       |
| 1142       | 1799.62       | 0.257                        | -4.268                       |
| 1143       | 1799.48       | 0.181                        | -4.480                       |
| 1144       | 1799.34       | -0.030                       | -4.677                       |
| 1145       | 1799.21       | -0.097                       | -4.862                       |
| 1146       | 1799.09       | 0.064                        | -4.851                       |
| 1147       | 1798.97       | 0.110                        | -4.598                       |
| 1148       | 1798.85       | 0.235                        | -4.590                       |
| 1149       | 1798.74       | 0.309                        | -4.425                       |
| 1150       | 1798.62       | 0.158                        | -4.350                       |
|            |               | ··· • •                      |                              |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 1151       | 1798.48       | 0.036                        | -4.442                       |
| 1152       | 1798.34       | 0.169                        | -4.506                       |
| 1153       | 1798.21       | 0.311                        | -4.522                       |
| 1154       | 1797.62       | 0.441                        | -4.346                       |
| 1155       | 1797.54       | 0.396                        | -4.503                       |
| 1156       | 1797.45       | 0.380                        | -4.641                       |
| 1157       | 1797.37       | 0.149                        | -4.916                       |
| 1158       | 1797.29       | 0.025                        | -5.114                       |
| 1159       | 1797.21       | 0.145                        | -5.243                       |
| 1160       | 1797.01       | 0.167                        | -5.015                       |
| 1161       | 1796.81       | 0.091                        | -4.729                       |
| 1162       | 1796.62       | 0.217                        | -4.631                       |
| 1163       | 1796.51       | 0.180                        | -4.646                       |
| 1164       | 1796.41       | 0.198                        | -4.687                       |
| 1165       | 1796.31       | 0.241                        | -4.902                       |
| 1166       | 1796.21       | 0.297                        | -4.982                       |
| 1167       | 1796.01       | 0.416                        | -4.658                       |
| 1168       | 1795.81       | 0.252                        | -4.656                       |
| 1169       | 1795.62       | 0.359                        | -4.653                       |
| 1170       | 1795.48       | 0.213                        | -4.711                       |
| 1171       | 1795.34       | 0.122                        | -4.769                       |
| 1172       | 1795.21       | -0.033                       | -4.843                       |
| 1173       | 1795.06       | 0.344                        | -4.537                       |
| 1174       | 1794.91       | 0.069                        | -4.478                       |
| 1175       | 1794.76       | 0.301                        | -4.325                       |
| 1176       | 1794.62       | 0.068                        | -4.222                       |
| 1177       | 1794.48       | -0.109                       | -4.363                       |
| 1178       | 1794.34       | -0.083                       | -4.579                       |
| 1179       | 1794.21       | -0.109                       | -4.617                       |
| 1180       | 1794.09       | 0.212                        | -4.356                       |
| 1181       | 1793.97       | 0.172                        | -4.466                       |
| 1182       | 1793.85       | 0.156                        | -4.270                       |
| 1183       | 1793.74       | -0.103                       | -4.253                       |
| 1184       | 1793.62       | 0.103                        | -4.192                       |
| 1185       | 1793.21       | -0.066                       | -4.512                       |
| 1186       | 1793.06       | 0.317                        | -4.465                       |
| 1187       | 1792.91       | 0.236                        | -4.369                       |
| 1188       | 1792.76       | 0.144                        | -4.256                       |
| 1189       | 1792.62       | -0.027                       | -4.198                       |
| 1190       | 1792.48       | -0.034                       | -4.320                       |
| 1191       | 1792.34       | -0.057                       | -4.568                       |
| 1192       | 1792.21       | -0.097                       | -4.813                       |
| 1193       | 1792.06       | 0.261                        | -4.772                       |
| 1194       | 1791 91       | 0.502                        | -4 708                       |
| 1195       | 1791 76       | 0.411                        | -4 610                       |
| 1196       | 1791.62       | 0.381                        | -4.537                       |
| 1197       | 1791.41       | 0.140                        | -4.692                       |
| 1198       | 1791.21       | -0.006                       | -4.824                       |
| 1199       | 1791 11       | 0.229                        | -4 761                       |
| 1200       | 1791.01       | 0.466                        | -4.627                       |
|            |               | 0.100                        |                              |

| Depth (mm) | Calendar Year | <b>d</b> ¹³C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------|------------------------------|
| 1201       | 1790.91       | 0.304            | -4.543                       |
| 1202       | 1790.81       | 0.097            | -4.408                       |
| 1203       | 1790.72       | 0.160            | -4.381                       |
| 1204       | 1790.62       | 0.126            | -4.216                       |
| 1205       | 1790.41       | 0.046            | -4.811                       |
| 1206       | 1790.21       | 0.220            | -4.862                       |
| 1207       | 1790.01       | 0.410            | -4.738                       |
| 1208       | 1789.81       | 0.316            | -4.496                       |
| 1209       | 1789.62       | 0.163            | -4.487                       |
| 1210       | 1789.41       | -0.093           | -4.728                       |
| 1211       | 1789.21       | -0.002           | -5.079                       |
| 1212       | 1789.06       | 0.245            | -4.840                       |
| 1213       | 1788.91       | 0.546            | -4.807                       |
| 1214       | 1788.76       | 0.201            | -4.627                       |
| 1215       | 1788.62       | 0.237            | -4.444                       |
| 1216       | 1788.48       | 0.100            | -4.721                       |
| 1217       | 1788.34       | -0.079           | -4.692                       |
| 1218       | 1788.21       | 0.584            | -4.732                       |
| 1219       | 1788.01       | 0.498            | -4.689                       |
| 1220       | 1787.81       | 0.273            | -4.579                       |
| 1221       | 1787.62       | 0.309            | -4.422                       |
| 1222       | 1787.48       | 0.047            | -4.445                       |
| 1223       | 1787.34       | -0.041           | -4.644                       |
| 1224       | 1787.21       | 0.209            | -4.780                       |
| 1225       | 1786.62       | 0.343            | -4.510                       |
| 1226       | 1786.51       | 0.280            | -4.557                       |
| 1227       | 1786.41       | -0.001           | -4.578                       |
| 1228       | 1786.31       | -0.099           | -4.776                       |
| 1229       | 1786.21       | 0.021            | -4.800                       |
| 1230       | 1786.01       | 0.411            | -4.563                       |
| 1231       | 1785.81       | -0.020           | -4.364                       |
| 1232       | 1785.62       | 0.373            | -4.256                       |
| 1233       | 1785.48       | 0.120            | -4.367                       |
| 1234       | 1785.34       | 0.066            | -4.387                       |
| 1235       | 1785.21       | 0.289            | -4.562                       |
| 1236       | 1785.01       | 0.922            | -4.487                       |
| 1237       | 1784.81       | 0.878            | -4.368                       |
| 1238       | 1784.62       | 0.188            | -4.329                       |
| 1239       | 1784.51       | 0.104            | -4.337                       |
| 1240       | 1784.41       | 0.163            | -4.413                       |
| 1241       | 1784.31       | 0.157            | -4.517                       |
| 1242       | 1784.21       | 0.163            | -4.923                       |
| 1243       | 1784.06       | 0.031            | -4.552                       |
| 1244       | 1783.91       | 0.147            | -4.300                       |
| 1245       | 1783.76       | 0.026            | -4.263                       |
| 1246       | 1783.62       | 0.001            | -4.118                       |
| 1247       | 1783.51       | -0.135           | -4.414                       |
| 1248       | 1783.41       | -0.131           | -4.711                       |
| 1249       | 1783.31       | -0.041           | -4.725                       |
| 1250       | 1783.21       | -0.078           | -4.834                       |

| Depth (mm) | Calendar Year | <b>d</b> <sup>13</sup> C (‰) | <b>d</b> <sup>18</sup> O (‰) |
|------------|---------------|------------------------------|------------------------------|
| 1251       | 1783.06       | 0.051                        | -4.468                       |
| 1252       | 1782.91       | -0.006                       | -4.308                       |
| 1253       | 1782.76       | 0.219                        | -4.253                       |
| 1254       | 1782.62       | 0.238                        | -4.220                       |
| 1255       | 1782.41       | 0.010                        | -4.435                       |
| 1256       | 1782.21       | -0.166                       | -4.747                       |
| 1257       | 1782.06       | -0.028                       | -4.730                       |
| 1258       | 1781.91       | 0.280                        | -4.633                       |
| 1259       | 1781.76       | 0.407                        | -4.457                       |
| 1260       | 1781.62       | 0.349                        | -4.183                       |
| 1261       | 1781.51       | 0.038                        | -4.276                       |
| 1262       | 1781.41       | -0.146                       | -4.460                       |
| 1263       | 1781.31       | 0.065                        | -4.657                       |
| 1264       | 1781.21       | -0.019                       | -4.697                       |
| 1265       | 1781.06       | 0.085                        | -4.388                       |
| 1266       | 1780.91       | 0.106                        | -4.564                       |
| 1267       | 1780.76       | 0.084                        | -4.301                       |
| 1268       | 1780.62       | -0.198                       | -4.020                       |
| 1269       | 1780.51       | 0.014                        | -4.252                       |
| 1270       | 1780.41       | -0.010                       | -4.452                       |
| 1271       | 1780.31       | 0.023                        | -4.681                       |
| 1272       | 1780.21       | 0.064                        | -4.702                       |
| 1273       | 1780.01       | 0.226                        | -4.551                       |
| 1274       | 1779.81       | 0.339                        | -4.375                       |
| 1275       | 1779.62       | 0.232                        | -4.360                       |
| 1276       | 1779.41       | -0.061                       | -4.464                       |
| 1277       | 1779.21       | -0.167                       | -4.622                       |
| 1278       | 1779.06       | -0.096                       | -4.600                       |
| 1279       | 1778.91       | 0.449                        | -4.522                       |
| 1280       | 1778.76       | 0.392                        | -4.388                       |
| 1281       | 1778.62       | 0.141                        | -4.177                       |
| 1282       | 1778.41       | 0.037                        | -4.281                       |
| 1283       | 1778.21       | -0.037                       | -4.461                       |
| 1284       | 1778.06       | 0.424                        | -4.273                       |
| 1285       | 1777.91       | 0.883                        | -4.207                       |
| 1286       | 1777.76       | 0.634                        | -4.130                       |
| 1287       | 1777.62       | 0.373                        | -4.050                       |
| 1288       | 1777.48       | 0.249                        | -4.251                       |
| 1289       | 1777.34       | 0.392                        | -4.327                       |
| 1290       | 1777.21       | 0.389                        | -4.630                       |
| 1291       | 1777.01       | 0.946                        | -4.236                       |
| 1292       | 1776.81       | 0.569                        | -4.223                       |
| 1293       | 1776.62       | 0.378                        | -4.014                       |