A multi-proxy study of planktonic foraminifera to identify past millennialscale climate variability in the East Asian Monsoon and the Western Pacific Warm Pool

by

Stefanie Dannenmann

A Dissertation

Submitted to the University at Albany, State University of New York

in Partial Fulfillment of

the Requirements for the degree of

Doctor of Philosophy

College of Arts & Sciences

Department of Earth and Atmospheric Sciences

University at Albany, State University of New York

COLLEGE OF ARTS & SCIENCES

The dissertation submitted by

Stefanie Dannenmann

under the title

A multi-proxy study of planktonic foraminifera to identify past millennial-

scale climate variability in the East Asian Monsoon and the Western Pacific

Warm Pool

has been read by the undersigned. It is hereby recommended for acceptance to the Faculty of the University in partial fulfillment of the requirement for the degree of Doctor of Philosophy.

Dr. B.K. Linsley

Dr. A. G. Lapenis

Dr. D.W. Oppo

Dr. Y. Rosenthal

Recommended by the Department of Earth & Atmospheric Sciences

, Chair

Recommendation accepted on behalf of the Graduate Academic Council.

Date

Date

Date

Date

Date

ABSTRACT

High resolution paleo-climatological data from IMAGES core MD97-2141 (8.80° N, 121.31° E) located the Sulu Sea within the western tropical Pacific reveal the first evidence of continous millennial-scale variability in surface ocean conditions over the last 150,000 years. The millennial-scale planktonic foraminiferal oxygen isotope (δ^{18} O) oscillations of *Globigerinoides ruber* (*G. ruber*) between 30,000-65,000 years (MIS3) are apparently in-phase with the Greenland ice core record and have amplitudes 1/3 to 2/3 the size of the Sulu Sea glacial-interglacial δ^{18} O amplitude of 1.3 ‰. In the same interval variations in planktonic foraminiferal Mg/Ca suggest that millennial-scale sea surface temperature (SST) variations were small (0.6-1°C) and out-of-phase with δ^{18} O indicating that δ^{18} O variability was mainly driven by changes in surface water salinity. This result implies that the linked East Asian monsoon and the western Pacific Intertropical Convergence Zones, both influencing the Sulu Sea, have fluctuated on the same millennial time scale as higher latitude climatic systems.

To further investigate the origin of the MIS3 $\delta^{18}O_{G.ruber}$ variations, the relative abundance of all planktonic foraminifer species and the $\delta^{18}O$ values of four planktonic foraminifer species was determined during MIS3. Combined, these data provide a detailed reconstruction of changes in the western tropical Pacific thermocline structure. The $\delta^{18}O$ composition of the mixed-layer foraminifera (*G. ruber* and *Globigerinoides sacculifer*) and upper thermocline species (*Neogloboquadrina dutertrei*) displays poor similarity with the $\delta^{18}O$ of the sub-thermocline dweller *Globorotalia crassaformis*. $\delta^{18}O_{G.crassaformis}$ shows larger $\delta^{18}O$ variations (~1 ‰) than the surface dwellers indicating past fluctuations in

ii

the influence of high salinity North Pacific Tropical Waters that currently enter the Sulu Sea across the Mindoro Strait during the months of the winter monsoon. The faunal and isotopic data suggest a switch from winter to summer monsoon predominance after 55 kyr. However this predominance is interrupted by at least three episodes of increased winter monsoon between 42-46 kyr.

Comparison of the proxy SST and planktonic foraminiferal δ^{18} O profiles for the last glacial/interglacial sequence from fourteen cores in tropical and subtropical oceanic settings indicates that termination I in δ^{18} O coincides with SST change at some sites, while δ^{18} O lags SST by 3,000 years at other locations. A comparison of SST and δ^{18} O shows a linear increase in SST from glacial to interglacial conditions. Sites where SST is leading the δ^{18} O record indicate fresher conditions during the LGM, and these sites are all located in areas influenced by increased atmospheric water vapor during times of today's La Niña.

DEDICATION

To my parents and my brother Tim

ACKNOWLEDGEMENTS

It has been an exceptional journey - one that I had never dreamed of. I am deeply indebted to my advisor Dr. B.K. Linsley for his encouragement, advice, mentoring, and research support throughout my doctoral studies. I also truly appreciate his engagement in the final stages of this dissertation. I am fortunate to have had Dr. Delia Oppo, Dr. Andrei Lapenis, and Dr. Yair Rosenthal as my committee members. I have enjoyed every moment to work with such a group of energetic people. This dissertation project also gave me the opportunity to work with great people at Woods Hole Oceanographic Institution and Rutgers University. Particularly, I would like to acknowledge Dr. Dick Norris for opening his world of foraminifera to me. Thanks to all of you for sharing your research ideas and enthusiasm about this project.

Thanks are also extended Dr. Win Means and Dr. Bill Kidd who have been tremendously helpful not only in their academic advisement but also in their personal openness. Steve Howe has been a great friend and extraordinary help in teaching my ways around the stable isotope lab, and editing the first draft of this dissertation. A big hug and special thanks go to Diana Paton for not going into early retirement. I could not have finished without her presence. I appreciate all their friendships and their collective encouragement to finish this dissertation.

I thank the IMAGES Program for allowing access to the great core MD97-2141. Thanks go to the WHOI-NOSAMS AMS facility that generated the AMSdata, and Liz Lukowski and Susan Trimarich for their technical support. This project has been funded by NSF Awards #OCE 9710156 to B.K. Linsley, #OCE

v

9710097 to D.W. Oppo for AMS analyses and lower 18 m δ^{18} O analyses, and #OCE 9987060 to Y. Rosenthal for Mg/Ca analyses.

I would especially like to thank my good friends Markus Landthaler, Chris Nemeth, Nicole Dentzien, Erich Nussbaum, my office-mate Barbara Fletcher and the Friday morning Quintessence breakfast club for helping me grow in various ways and for keeping this Ph.D. fun. I wish to acknowledge all of my other friends who have listened to me complain, cry and laugh through these past years. I could not ask for better friends.

There are not enough words to thank my boyfriend and best friend Stelios Matsopoulos for his love and support. His patience and understanding during this Ph.D. and particularly during difficult times was unselfish and appreciated more than he knows.

Finally, I owe a huge debt of gratitude to my parents' and my brother Tim's love and support, as well as their encouragement not only the course of my research career but throughout my entire life. This dissertation is dedicated to them.

To all of you, thank you

vi

TABLE OF CONTENTS

	Page
ABSTRACT	ii
DEDICATION	iv
ACKNOWLEDGMENTS	v
TABLE OF CONTENTS	vii
PREFACE	1
CHAPTER 1: Introduction to the Sulu Sea	4
1.1 Regional Setting	5
1.2 Surface Water Hydrography	5
1.3 Deep Water Hydrography	10
1.4 The Monsoon and the ENSO cycle	11
CHAPTER 2: Millennial-scale climate variability in the tropical	
western Pacific during 30,000 - 90,000 years B.P.	12
2.1 Abstract	13
2.2 Introduction	14
2.3 Methods	15
2.3.1 Oxygen isotope analysis	15
2.3.2 Mg/Ca analysis	16
2.3.3 Age model	17
2.4 Results	19
2.5 Discussion	25
2.6 Conclusions	28

CHAPTER 3: Variability of Marine Isotope Stage 3 upper water-column			
structure in the Sulu Sea:			
Isotopic evidence and Faunal Evidence	29		
3.1 Abstract	30		
3.2 Introduction	31		
3.3 Area Description			
3.4 Deep Water Hydrography			
3.5 Depth Ecology of Planktonic Foraminifera			
3.6 Material and Methods			
3.6.1 Oxygen Isotope Analysis	39		
3.6.2 Faunal Abundance	40		
3.6.3 Chronology	40		
3.7 Results	41		
3.7.1 Oxygen Isotopic Composition of G. ruber and G. sacculifer	41		
3.7.2 Oxygen Isotopic Composition of deeper dwelling foraminifera	43		
3.7.3 Faunal Abundance	44		
3.8 Discussion			
3.9 Conclusions			

... 2 otor oolu mn 2 ٧/ r C1-.

CHAPTER 4: The relationship between changes in temperature and	
precipitation in tropical oceans during the Last Glacial Maximum	55
4.1 Abstract	56
4.2 Introduction	57
4.3 Methods	59
4.4 Results	64
4.5 Discussion	66
4.5.1 Cores where SST synchronous with $\delta^{18}O$	66
4.5.2 Cores where SST leads $\delta^{18}O$	69
4.6 Conclusions	76
REFERENCES	77
APPENDICES	
APPENDIX I: IMAGES core MD97-2141: δ^{18} O and δ^{13} C data	
from Globigerinoides ruber	90
APPENDIX II: IMAGES core MD97-2141: Mg/Ca and Sr/Ca data	
from Globigerinoides ruber	110
APPENDIX III: IMAGES core MD97-2141: δ^{18} O and δ^{13} C data	
from Globigerinoides sacculifer	116
APPENDIX IV: IMAGES core MD97-2141: δ^{18} O and δ^{13} C data	
from Neogloboquadrina dutertrei	119
APPENDIX V: IMAGES core MD97-2141: δ^{18} O and δ^{13} C data	
from Globorotalla crassaformis	122
APPENDIX VI: IMAGES core MD97-2141: Relative abundance of	
planktonic foraminifera between 35-60 kyr	125

APPENDIX VII: IMAGES core MD97-2141: Sample weight and occurrence

of p	oteropods and ash layers	127
V P	storopodo dila doll'idyoro	

LIST OF TABLES

Table 1: Radiocarbon ages for MD97-2141	18
Table 2: Summary of modern living habitat for <i>G. ruber</i> , <i>G. sacculifer</i> , <i>N. dutertrei</i> , and <i>G. crassaformis</i>	37
Table 3a: Similarity coefficients for planktonic foraminifera δ^{18} O resultsduring last 150 kyr	43
Table 3b: Similarity coefficients for planktonic foraminifera δ ¹⁸ O results during MIS 3	43
Table 4: Planktonic foraminifer taxonomic categories	47
Table 5: Background information of cores used in this study	61

LIST OF FIGURES

Figure 1.1: Map of western tropical Pacific showing the location of	
Sulu Sea and IMAGES site MD97-2141	6
Figure 1.2: Detailed bathymetric map of the Sulu Sea.	7
Figure 1.3: Average sea surface temperature and sea surface salinity	
in Indonesia and the western Pacific for April and October	9
Figure 2.1: Sulu Sea δ^{18} O record of G. ruber from ODP Site 769A and	
IMAGES core MD97-2141	21
Figure 2.2: $\delta^{18}O_{G. ruber}$, $\delta^{18}O_{seawater}$, Mg/Ca _{G. ruber} and average shell mass	
data from the Sulu Sea during the last 90 kyr	22
Figure 2.3: Comparison of isotopic records from Greenland and Antarctica	
to isotopic and trace element data from the Sulu Sea during the	
last 90 kyr.	27
Figure 3.1: Map of location of the Sulu Sea and IMAGES core MD97-2141	34
Figure 3.2: Vertical profiles of annual analyzed temperature and salinity	
across longitude 119.5° E transect	35
Figure 3.3: δ^{18} O records of Globigerinoides ruber, Globigerinoides sacculifer	,
Neogloboquadrina dutertrei and Globorotalia crassaformis	
during MIS 3	. 42
Figure 3.4: Downcore variations in relative abundance of G.ruber, G.sacculity	er, r)
and G. crassaformis during MIS 3	46 ¹
Figure 3.5. Time series of the relative abundance sums of "mixed layer"	
species and "thermocline" dwellers	46
Figure 3.6: Oxygen isotone "difference" curves	52
Figure 9.7. Comparison between Objects laces means the success (11/1)	52
rigure 3.1: Comparison between Uninese loess magnetic susceptibility and	53
Sulu Sea Oxygen Isolopic dala.	55

Figure 4.1:	δ^{18} O and SST estimates based on Mg/Ca in the Sulu Sea for		
	the last 21,000 years	58	
Figure 4.2:	Map of core locations examined in his study	60	
Figure 4.3:	Compilation of sea-level data	63	
Figure 4.4:	Oxygen isotope and SST data versus age	65	
Figure 4.5:	Hypothetical thermocline reconstruction	68	
Figure 4.6:	Oxygen isotope, SST and $\delta^{18}O_{seawater}$ data versus age for cores where SST-based Mg/Ca measurements lead $\delta^{18}O$	71	
Figure 4.7:	Water vapor concentration in the mid troposphere during January, 1989	74	
Figure 4.8:	Global anomalies of precipitation associated with La Nina	75	

PREFACE

The research in this dissertation is based upon detailed analyses of marine sediments from the Sulu Sea in the Philippine archipelago of the tropical western Pacific. The primary goal of the research was to investigate the millennial-scale climate variability in this region and interpret the results within the context of the current understanding of the ocean-atmosphere system. Insights into the natural millennial-scale climatic variations will contribute to the developing understanding of forcing mechanisms and climatic interactions between widely separated regions. A new giant piston core in the Sulu Sea was collected to provide new material to study the millennial-scale events suggested by previous work on Ocean Drilling Program (ODP) site 769A [*Linsley and Thunell*, 1990; *Linsley*, 1996] in this unique and climatically important tropical setting.

This dissertation has been organized into a total of 4 chapters.

Chapter 1 presents background information about the regional area, and surface and deep water hydrography in the Sulu Sea.

Chapter 2 discusses millennial scale variability throughout the last 150,000 years in the Sulu Sea based on high resolution oxygen isotopic (δ^{18} O) and Mg/Ca analyses of selected planktonic foraminifera. The findings in the Sulu Sea are then compared to millennial-scale climatic variations of high northern and southern latitudes.

Chapter 3 examines the specific climatic cause of marine isotope stage 3 (MIS3) millennial-scale oscillations by a faunal abundance study and the δ^{18} O composition of mixed layer, thermocline and subthermocline dwelling foraminifera. The δ^{18} O of these different foraminifera species is used to reconstruct the temporally varying upper column δ^{18} O gradient during MIS3.

Chapter 4 compares the Sulu Sea glacial-interglacial δ^{18} O record to 13 sediment cores from the Indian, Pacific and Atlantic oceans. It examines particularly the tropical climatological conditions during the last glacial maximum.

CHAPTER 1 Introduction to the Sulu Sea

1.1. Regional setting

The Sulu Sea is situated between Borneo, Palawan and the Philippines, and is approximately 600 km long and 400 km wide (Figure 1.1). The Sulu Sea is a small marginal basin with a maximum depth of more than 4,900 m. The basin exchanges surface water with surrounding basins over shallow sills, with the deepest sill connecting the Sulu Sea to the South China at 420 m through Mindoro Strait [*Wyrtki*, 1961].

IMAGES core MD97-2141 was collected in the Sulu Sea at 8.79° North latitude and 121.30° East longitude in 3,633 m water depth. This location is several kilometers northwest of Ocean Drilling Program Site 769A (ODP 769A) (8°47 North latitude, 121°13 East longitude, 3643 m water depth) (Figure 1.2). The bathymetric high where both cores were collected is ~1,200 m above the present local calcite compensation depth (4,800 m) and 200 m above the calcite lysocline (3,800 m) [*Linsley et al.*, 1985].

1.2. Surface Water Hydrography

The East Asian Monsoon System (EAM) and the Western Pacific Warm Pool (WPWP) influence the surface hydrography of the South China and Sulu Seas. During the Northern Hemisphere summer, monsoon winds blow from the southeast. The winter component of the EAM has a stronger wind field, with northwesterly winds coming from Siberia [*Chen et al.*, 1997]. The high average annual atmospheric temperatures in the region induce evaporation of oceanic water, formation of low pressure cells and seasonally heavy rain. The overall hydrologic balance is a gain of freshwater from precipitation.

Figure 1.1: Map of western tropical Pacific showing the location of Sulu Sea. Bathymetric contour is the 120 m isobath indicating the approximate position of coast line during glacial maximum low sea level stand. A gray circle indicates location of IMAGES site MD97-2141.

Figure 1.2: Detailed bathymetric map of the Sulu Sea. Bathymetric contour is presented in meters. Shelf shallower than 100 meter is marked by the shaded zone. Location of IMAGES site MD97-2141 (3,633 m) and ODP site 769A (3,643 m) are indicated by black circles.

In the Asian-Australian monsoon region, heavy convection is centered over the warm waters and adjacent land areas, with an eastward extension of high rainfall along the intertropical convergence zone (ITCZ) off the equator [*Rasmusson and Arkin*, 1993]. The ITCZ plays an important role in the climatic variability of the EAM region. The seasonal latitudinal variation of the ITCZ over this region is large. During the winter months in the Northern Hemisphere, the center of the warm pool lies south of the equator and during the summer months north of the equator. Areas with high sea surface temperatures (SST) (above 27.5 °C) correlate with oceanic regions of heavy rainfall. During the summer months, warm pool precipitation merges with the monsoon precipitation in the South China and Sulu Sea region.

Seasonal SST variability is greater in the northern South China Sea than the Sulu Sea, due to the inflow of cold water through the Luzon Strait and excess evaporation which both reduce SSTs during the months of the winter monsoon (Figure 1.3). Annually, SST varies about 2 °C in the Sulu Sea and southern South China Sea (Figure 1.3) compared to 5 °C in the northern South China Sea. The salinity in the entire region varies between 32.8 and 34.5 ‰ with the lowest salinities found during October as the result of freshwater inflow from rivers and direct monsoonal precipitation [*Wyrtki*, 1961]. *Wyrtki* [1961] gives a thorough review of the surface water hydrography of the Indonesian region.

Sea Surface Temperature

Sea Surface Salinity

M. Conkright, et al., World Ocean Atlas 1998 CD-ROM Data Set

Figure 1.3: Average sea surface temperature and sea surface salinity in Indonesia and the western Pacific for the end of the winter monsoon (April) and the end of summer monsoon (October), highlighting maximal seasonal monsoon changes in surface conditions. Note the location of IMAGES core MD97-2141 that is marked by a gray circle. In the Sulu Sea the influence of East Asian Monsoon-driven river runoff and precipitation in Borneo and coastal regions of the mainland is evident as is the influence of the western Pacific on surface salinity [Data from *Conkright et al.*, 1998].

1.3. Deep Water Hydrography

The semi-enclosed configuration of the Sulu Sea results in relatvely warm (10°), oxygen-depleted bottom water. This has resulted in a reduced depth of biological sediment mixing (1 to 3 cm), within the oxygen minimum zone compared to mixing depths in the South China Sea (10 cm) [*Kuehl et al.*, 1993]. High sediment accumulation rates [11 to 16 cm/1000 yr; *Linsley and Thunell*, 1990] and reduced benthic mixing have apparently resulted in the preservation of detailed paleoclimate records in certain areas and water depths of the Sulu Sea allowing past variations in the EAM and WPWP on millennial time scales to be examined.

Currently, the coldest water in the Sulu Sea is ~10 °C, and is found from \sim 600 m depth to the bottom. This relatively warm water fills the basin below the thermocline and contributes to the oxygen-deficient nature of the deep waters due to the stratification and biological utilization of oxygen. A detailed study of the hydrography in the Sulu Sea has been presented by Nozaki et al. [1999]. Nozaki et al. [1999] observed a salinity maximum (34.55 ‰) between 170 m and 310 m depths. They concluded that lateral flow of high salinity waters from the South China Sea produced this salinity maximum. Wyrtki [1961] named these high salinity waters the 'Subtropical Lower Waters', and Qu et al., [2000] define these waters as high-salinity North Pacific Tropical Water (NPTW) which originates in the Kuroshio current outside the Southeast Asian seas. The Kuroshio current is part of western boundary current of the subtropical gyre in the North Pacific [Shaw and Chao, 1994; Talley, 1999]. Intrusion of the NPTW into the South China Sea occurs through the Luzon Strait, which has a sill depth of 2,500 m.

1.4. The Monsoon and the ENSO cycle

With growing global climate information and observations it became apparent that the monsoon system was a macro-scale phenomenon that was intertwined and interactive with global-scale circulation pattern [Kutzbach, 1987]. Of the many interrelated patterns found by Sir Gilbert Walker and others, the El Niño-Southern Oscillation (ENSO) was thought to be of particular relevance to the monsoon [e.g. Walker, 1923; Walker, 1928; Walker and Bliss, 1932; Trenberth and Shea, 1987; Webster and Yank, 1992; Chen and Wu, 2000]. For example the circum-Pacific climatic connection is revealed in an isocorrelation map of mean sea level pressure with Darwin, Australia [Trenberth and Shea, 1987]. A positive correlation exists between the northeastern and southeastern Pacific, and a strong negative correlation between the eastern and western Pacific. In the Sulu Sea and the surrounding basins, a quasi-permanent Indonesian low-pressure system influences regional oceanographic conditions. This low-pressure system affects the western Pacific climate, and also plays an important role on the ENSO system. It has been also suggested that ENSO may be initiated in the western equatorial Pacific [e.g. Wyrtki, 1975; Rasmusson and Carpenter, 1982; Li, 1989].

It is possible that ENSO effects are expressed over geological periods [*Anderson et al.*, 1990; *Clement and Cane*, 1999; *Clement et al.*, 2000], and it is therefore important to examine marine records affected by this phenomena in detail. Although this investigation does not establish a direct link between ENSO and Paleoclimatic variations in the western Pacific at lower than ENSO frequencies, it does help set the stage for establishing whether or not such linkage exists.

CHAPTER 2

Millennial-scale climate variability in the Tropical Western Pacific between 27,000 - 90,000 years B.P.

2.1 Abstract

Tropical oceanographic variability on millenial-time scales remains poorly understood. To develop a better understanding of past millenial-scale oceanographic variations in the western equatorial Pacific I have generated a continuously sampled record of variations in planktonic foraminiferal oxygen isotopes (δ^{18} O) from a sediment core in the Sulu Sea (8°N, 122°E). This record reveals a distinct pattern of millennial-scale changes in surface ocean conditions, particularly between 27,000 and 60,000 years B.P. during marine isotope stage 3 (MIS3). This is the first evidence for persistent millenial-scale variability in MIS3 in the western tropical Pacific. The δ^{18} O oscillations during MIS3 appear to be in-phase with Dansgaard-Oeschger (D/O) air temperature variations in Greenland and have amplitudes 1/3 to 2/3 the size of the Sulu Sea glacial-interglacial δ^{18} O amplitude of 1.3 ‰. In the same interval, variations in planktonic foraminifera Mg/Ca indicate that surface ocean temperature variations were small (0.6-1°C) and not in phase with δ^{18} O. This suggests that the MIS3 millennial δ^{18} O events in the Sulu Sea were driven by changes in surface water salinity indicating that the linked East Asian monsoon and western Pacific Intertropical Convergence Zones (ITCZ) have fluctuated on the same millennial time-scales as higher latitude climatic systems of the Northern Hemisphere.

2.2 Introduction

The fundamental question of the past variability of tropical surface temperatures and climate over glacial/interglacial and millennial time-scales remains controversial. There is conflicting information on the degree of tropical sea surface temperature (SST) cooling at the last glacial maximum (LGM) [e.g., CLIMAP, 1981; Guilderson at el., 1994; Linsley, 1996; Wang et al., 1999; Lea et al., 2000; Kienast et al., 2001; Rosenthal et al., in prep], whereas terrestrial evidence consistently indicates a decrease of 4 to 5 °C in tropical surface temperatures during the LGM [e.g., Rind and Peteet, 1985; Broecker and Denton, 1989; Stute et al., 1995]. On millennial time-scales, sparse evidence from the tropics is beginning to reveal a more variable late Pleistocene tropical climate than previously thought [e.g., Linsley and Thunell, 1990; Sirocko et al., 1999; Wang et al., 1999; Kienast et al., 2001; Kudrass et al., 2001; deGaridel-Thoron et al., in press]. However, the number of tropical climate records that resolve millennial-scale climatic variations remains limited. This is particularly true for the tropical western Pacific, where developing a better understanding of past climatic variability is important because of the global influence of the Asian monsoon system and the Western Pacific Warm Pool (WPWP). Today, interannual and decadal variability in the monsoon and the WPMP has widespread and profound impacts on ecosystems, agriculture, and global economics. The South China and Sulu Seas are located in the northern part of the Asian-Australian monsoon region where during the summer months, increased precipitation is the result of the interaction of the ITCZ and the East Asian monsoon. In the Sulu Sea, monsoonal precipitation and river discharge

results in pronounced seasonal salinity variations with a minima in surface salinity occurring in October [*Wyrtki*, 1961; *Conkright et al.*, 1998].

For this study I have analysed variations in planktonic foraminiferal δ^{18} O and Mg/Ca In MIS3 from Sulu Sea core MD97-2141 (IMAGES program) (8.8° N, 121.31° E, 3,633 m water depth) collected within several kilometers of Ocean Drilling Program (ODP) site 769A [*Linsley and Thunell*, 1990; *Linsley*, 1996]. At 1 cm sampling resolution for δ^{18} O, the new record has four times greater temporal resolution (<100 years) than the previously published δ^{18} O record for *Globingerinoides ruber* ($\delta^{18}O_{G, ruber}$) from ODP site 769A [*Linsley*, 1996].

2.3 Methods

2.3.1 Oxygen isotopic analysis

Core MD97-2141 has a length of 36.3 m. The uppermost 18 m were slabsampled every centimeter. The >150 µm size fraction was used for isotopic measurements. Each sample consisted of ~ 10 individual tests (~ 100 µg) of *Globingerinoides ruber* (white variety; 212-250 µm in diameter). Samples were reacted with 100 % H₃PO₄ at 90° C in a Mulitprep carbonate preparation device. The resulting CO₂ gas was analyzed with a Micromass Optima dual-inlet mass spectrometer at the University at Albany, State University of New York. The standard deviation of the National Institute of Science and Technology international reference standard NBS-19 analysed over an 8 month time period (n = 498) was 0.036 ‰ for δ^{18} O. All isotopic data are reported relative to the Vienna Peedee Belemnite (VPDB) using the standard δ notation. The average difference in δ^{18} O between duplicate analyses of the same sample of *G. ruber* (n=283) was 0.094 ‰.

2.3.2 Mg/Ca analysis

The cleaning procedure for the Mg/Ca analyses generally followed the protocol of Rosenthal et al. [1999]. Approximately 80 shells of G. ruber (212-250 µm sieve-size fraction) were picked and weighed with a Mettler M3 microbalance (nominal precision $\pm 1 \mu g$). After weighing, each sample was gently crushed to open the chambers and split into two batches. The crushed samples were washed with deionized water, ultrasonicated and rinsed with methanol. The rinsed samples were treated with a hot basic oxidizing solution followed by multiple weak acid leaching (0.002 HNO₃). The cleaned samples were dissolved with HNO₃. Several authors [Brown and Elderfield, 1996; Hastings et al., 1998] concluded that this cleaning procedure is sufficient for the Mg/Ca analysis in foraminifera. Mg/Ca ratios were determined using a Finnigan MAT Element Sector Field ICP-MS by a new method for precise, multi-elemental analysis of metal-to-calcium ratios [Rosenthal et al, 1999]. Samples between 30 and 60 kyr were analyzed for Mg/Ca and Sr/Ca only in order to decrease the external precision. The external precision of the Mg/Ca ratio was 0.1 % as determined by repeated measurements of three consistency standards. All other samples have been analyzed additionally for Mn/Ca, Cd/Ca, Ba/Ca and U/Ca and are described in greater detail in Rosenthal et al [in prep]. A more detailed analytical description and discussion about errors can be found in Rosenthal et al., [1999].

2.3.3 Age model

The (AMS) accelerator mass spectrometry radiocarbon age measurements were made on the surface-dwelling planktonic foraminifera G. ruber and G. sacculifer at the Woods Hole AMS facility in Woods Hole, Massachusetts (Table 1). Calendar ages have been calculated using a 400 year reservoir correction and applying the Stuiver and Braziunas [1993] calibration curve for samples younger than 20,000 calendar years in age and a U/Th calibration curve for the samples older than 20,000 calendar years [Bard et al., 1993]. AMS-dates at the sample depths 400 cm and 421 cm indicate a gap of 11,000 years, and identify the probable presence of an erosional hiatus. A hiatus has not been observed in the ODP769A core [Linsley, 1996], but this might be due to the lower resolution AMS ¹⁴C dating of this core. The general similarity of $\delta^{18}\text{O}$ records from both the ODP769A and MD97-2141 cores suggests that at least the upper 18 m of the MD97-2141 core is complete with the exception of the hiatus. All ages discussed in this paper are referred to calendar ages.

Depth in	AMC ¹⁴ C	Error*	Calendar Age [†] ,	Species	Accession
core (cm)	Age (years)	(years)	(years)		Number
1	4,560	± 50	4,798	G. ruber (white)	OS-16971
10.5	4,210	± 40	4,286	G. ruber (white)	OS-16926
14 ^a	4,740	± 40	4,962	G. ruber (white)	OS-16410
29	4,700	± 55	4,873	G. ruber (white)	OS-16972
59 ^a	6,020	± 40	6,416	G. sacculifer (w/out sac ^b)	OS-16411
73 ^a	6,810	± 55	7,274	G. sacculifer (w/out sac ^b)	OS-16973
85	6,830	± 90	7,295	G. sacculifer (w/out sac ^b)	OS-18401
94	8,850	± 55	9,455	G. sacculifer (w/out sac ^b)	OS-16974
99	10,700	± 90	12,152	G. sacculifer (w/out sac ^b)	OS-16975
120 ^a	9,380	± 160	10,001	G. sacculifer (w/out sac ^b)	OS-16977
150 ^a	10,200	± 80	11,045	G. ruber (white)	OS-16978
158 ^a	10,250	± 120	11,153	G. sacculifer (w/out sac ^b)	OS-16980
162	10,750	± 50	12,228	G. sacculifer (w/out sac ^b)	OS-16979
205.5 ^a	11,750	± 130	13,258	G. sacculifer (w/out sac ^b)	OS-17238
212 ^a	12,350	± 65	13,931	G. ruber (white)	OS-16412
226.5 ^a	13,000	± 95	14,796	G. ruber (white)	OS-16970
244 ^a	14,100	± 70	16,422	G. ruber (white)	OS-16413
269 ^a	14,750	± 70	17,200	G. ruber (white)	OS-16361
282 ^a	15,100	± 90	17,591	G. sacculifer (w/out sac ^b)	OS-17913
339 ^a	17,150	± 140	19,749	G. ruber (white)	OS-17914
368 ^a	17,650	± 85	20,430 [†]	G. ruber (white)	OS-22672
400 ^a	18,850	± 140	21847 [†]	G. sacculifer (w/out sac ^b)	OS-17916
421	29,000	± 160	33,162 [†]	G. sacculifer (w/out sac ^b)	OS-22673
440 ^a	28,000	± 130	32,101 [†]	<i>G. sacculifer (w/out sac</i> ^b)	OS-17882
487 ^a	30,900	± 260	35,146 [†]	G. ruber (white)	OS-17912
506.5	33,000	± 310	37,290 [†]	<i>G. sacculifer (w/out sac</i> ^b)	OS-17917
543	33,600	± 590	37,893 [†]	G. sacculifer (w/out sac ^b)	OS-17911
553 ^a	34,300	± 390	$38,790^{\dagger}$	G. sacculifer (w/out sac ^b)	OS-17915
553-DUB	34,700	± 440	(average)	G. sacculifer (w/out sac ^b)	OS-17910
594 ^a	36,900	± 460	41,134 [†]	G. sacculifer (w/out sac ^b)	OS-17918

TABLE 1: Radiocarbon ages for MD97-2141

* Error is given in 1σ

[†] Calendar ages have been calculated using a 400 year reservoir correction and applying the *Stuiver and Braziunas* [1993] calibration curve for samples younger than 20,000 calendar year in age and a U/Th calibration curve for the samples older than 20,000 calendar years [*Bard et al.*, 1993].

^a included in age model

^b without saccate like chamber

2.4 Results

The δ^{18} O analyses of *Globigerinoides ruber* ($\delta^{18}O_{G.\ ruber}$) from core MD97-2141 are listed in Appendix 1 and summarized in Figure 2.1. The MD97-2141 δ^{18} O record confirms the presence of an oscillation during the Younger Dryas Chronozone, and during MIS 5e [*Linsley and Thunell*, 1990; *Kudrass et al.*, 1991; *Linsley*, 1996]. Most importantly the higher sampling density of this new δ^{18} O record documents additional millennial events with close to 0.5 ‰ amplitude, particularly in MIS3, that were previously not identified in ODP769A (Figure 2.1).

The $\delta^{18}O_{G. ruber}$ record from core MD97-2141 exhibits a glacial-interglacial (G-I) $\delta^{18}O_{G. ruber}$ amplitude of 1.3 ‰ (Figure 2.1), consistent with results from ODP site 769A [Linsley, 1996]. Previously, it was suggested that G-I changes in the δ^{18} O composition of planktonic foraminifera in the Sulu Sea could be totally explained by changes in the global ice volume with little or no change in surface temperature or local salinity [Linsley, 1996]. However recent Mg/Ca-based temperature estimates in the Sulu Sea record glacial cooling of 3°C indicating that surface waters were less saline at LGM, and that the apparent match between sea level and δ^{18} O may be fortuitous [Rosenthal et al., 2000a]. Lowered sea level during glacial times may have restricted the intrusion of relatively salty surface waters from the Celebes Sea and Western Pacific increasing the influence of low salinity South China Sea water entering the Sulu Sea across the Mindoro Strait [Wyrtki, 1961]. Lower SSS in the Sulu Sea during sea level lowstands also agrees with observations in the southern South China Sea, where SSS has been found to decrease by 2 ‰ during the LGM [Wang et al., 1999]. Furthermore, modelling studies indicate that wetter conditions are

found on the western side of New Guinea during the LGM [*Hostetler and Clark*, 2000]. These authors propose that the emerged land between Australia and Indonesia (currently Arafura Sea and Torres Strait) led to increased precipitation through increased surface heating. However, this conclusion is still controversial because pollen data in this area indicate cooler and drier conditions during the LGM [*Van der Kaars et al.*, 2000].

Mg/Ca analyses of G. Ruber are listed in Appendix II. Paired measurements of δ^{18} O and Mg/Ca on the same foraminifera species in the same samples permits the independent estimation of temperature from foraminiferal Mg/Ca [e.g., Rosenthal et al., 1997; Hastings et al., 1998], and theoretically allows the calculation of seawater δ^{18} O (Figure 2.1) and in turn, to estimate paleo-salinity [Rosenthal et al., 2000b]. Although Mg/Ca appears to be a robust tracer for temperature at several sites, there are also potential calibration problems. Recent studies suggest that in addition to the influence of temperature on the co-precipitation of Mg in planktonic foraminiferal shells, dissolution on the seafloor may alter the initial Mg composition of foraminifera tests, even at locations well above the calcite lysocline [Braun & Elderfield, 1996; If partial dissolution occurs it will lower Mg/Ca Rosenthal et al., 2000b]. values indicating a lower inferred temperature. Here, I use temporal variations in shell mass to assess dissolution effects on the Mg/Ca record (Figure 2.1). Based on the observed positive linear relationship between the shell's average weight, the shell's Mg/Ca, and the degree of bottom water calcite saturation, it

Figure 2.1: (A) Sulu Sea δ^{18} O record of *G. ruber* ($\delta^{18}O_{G. ruber}$) from ODP Site 769A (upper solid black line) [*Linsley*, 1996] with open down triangles indicating ¹⁴C for this site, and from IMAGES core MD97-2141 (lower thin solid line) [this study]. Note that no attempt has been made to temporally align the ODP 769A and MD97-2141 δ^{18} O records. **(C)** Chronology for MD97-2141, consisting of 28 AMS radiocarbon age dates (solid black circles) and several correlation points with the *Martinson et al.* [1987] chronology (solid black squares).

Figure 2.2: Data from the Sulu Sea during the last 90 kyr. Grey shaded areas represent marine isotope stages 2 and 4. **(A)** Sulu Sea $\delta^{18}O_{G.\ ruber}$; black down triangles indicate ¹⁴C ages. **(B)** Sulu Sea $\delta^{18}O_{seawater}$; $\delta^{18}O_{seawater}$ has been calculated using the empirically derived temperature : $\delta^{18}O$ relationship based on planktonic foraminifera generated by *Erez & Luz* [1983] and the Mg/Ca –SST relationship reported by *Lea et al.* [2000]. Superimposed are sea level data (open circle) measured by *Fairbanks* [1989] and *Chappell et al.*, [1996] **(C)** Sulu Sea Mg/Ca *G. ruber*; temperature estimates are calculated using *Lea et al.* [2000] equation. Horizontal lines indicate average Mg/Ca composition during Holocene and LGM [*from Rosenthal et al.*, 2000a]. **(D)** Average shell mass in µg.

was suggested that variations in average shell mass may be used to monitor secondary dissolution effects [*Rosenthal et al.*, 2000b].

Briefly, it was suggested that because planktonic foraminifera calcify over a relatively large water depth range, dissolution of primary calcite leads to a concomitant loss of shell's weight and Mg, thereby shifting the bulk shell chemistry toward the composition acquired in deeper and colder waters [Rosenthal et al., 2000b]. Variations in G. ruber shell mass in core MD97-2141 reveal a minimum in weight loss during MIS4, while the average shell's weight during MIS3 is 2µg lower compared to MIS4. However, the lack of correlation (r²=1.6*10⁻⁶) between the Mg/Ca and *G. ruber* shell mass during MIS3 suggests that in the Sulu sea dissolution does not strongly influence the Mg/Ca signal (Figure 2.1). This suggests that at this site foraminiferal Mg/Ca is primarily a record of variations in water temperature. In the Sulu Sea the carbonate compensation depth is currently at ~ 4,800 m, while the carbonate lysocline occurs near 3,800 m, and the aragonite lysocline near 1,400 m [Linsley et al., 1985]. Past studies indicate that calcite dissolution has not produced large G-I changes in either carbonate content or foraminiferal preservation in the Sulu Sea Additionally, the presence of pteropods in this core at [*Miao et al.*, 1994]. 3,633 m during the LGM and during parts of MIS3 would seem to exclude a significant dissolution effect on Mg/Ca at this time in the Sulu Sea [Figure 2.1; Miao et al., 1994].

Mg/Ca values of G. ruber during MIS3 range between 3.5 and 4.4 mmol/mol and suggest an apparent cooling trend of about 1°C from early to late MIS3, upon which millenial-scale events are superimposed. I estimated
δ^{18} O_{seawater} for MIS3 by subtracting the SST component of δ^{18} O change using 1°C = -0.22 ‰ [Figure 2.2B; Epstein et al., 1953]. A comparison to coral-based sealevel estimates converted to δ^{18} O [120m = 1‰; Chappell et al., 1996; and also Schrag et al., 1996] suggests that a portion of the $\delta^{18}O_{residual}$ may be accounted for by sea level change as already suggested by Linsley [1996]. However, additional δ^{18} O changes must be due to changes in SSS. Previous studies using temporally shorter cores from the northern South China Sea also found millennial-scale changes in precipitation and runoff that were potentially related to the East Asian monsoon [Wang et al., 1999]. Because the South China Sea and Sulu Sea are connected via two straits today and one strait at the LGM, monsoonally driven changes in the South China Sea salinity may influence SSS of the Sulu Sea. Because SSS in the Sulu Sea today is also influenced by the ITCZ, which is dynamically linked to the monsoon, it is also possible that millenial-scale changes in the ITCZ related rainfall/runoff modulated SSS changes in the Sulu Sea during MIS3. I conclude therefore that the large changes observed in Sulu Sea salinity in MIS3 indicate that the East Asian monsoon and/or ITCZ varied on millenial time scales during this time.

2.5 Discussion

An important question is whether these inferred tropical salinity changes are related to changes at higher latitudes. A comparison of the Sulu Sea $\delta^{18}O_{G}$ ruber and Mg/Ca records to Greenland and Antarctic Byrd ice core δ^{18} O records [Figure 2.3; Blunier & Brooks, 2001] suggests that millennial-scale changes in for a miniferal δ^{18} O in the Sulu Sea generally correlate with variations in the Greenland air temperature. By contrast, the Sulu Sea Mg/Ca record does not correlate with either Antarctic or Greenland ice δ^{18} O records [Figure 2.3; *Blunier*] & Brooks, 2001]. Although age model limitations do not allow detailed phasing determination, changes in the Sulu Sea planktonic $\delta^{18}O_{G, ruber}$ record occurred at approximately the same time as the Dansgaard-Oeschger events in the northern hemisphere. The semi-isolated configuration of the Sulu Sea may have worked to amplify monsoon and/or ITCZ fluctuations. Due to the lower sea level during MIS3, the Sunda shelf route of surface water circulation was at least in-part blocked and more of the fresh water discharge from rivers draining the South East Asia was focused in this region. The situation may have amplified millenial changes in either the East Asian Monsoon and/or ITCZ and could have caused a relative freshening of surface waters in the SCS and SS during MIS3. While recent investigations suggest a linkage between the North Atlantic and northern South China Sea precipitation via variations in the East Asian monsoon [Wang et al., 1996], my results from the Sulu Sea suggest that the link between Northern Hemisphere temperature and tropical precipitation is more widespread, and may involve parallel changes in the East Asian monsoon and western Pacific ITCZ.

25

The origin of global millennial-scale climate variations is not well understood. One hypothesis is that they are driven by millennial-scale changes in thermohaline circulation. This hypothesis successfully predicts anti-phased temperature changes in the high latitudes of the Northern and Southern Hemisphere [*Blunier and Brooks*, 2001]. Many coupled ocean-atmospheric models have examined the influence of the shut down of the conveyor circulation and/or the cooling of the North Atlantic SST [*Rind et al.*, 1986; *Manabe and Stauffer*, 1988]. The models indicate the strongest variations in areas close to the North Atlantic, and small changes elsewhere [*Manabe and Stauffer*, 1988; *Cane and Clement*, 1999]. However, the results from the Sulu Sea show apparently large amplitude millenial-scale climate events well outside of the North Atlantic.

Another proposed hypothesis is that millennial-scale variability originates from the tropics similar to the way current interannual El Niño Southern Oscillation (ENSO) variability originates in the tropics and propagates around the globe. Model experiments suggest that ENSO variability could have an influence on climatic change on millennial time-scales [*Clement and Cane*, 1999]. Under this scenario an interval of more numerous El Niño-warm mode events would favor the melting of Northern Hemisphere ice sheets [*Cane*, 1998; *Clement and Cane*, 1999]. The opposite is true in the Antarctic Peninsula where El Niño-warm events tend to be times of extensive sea ice [*Yuan & Martinson*, 2000]. Thus ENSO teleconnections may drive changes of opposite sign in the high latitude Northern and Southern Hemisphere.

26

Figure 2.3: Comparison of the isotopic records from Greenland and Antarctica to isotopic and trace element data from the Sulu Sea between 27,000 and 90,000 years. The Greenland and Antarctica time scales between 25-90 kyr are based on correlating atmospheric methane records from these cores [*Blunier and Brooks*, 2001]. Sulu Sea data are on an independent time scale. **(A)** Greenland Ice core (GISP2) δ^{18} O data [*Blunier and Brooks*, 2001]. Occurrence of Heinrich events are indicated by H3-H5. **(B)** Sulu Sea $\delta^{18}O_{G.\ ruber}$; black triangles indicate ¹⁴C ages. **(C)** Sulu Sea Mg/Ca_{G.\ ruber}; temperature estimates are calculated using *Lea et al.* [2000] equation. **(D)** Antarctica δ^{18} O data [*Blunier and Brooks*, 2001]. Antarctic warming events are indicated by A1-A7.

2.6 Conclusions

Although our new results from the Sulu Sea can not be used to prove or disprove either of the above models, we have demonstrated that in addition to millenial deglacial events, large millenial changes in Sulu Sea salinity have occurred in MIS3, and appear to be related to Greenland air temperature and not the Southern Hemisphere. We interpret these salinity changes to be due to fluctuations in the East Asian monsoon and/or ITCZ, and suggest that these key features of tropical climate may play an important role in transferring and/or regulating millenial-scale climate change in the latest Pleistocene.

CHAPTER 3

Variability of Marine Isotope Stage 3 Upper Water-Column Structure in the Sulu Sea: Isotopic and Faunal Evidence

3.1 Abstract

Oxygen isotopic analyses of G. ruber ($\delta^{18}O_{G. ruber}$) from IMAGES core MD97-2141 in the Sulu Sea have revealed several millennial-scale oscillations of 0.4-0.8 ‰ amplitude during this time period [see Chapter 2]. Here I use planktonic foraminifera faunal analysis and species specific isotopic analyses to provide a detailed reconstruction of changes in the western tropical Pacific thermocline structure between 35,000 and 55,000 years ago. The relative abundance of all planktonic foraminifer species and the δ ¹⁸O values of four species (Globigerinoides ruber and sacculifer, mixed-layer dwellers; Neogloboquadrina dutertrei, a thermocline dweller: and Globorotalia crassaformis, a deep dweller) was determined in 35 samples between 35,000 and 55,000 years ago at Sulu Sea site MD97-2141. The δ^{18} O composition of the mixed-layer (G. ruber, G. sacculifer) and upper thermocline (N. dutertrei) species display little similarity to the δ^{18} O of the sub-thermocline dweller (G. crassaformis) which shows larger $\delta^{18}O$ (~1 ‰) variations than the surface dwellers. The observed changes in $\delta^{18}O_{G. crassaformis}$ could be explained by fluctuations in the influence of high salinity North Pacific Tropical Waters (NPTW), which currently enter the Sulu Sea at ~200 m depth across a 420 m deep sill during the months of the winter monsoon. High abundance of thermocline dwelling foraminifera coincides with the increase of NPTW influx. In the Sulu Sea, the combined oxygen isotopic and faunal abundance data suggest a switch from winter to summer monsoon predominance after 55 kyr indicating a reduced influence of the NPTW. However, this predominance is interrupted by at least three stronger winter monsoon episodes between 42-46 kyr.

3.2 Introduction

One of the most useful tools for reconstructing paleoceanographic conditions is the analysis of oxygen isotopic composition (δ^{18} O) of planktonic foraminifera. Several species of planktonic foraminifera are in oxygen isotopic equilibrium with ambient seawater [e.g., *Erez and Honjo*, 1981; *Fairbanks et al.*, 1982; *Curry et al.*, 1983], and serve therefore as proxies for variations in the isotopic composition and temperature of seawater in which the tests grew [*Emiliani*, 1954]. The advantage of analyzing δ^{18} O of multiple foraminiferal species in the same sample from different calcification depths is that mixed layer, thermocline, and deep-water variations can be independently monitored, and separated from the total water column variability. Additionally, the character of planktonic foraminifer assemblages is determined by the thermal structure and nutrient distribution in the upper water column, and can be used to determine the vertical stratification of population maxima in the water column [e.g., Emiliani, 1954; Be, 1960; Shackleton and Vincent, 1978; Fairbanks and Wiebe, 1980; Fairbanks et al., 1980, 1982; Norris et al., 1993, 1994].

Previously, it has been suggested that the origin of millennial-scale events in the δ^{18} O record of *Globigerinoides ruber* ($\delta^{18}O_{G.\ ruber}$) in the Sulu Sea is mainly due to regional salinity changes [Chapter 2]. Based on the $\delta^{18}O_{G.\ ruber}$ and the Mg/Ca record, it was suggested that these events respond primarily to locally derived monsoon-related salinity changes throughout the last 150 kyr. However, millennial-scale variability in the western Pacific during marine isotope stage 3 (MIS3) is still poorly understood and published information concerning the thermocline structure during this time is lacking. Our knowledge of millenial changes in tropical climate for this interval is also limited, particularly for the

31

tropical western Pacific, where developing a better understanding of past climatic variations is important because of the global influence of the Asian monsoon system and the Western Pacific Warm Pool (WPWP).

The goal of collecting IMAGES core MD97-2141 (8.79° North latitude, 121.30° East longitude) was to provide new material to study the millennial-scale climatic events reported by previous work on Ocean Drilling Program Site 769A (ODP site 769A) in the Sulu Sea [*Linsley and Thunell*, 1990; *Linsley*, 1996]. The specific climatic cause of MIS3 millennial-scale oscillations in surface hydrography suggested in Chapter 2 is further investigated here using the δ^{18} O composition of surface- and thermocline-dwelling foraminifera and the relative abundance data for planktonic foraminifer species.

To assess the vertical upper water column changes in the Sulu Sea during MIS3, the δ^{18} O composition of four planktonic foraminifera species (*G. ruber*, *Globigerinoides sacculifer*, *Neogloboquadrina dutertrei* and *Globorotalia crassaformis*) known to calcify at different water depths was analysed in the same sample. By comparing the isotopic results, changes in the vertical water column structure and the influence of deeper-water currents should be detectable. The isotope records of *G. crassaformis* should reflect changes below the thermocline, *N. dutertrei* within the thermocline, and *G. sacculifer*, and *G. ruber* the mixed layer [*Shackleton and Vincent*, 1978; *Fairbanks and Wiebe*, 1980; *Fairbanks et al.*, 1980; *Hemleben et al.*, 1989; *Ravelo and Fairbanks*, 1992].

3. 3 Area Description

IMAGES core MD97-2141 is located in the Sulu Sea (8.79° North latitude, 121.30° East longitude, 3,588 m water depth) several kilometers northwest of the ODP site 769A (8°8 North latitude, 121°13 East longitude, 3,633 m water depth) (Figure 3.1). The Sulu Sea basin exchanges surface water with surrounding basins over shallow sills [*Wyrtki*, 1961]. Currently, the coldest water entering the Sulu Sea is 10 °C, which fills the basin below the thermocline (Figure 3.2). This restricted circulation results in reduced oxygen levels in deep waters compared to the South China Sea or the open western Pacific. The bathymetric high where the core was collected is well above the present local calcite compensation depth at 4,800 m and just above the calcite lysocline at 3,800 m [*Linsley et al.*, 1985; *Exon et al.*, 1981].

3.4 Deep Water Hydrography

A detailed study of current hydrography in the Sulu Sea has been presented by *Nozaki et al.* [1999]. They observed a salinity maximum between 170 m and 310 m depths and concluded that lateral flow of high salinity waters from the South China Sea produced this peak. *Wyrtki* [1961] named this high density current the 'Subtropical Lower Water'. *Qu et al.*, [2000] define these waters as high-salinity North Pacific Tropical Water (NPTW). The NPTW originates outside the Southeast Asian seas in the Kuroshio current which is part of western boundary current of the subtropical gyre in the North Pacific [*Shaw and Chao*, 1994; *Talley*, 1999]. Intrusion of the NPTW in the South China Sea occurs through the Luzon Strait, which has a sill depth of 2500 m (Figure 3.1).

Figure 3.1: Map of western tropical Pacific showing location of the Sulu Sea and the location of IMAGES core MD97-2141 (gray circle). Bathymetric contour is the 120 m isobath indicating the approximate position of coast line during glacial maximum low sea level stand. A - A' cross section illustrated in **Figure 3.2**.

Figure 3.2: Vertical profiles of annual averaged **(A)** temperature (upper 1000m) and **(B)** salinity (upper 400m) along north-south line A-A' shown in Figure 3.1 (119.5° E) [Data from *Conkright et al.*, 1998]. Note the warm (10°C) bottom waters in the Sulu Sea.

The South China Sea has a salinity maximum in the Subtropical Lower Water at 150 m depth and salinity minimum in the northern Intermediate Water at 600 m depth [Wyrtki, 1961]. The Sulu Sea is connected to the South China Sea by a sill depth of 420 m called the Mindoro Strait [*Wyrtki*, 1961], and only water masses above this sill depth can enter the Sulu Sea. In the South China Sea the NPTW is characterized by a salinity maximum between 34.5 -34.9 %. In the Sulu Sea, NPTW with salinity content of 34.55 ‰ and temperatures ranging between 13-16°C is observed at about 200 m depth [Wyrtki, 1961; Nozaki et al., 1999]. In the South China Sea, Shaw et al. [1996] proposed that upwelling occurs northwest of Luzon between October and January based on the distribution of temperature, salinity, and dissolved oxygen concentration. At the end of the upwelling season, cold water spreads southwestward into the central basin of the South China Sea at approximately 200 m due to the offshore Ekman drift and a converging northward undercurrent [Shaw & Chao, 1994; Shaw et al. 1996]. Cold and high salinity waters are then able to enter the Sulu Sea at about 200 m depth across the Mindoro Strait.

3.5 Depth ecology of planktonic foraminifera

Ravelo and Fairbanks [1992] introduced the idea of describing surfacewater hydrography across the tropical Atlantic using δ^{18} O content of *G.* sacculifer, *N. dutertrei*, and *Globorotalia tumida*. They noticed that the observed temperature difference between the surface and the bottom of the photic zone was proportional to the range of δ^{18} O values recorded in foraminiferal calcite. I have adopted this approach here, but have measured *G. crassaformis* instead of *G. tumida* because it is more abundant, and it calcifies at approximately 200 m water depth, the depth where high salinity water intrudes into the Sulu Sea through the Mindoro Strait. Therefore it is possible to monitor the influence of the NPTW during MIS3. Information about calcification depth, calcification temperature, temperature and salinity tolerance for each species is summarized in Table 2.

Table 2. Summary of modern living habitat for *G. ruber*, *G. sacculifer*,*N. dutertrei*, and *G. crassaformis*

	G. ruber	G. sacculifer	N. dutertrei	G. crassaformis
calcification depth (meters)	< 25m	< 25m	125m	200 - 300 m
calcification temperature	~24°C	~26°C	15°C	10°C
temperature tolerance	16°C - 31°C	14°C - 31°C	13°C - 33°C	rarely been observed in the living state
salinity tolerance	22‰ - 49‰	24‰ - 47‰	25‰ - 46‰	-
Comments	mixed layer	mixed layer	thermocline	sub-thermocline
	100 ^µ m	200 μm	200 ^µ m Hemlel	200 μm ben et al [1989]

G. ruber (white) is the dominant species of tropical and subtropical planktic foraminifera. *G. sacculifer* is also abundant in tropical water masses. These species both live in the surface mixed layer [e.g., *Shackleton and Vincent*, 1978]. A potential complicating factor when interpreting *G. sacculifer* δ^{18} O is secondary calcification and partial dissolution [*Lohmann*, 1995]. Some forms of *G. sacculifer* develop a distinct saccate-like chamber in their terminal stage. These forms of *G. sacculifer* have been excluded from this study.

N. dutertrei lives in a wide range of tropical and subtropical environments [*Fairbanks et al.*, 1980; *Fairbanks and Wiebe*, 1980]. In tropical Atlantic plankton tows, the highest abundance of *N. dutertrei* is found below the mixed layer [*Fairbanks et al.*, 1980], and hence the oxygen isotopic composition of *N. dutertrei* tests is thought to reflect conditions in the thermocline.

Less is known about the ecology of *G. crassaformis* as it has rarely been observed in the living state. However, published results indicate that *G. crassaformis* starts to calcify at temperatures >10 °C and resides at about 200 meters in the water column [*Hemleben et al.*, 1989]. In plankton tows, the species occurs below the seasonal thermocline and the deep chlorophyll maximum [*Ravelo and Fairbanks*, 1992].

38

3.6. Material and Methods

For all foraminiferal faunal and isotopic analysis a split of each bulk sample was dry-weighed, disaggregated in tap water, and subsequently wetsieved through a 63 μ m screen. Dry coarse fraction (>63 μ m) residues were weighed and sieved through a 150 μ m screen. The > 150 μ m size fraction was also weighed (see Appendix VII) and split in half, one half for isotopic analyses and one half for faunal analyses.

3.6.1 Oxygen Isotope Analysis

Stable oxygen isotopic measurements were made on several planktonic foraminifer species from the same samples in the Sulu Sea core MD97-2141. Samples consisted of ~ 100 μ g of *G. ruber* (white variety; 212-250 μ m; ~14 individuals), *G. sacculifer* (without saccate like chamber; 300-355 μ m; ~ 9 individuals), or *N. dutertrei* (250-300 μ m; ~ 5 individuals), or *G. crassaformis* (300-355 μ m; ~ 3-4 specimens). *G. ruber* and *G. sacculifer* have been analyzed throughout the upper 18 m of the core at 1 cm and 10 cm intervals, respectively. However, only the data for MIS3 are presented in this chapter. *N. dutertrei* and *G. crassaformis* have only been analyzed for selected samples during MIS3. Samples were reacted with 100 % H₃PO₄ at 90° C in a Mulitprep carbonate preparation device. The resulting CO₂ gas was analyzed with a Micromass Optima dual-inlet mass spectrometer at the University at Albany, State University of New York. The standard deviation of the National Institute of Science and Technology international reference standard NBS-19 analysed over

an 8 month time period (n = 498) was 0.036 ‰ for δ^{18} O. The average difference in δ^{18} O between duplicate analyses of the same samples for *G. ruber* was (n=283) 0.094 ‰, *G. sacculifer* (n=24) 0.077 ‰, *N. dutertrei* (n=12) 0.042 ‰, and *G. crassaformis* (n=12) 0.152 ‰.

3.6.2 Faunal Abundance

From the > 150 p.m split for foraminifera faunal analysis an aliquot was separated that contained an average of 387 specimens per sample. For each sample aliquot, I recorded specimen counts of each planktonic foraminifer species and the total planktonic foraminifer fragments (see Appendix VI).

3.6.3 Chronology

The chronology for this IMAGES core is based on 28 radiocarbon measurements obtained on either *G. ruber* or *G. sacculifer* at the Woods Hole Accelerator Mass Spectrometer facility. Before 43,000 year B.P. the $\delta^{18}O_{G. ruber}$ chronology has been correlated to the $\delta^{18}O$ chronology of *Martinson et al.* [1987]. All ages in this paper are represent calendar ages. A detailed description of the age model can be found elsewhere [Chapter 2].

3.7 Results

3.7.1 Oxygen isotopic composition of G. ruber and G. sacculifer

The δ^{18} O analyses of *G. ruber* and *G. sacculifer* from core ND97-2141 are listed in Appendix I and III, respectively, and summarized in Figure 3.3 for MIS3. Due to the higher sampling density this newly obtained $\delta^{18}O_{G. ruber}$ record has four times the temporal resolution (< 100 years) than does the $\delta^{18}O_{G. ruber}$ record from ODP site 769A [*Linsley*, 1996]. Most importantly, $\delta^{18}O$ variations during MIS3 include several previously unidentified oscillations in $\delta^{18}O_{G. ruber}$ which range from 0.4 - 0.8 ‰ in amplitude with the largest oscillation at the beginning of MIS3 (Figure 3.3A). Similar events have been observed in the $\delta^{18}O_{G. sacculifer}$ record from this core. Due to the lower sampling resolution of *G. sacculifer* not all events are as well defined as in the $\delta^{18}O_{G. ruber}$ record. However, the relationship between $\delta^{18}O_{G. ruber}$ and $\delta^{18}O_{G. sacculifer}$ for the whole core is very good ($r^2 = 0.74$, Table 3a). This degree of correlation is expected, because both species dwell in the mixed layer [e.g., *Shackleton and Vincent*, 1978]. A more detailed description of MD97-2141 $\delta^{18}O_{G. ruber}$ results have been presented in Chapter 2.

Figure 3.3: Planktonic foraminiferal δ^{18} O records plotted against time for each species analyzed in IMAGES core MD97-2141 during marine isotope stage 3. **(A)** *Globigerinoides ruber* (circles); black triangles indicate ¹⁴C ages. **(B)** *Globigerinoides sacculifer* (down triangles) **(C)** *Neogloboquadrina dutertrei* (up triangles) **(D)** *Globorotalia crassaformis* (diamonds). Note that the y-axis scale range for all plots is 1.2 ‰.

Table 3a: Similarity coefficients (r^2) for planktonic foraminifera δ^{18} O results
during last 150 kyr.

	$\delta^{18} {\sf O}_{\ {\sf G.ruber}}$	$\delta^{18} O$ G.sacculifer
$\delta^{18} {\sf O}$ _{G.ruber}	1.00	
$\delta^{18}{\sf O}$ G.sacculifer	0.74	1.00

Table 3b: Similarity coefficients (r^2) for planktonic foraminifera δ^{18} O results during MIS 3 (30-60 kyr).

2	$\delta^{18} O_{G.ruber}$	$\delta^{18} {\sf O}_{N.dutertrei}$	$\delta^{18} {\sf O}$ G.crassaformis
$\delta^{18} O_{G.ruber}$	1.00		
$\delta^{18} {\sf O}_{N.dutertrei}$	0.38	1.00	
$\delta^{18} {\sf O}$ G.crassaformis	0.05	0.03	1.00

3.7.2 Oxygen isotopic composition of deeper-dwellering foraminifera

The δ^{18} O analyses of *N. dutertrei* and *G. crassaformis* from core MD97-2141 are listed in Appendix IV and V, respectively, and summarized in Figure 3.3 for MIS3. The $\delta^{18}O_{N. dutertrei}$ record follows a pattern similar to that of $\delta^{18}O_{G. ruber}$ (Figure 3.3C). The $\delta^{18}O_{N. dutertrei}$ values are approximately 1.5 ‰ more enriched than the mixed layer dwellers. Starting 44 kyr, $\delta^{18}O_{N. dutertrei}$ record increases to -0.2 ‰ over a period of 3 kyr. Not all $\delta^{18}O_{G. ruber}$ excursions are found in the $\delta^{18}O_{N. dutertrei}$ record and this is reflected in the relatively low similarity coefficient of 38 % (r² = 0.38, Table 3b).

In contrast, $\delta^{18}O_{G.\ crassaformis}$ is not significantly correlated to $\delta^{18}O_{G.\ ruber}$ or $\delta^{18}O_{N.\ dutertrei}$ (r²: 0.05 and 0.03, respectively, Table 3b). The magnitude of the

 $δ^{18}$ O changes in $δ^{18}$ O_{*G. crassaformis*} are in general larger (up to 1 ‰) than those of the shallower dwelling foraminifera (up to 0.6 ‰) studied. The largest amplitude changes in $δ^{18}$ O_{*G. crassaformis*} are observed between 47 and 45 kyr. A decrease in 1‰ $δ^{18}$ O_{*G. crassaformis*} begins at 47 kyr reaching its lowest $δ^{18}$ O_{*G. crassaformis*} value of 0.0 ‰ near 46 kyr increasing again to about 1.1 ‰ in less then 500 years before decreasing again to 0.02 ‰ in less than 500 years.

3.7.3 Faunal abundance

Seasonal changes in the upper ocean conditions can also influence the species composition of planktonic foraminiferal assemblages [Bé, 1960; Curry et al., 1983; Ravelo et al., 1990; Thune!! and Sautter, 1992]. Twenty-three different planktonic foraminifera species were counted throughout the MD97-2141 section containing MIS3. One specimen of these taxa was recorded in at least one of the 35 samples analyzed between 35 - 60 kyr. Eleven species dominate the downcore fauna and make up nearly 89 % of the average species population. In total, 13 species have maximum relative abundance that exceed 5 % (Table 4). Downcore variations in the relative abundance of 8 different planktonic foraminifera (four mixed layer species, two thermocline species, and two sub-thermocline species) highlight the complex relationship between species abundance and $\delta^{18}O_{G.\ ruber}$ in MIS 3 (Figure 3.4). The four most abundant species (*G. ruber, Globigerinita glutinata, N. dutertrei and Globigerinoides bulloides*) show fluctuations with amplitudes in the 10 % - 20 % ranges. Abundance maxima for *G. sacculifer* and *N. dutertrei* occur between 42-44 kyr.

Globorotalia tumida, N. pachyderma (r.), and *G. crassaformis* occur in trace amounts. *G. crassaformis* reaches its maximum abundance of ~5.5 % at 39 kyr.

The downcore inter-relationships among abundant species are not straightforward. The abundance maxima and minima are not related in a simple manner to the MIS 3 $\delta^{18}O_{G.\ ruber}$ oscillations. The species' abundance changes abruptly and most species are not highly correlated with each other. *N. dutertrei* and *G. ruber* indicate the highest correlation with r² of 0.29.

Figure 3.4: (A) The δ^{18} O values of planktonic *G. ruber* for MIS3. (B): Downcore variations in the percent relative abundance of 8 planktonic foraminifera species during MIS3 at MD97-2141. Four mixed-layer species: *G. ruber, G. sacculifer, G. glutinata, G. bulloides*; two thermocline species: *N. dutertrei, G. tumida*; and two sub-thermocline species: *N. pachyderma* (*r.*), and *G. crassaformis*.

Planktonic foraminifer species	Mean	SD	Minimum	Maximum
	(relative %)	(relative%)	(relative %)	(relative%)
Globerinoides ruber (d'Orbigny), white	18.0	3.2	15.8	23.1
Globiqerinita glutinata (Egger)	15.4	3.0	15.4	22.4
Neogloboquadrina dutertrei (d'Orbigny)	15.3	4.0	16.0	22.0
Globierina bulloides (d'Orbigny)	12.2	4.0	9.9	19.3
Globigerina calida (Parker)	6.6	2.1	5.2	11.3
Globorotalia tumida (Brady)	5.7	1.7	4.8	9.1
Globigerinella aequilateralis (Brady)	3.9	2.0	2.7	11.4
Globigerinoides tenellus (Parker)	3.4	1.6	2.4	9.1
Globigerina rubescens (Hofker)	3.1	2.3	1.9	10.3
Globerinoides sacculifer (d'Orbigny). without sac	3.1	1.9	1.4	10.6
Neogloboquadrina pachyderma (Ehrenberg), right coiling	2.4	1.3	0.3	4.7
Orbulina universa (d'Orbigny)	1.6	1.0	1.3	3.8
Globigerina falconensis (Blow)	1.1	1.7	0.0	6.9
Pulleniatina obliquiioculata (Parker and Jones)	0.9	0.6	0.2	2.3
Globorotalia crassaformis (Galloway and Wissler)	0.8	1.2	0.5	5.2
Globorotalia scitula (Brady)	0.7	2.3	0.0	10.6
Globerinoides sacculifer (d'Orbigny), with sac	0.6	0.8	0.2	3.3
Globorotalia menardii (d'Orbigny)	0.3	0.5	0.0	2.1
Globigerina diqitata (Brady)	0.3	0.3	0.0	1.3
Globoquadrina conglomerata (Schwager)	0.0	0.4	0.0	2.5
Globorotalia inflata (d'Orbigny)	0.0	0.1	0.0	0.5
Globorotalia truncatulinoides (d'Orbigny), right coiling	0.0	0.4	0.0	2.4
Globiqerinita uvula (Ehrenberg)	0.0	1.1	0.0	4.0
"Mixed layer" species: <i>G. ruber, G. sacculifer, G. glutinata</i>	37.4	4.0	33.8	43.7
"Thermocline" species: <i>G. menardii, P.obliquiloculata,</i> N.dutertrei, and G. tumida	23.2	4.8	21.5	28.7

Table 4: Planktonic Foraminifer taxonomic categories used in present study along with their means, standard deviations, and minimum and maximum occurrences between 35-60 kyr in MD97-2141

Notes: Number of samples = 35; SD = standard deviation

3.8 Discussion

The mixed layer in the Sulu Sea has a depth of less than 10 meters during the summer months and is deepest (25 m) during winter months [Levitus, 1994]. Using surface sediments in the tropical Atlantic, Ravelo et al. [1990] and Ravelo and Fairbanks [1992] have related spatial variations in foraminifera faunas to changes in the hydrographic conditions of the overlying surface layer. In the tropical Atlantic the planktonic foraminiferal assemblage is dominated primarily by thermocline species when the upper ocean is well-stratified during winter months while mixed layer species are more abundant during summer months when they are living in a compressed depth habitat [Ravelo and Fairbanks, 1992]. They also observed that the tropical Atlantic faunal assemblages are more correlated to the depth of the mixed layer, thermocline depth, rather than to colder and warmer sea surface temperatures. In their study, Ravelo and Fairbanks [1992] summed the relative fauna abundance of G. ruber, G. glutinata, and G. sacculifer (species known to calcify in the mixed layer). The sum of these species correlates well to the mixed layer depth [Ravelo and Fairbanks, 1992]. A second factor assemblage (containing Globorotalia menardii, Pulleniatina obliquiloculata, N. dutertrei, and G. tumida) reflects changes in the thermocline where the chlorophyll maximum is located, and therefore, whose primary production is at a maximum [Fairbanks and Wiebe, 1980; Fairbanks et al., 1980, 1982; Ortner et al., 1980]. These species are most abundant in regions where surface temperature seasonality is low and where the thermocline moves into the photic zone. I have adopted the approach of Ravelo and Fairbanks [1992] for this study to examine possible changes in the thermocline structure based on the faunal assemblage. In MD97-2141, the

mixed layer species explain 73% variance of the data set (Table 4), and indicate greater variability between ~ 35-47 kyr (Figure 3.5). In contrast, "thermocline" species only explain 11% variance of faunal data, and display a mirror image to the mixed layer species (Figure 3.5). Changes from maxima to minima abundance for mixed layer and thermocline species vary from 5-15 % and 10-15 %, respectively. Overall, the changes in the thermocline species are larger for a single event compared to changes in the mixed layer species.

Figure 3.5: (A) $\delta^{18}O_{G.\ ruber}$ during MIS3. (B): Time series of the relative abundance sums of "mixed-layer" species *Globigerinoides ruber*, *Globigerinita glutinata*, *Globigerinoides sacculifer* and the relative abundance sum of "thermocline" dwellers *Globorotalia menardii*, *Pulleniatina obliquiloculata*, *Neogloboquadrina dutertrei*, and *Globorotalia tumida*.

How much of the observed changes in the δ^{18} O of the mixed layer dwellers can be explained by changes in the thermocline and sub-thermocline? To address this question *Chaisson and Ravelo* [1997] introduced the strategy to

use the difference between δ^{18} O time series from the mixed layer species and the thermocline species as a proxy for the temperature difference between the depths of calcification for the different foraminifera species. Their study is based on the assumption that the δ^{18} O signal includes both global ice volume and local temperature components, however, each species records the temperature and salinity ($\delta^{18}O_{seawater}$) of its immediate environment uniquely. Therefore, the isotope "difference curve" represents the temperature and local salinity difference of their respective records [*Berger et al.*, 1978; *Chaisson and Ravelo*, 1997]. ML $\Delta \delta^{18}$ O represents the temperature and local salinity range between the sea surface and thermocline:

$$ML \Delta \delta^{18}O = \delta^{18}O_{N. dutertrei} - \delta^{18}O_{G. ruber}$$

TH $\Delta \delta^{18}$ O represents the changes in the temperature and local salinity from the thermocline to the water layer below it:

TH
$$\Delta \delta^{18}$$
O = δ^{18} O_{G. crassaformis} - δ^{18} O_{N. dutertrei}

During MIS3 in the Sulu Sea, the difference between $\delta^{18}O_{N.\ dutertrei}$ and $\delta^{18}O_{G.\ ruber}$ (ML $\Delta \delta^{18}O$) averages 1.5 % (Figure 3.6A). Two intervals of smaller ML $\Delta \delta^{18}O$ changes are observed at 38 kyr and between 52-54 kyr. No obvious relationship exists with the $\delta^{18}O_{G.\ ruber}$ oscillations. The most prominent changes observed in TH $\Delta \delta^{18}O$ are between 42.5 - 45.8 kyr and 49 - 52 kyr (Figure 3.6B). During these intervals $\Delta \delta^{18}O$ fluctuates more than 1.1 ‰ in less than 1,000 years, mostly due to changes in $\delta^{18}O_{G.\ crassaformis}$ (see Figure 3.3D). The oscillations in $\delta^{18}O_{G.\ crassaformis}$ do not appear to be directly related to the

observed changes in shallower dwelling foraminifera but are possibly influenced by sub-thermocline oceanic currents.

If the 1 ‰ depletion of $\delta^{18}O_{G. crassaformis}$ at 47 kyr (Figure 3.3D) is entirely due to temperature, this would require temperature fluctuations of 4.5 °C assuming -0.22 ‰ per °C [Epstein et al., 1953]. This is higher than the glacialinterglacial temperature change of about 3 °C discussed in Chapter 2. Since $\delta^{18}O_{G.\ crassaformis}$ changes are out of phase with the $\delta^{18}O$ changes of shallowerdwelling foraminifera, these fluctuations are better explained by the varying influence of the colder high salinity NPTW. My interpretation is that starting at approximately 50 kyr the influence of NPTW decreased gradually until 46 kyr in the Sulu Sea (Figure 3.6B) as these waters were prevented from entering the Sulu Sea due to increased summer monsoon strength. NPTW is only able to spread to the southern South China Sea during a fully developed northeast monsoon [Qu et al., 2000]. Therefore, at times of intense summer monsoon activity NPTW is unable to spread southward. In the Sulu Sea, however, the intensity of the summer monsoon may have weakened starting at 46 kyr, while the northeast monsoon may have strengthened at least three times between 45 and 42.5 kyr, allowing the NPTW to spread southward into the Sulu Sea. The Sulu Sea isotopic data in this study are also in agreement with a study in the southern South China Sea by Pelejero et al. [1999], in which they observed that a low sea surface salinity episode caused by inferred extreme tropical precipitation and an enhanced summer monsoon between 47-40 kyr. This model is also consistent in a broadly stronger southwest monsoon between 50-30 kyr suggested by magnetic susceptibility data for Chinese paleo loess records [Chen et al., 1997]. Additionally, most of the observed oscillations in the oxygen isotope

record and the overall trend of the thermocline abundance record between 40-50 kyr seem to correlate well with the magnetic susceptibility peaks (Figure 3.7). This indicates increased East Asian summer monsoon conditions, and therefore reduced influenced of the NPTW.

Figure 3.6: Oxygen isotope "difference" curves. **(A)** *Neogloboquadrina dutertrei* $\delta^{18}O$ - *Globigerinoides ruber* $\delta^{18}O$. **(B)** *Globorotalia Crassaformis* $\delta^{18}O$ - *Neogloboquadrina dutertrei* $\delta^{18}O$. Dashed horizontal lines represent average values. Solid lines represent average standard deviation. Possible influence of North Pacific Tropical Water (NPTW) is indicated by arrows.

Figure 3.7: Comparison between Chinese loess and Sulu Sea data. **(A)** Chinese loess magnetic susceptibility data used as an index for East Asian monsoon activity [*Chen et al.*, 1997]. **(B)** Same figure as in Figure 3.6B. Dashed vertical lines represent possible correlation between the Chinese loess and Sulu Sea record during enhanced East Asian summer monsoon peaks. (C) Time series of the relative abundance sums of "thermocline" dwellers. *G. menardii, P. obliquiloculata, N. dutertrei, and G. tumida*. Greyshaded area indicates one example of a possible correlation of all three data sets between 45 and 46 kyr (see also Figure 3.5B).

3.9 Conclusions

The planktonic foraminiferal stable isotopic and fauna assemblage data presented here clearly demonstrate that significant oceanographic changes occurred in the Sulu Sea between 60,000 and 30,000 years. Most of the observed $\delta^{18}O_{G.\,ruber}$ excursions in MIS3 occurred within the surface mixed layer, and are not influenced by changes below the thermocline. The deeper-dweller $\delta^{18}O$ and faunal study exhibits greater variability of thermocline faunal abundance and $\delta^{18}O$ within the sub-thermocline species indicating episodes of reduced influence of North Pacific Tropical Water into the Sulu Sea driven by enhanced summer monsoon activity.

CHAPTER 4

The relationship between changes in temperature and precipitation in tropical oceans during the Last Glacial Maximum

4.1 Abstract

Comparison of published proxy sea surface temperature (SST) and oxygen isotope (δ^{18} O) profiles for glacial/interglacial sequences from fourteen tropical and subtropical oceanic settings enables assessment of the spatial differences in the timing and progression of ocean warming following the last glacial maximum (LGM: 18,000 - 21,000 calendar years). These stratigraphic records indicate that on average SST has increased ~2.5-3 °C since the LGM in the tropical and subtropical regions. At 5 sites the δ^{18} O termination is synchronous with SST changes inferred from foraminiferal Mg/Ca and alkenones, while at 9 sites it lags SST by approximately 3,500 years. A comparison of SST and residual δ^{18} O (ice volume component removed) over the glacial-interglacial period indicates a linear increase in SST with younger age. At sites where the δ^{18} O and SST transition coincide δ^{18} O continuously decreases over time reaching a plateau at ~ 7 kyr. This indicates that $\delta^{18}O_{residual}$ is mainly influenced by changes in SST. At sites where SST is leading the δ^{18} O record, for a miniferal δ^{18} O_{residual} increases for approximately 3,000 years up to 17 kyr, and then continuously decreases to the mid-Holocene, indicating large regional changes in precipitation-evaporation balance. The sites where SST is leading the δ^{18} O record are all located in areas that are currently influenced by increased atmospheric water vapor under La Niña like conditions.

4.2 Introduction

Understanding paleoclimate patterns during the Last Glacial Maximum (LGM) is important because the LGM represents a global climate state with vastly different boundary conditions from those of today, and thus provides a useful test of climate models. Although other extreme states of climate may also exist, the clearly documented influence of global ice sheets on climate [*Clark et al.*, 1999] justifies a thorough understanding of the climate state dominated by ice. One key weakness in our understanding is how the tropical ocean responded to climatic changes during the LGM.

Recent evidence from ocean sediments indicates that sea surface temperature (SST) changes at the LGM termination (18-21,000 calendar years) lead the planktonic oxygen isotopic record (δ^{18} O) by approximately 3,500 years (Figure 4.1) [Charles et al., 1996; Lea et al., 2000; Chapter 2; Rosenthal et al., in prep]. It has been inferred from tropical paleo-records that SST changes in the tropics coincide with changes in Antarctic air temperature, and precede changes in continental ice volume by \sim 3,000 years, suggesting that tropical cooling must have played a major role in driving the ice-age climate [Charles et al., 1996; Lea et al., 2000; Chapter 2]. Additionally, it has been proposed that the transport of water vapor into the western Pacific was enhanced during the LGM based on the $\delta^{18}O$ extraction of a salinity proxy from magnesium/calcium (Mg/Ca) and planktonic foraminiferal records [Lea et al., 2000; Chapter 2]. However, this conclusion is in conflict with the idea of a colder and drier glacial climate with reduced precipitation [e.g., Thompson et al., 2000]. Furthermore, not all sediment cores indicate this same lead-lag relationship between SST and $\delta^{18}O$

[e.g., Schneider et al., 1996; Rühlemann et al., 1999; Wang et al., 1999; Kudrass et al., 2001].

Figure 4.1: δ^{18} O and SST estimates based on Mg/Ca in the Sulu Sea for the last 21,000 years. This figure is used as an example to demonstrate the 3,500 year lead in SST between 17 and 20 kyr (Last Glacial Maximum). The data are smoothed with a 5 point running average. Down triangles indicate radiocarbon ages for this site. [Data from Chapter 2 and *Rosenthal et al.*, in prep].

This study examines in greater detail the relationship between inferred temperature changes and foraminiferal planktonic δ^{18} O in tropical oceans during the LGM and across the transition to the Holocene. Published reconstruction of SST and δ^{18} O data collected within the same sediment cores in mainly tropical

oceanic settings have been compiled in order to describe the regional extent of the relationship between SST and δ^{18} O at the LGM and termination I.

4.3 Methods

In this study we have compiled oxygen isotope data from mixed layer planktonic foraminifera and published proxy-derived SST data measured from the same fourteen cores in the Atlantic, Pacific, and Indian Oceans (Figure 4.2 and Table 5) for the last 20,000 years. SST reconstructions were derived from Mg/Ca analyses [see Chapter 2; *Rosenthal et al.*, in prep, *Lea at al.*, 2000; *Nürnberg et al.*, 2000] or alkenone analyses [*Sikes and Keigwin*, 1994; *Schneider et al.*, 1995; *Chapmann et al.*, 1996; *Schneider et al.*, 1996; *Sonzogni et al.*, 1998; *Rühlemann et al.*, 1999; *Wang et al.*, 1999; *Kudrass et al.*, 2001]. At all sites, the data were used with the chronology provided in the original literature. The data have been box averaged into 1,000 year constant time steps using the Arand software package to compensate for age model discrepancies between the different records. Therefore, major conclusions do not rely on observations made from single data points, and the age-model discrepancies do not significantly affect the findings in this study.

Table 5: Background information of	f cores use	d in this st	udy				
location	latitude	longitude	core name	Mg/Ca	Alkenone	δ ¹⁸ Ο	Reference
Sulu Sea	8.78 N	121.28 E	MD97-2141	G. ruber	ı	G. ruber	this study
Cocos Ridge	2.26 N	90.95 W	TR163-19	G. ruber	* >	G. ruber	Lea et al. [2000]
Ontong Java Plateau	0.32 N	159.36 E	ODP 806B	G. ruber	*>	G. ruber	Lea et al. [2000]
Equatorial Divergence Zone	1.67 S	12.43 W	GeoB1105	G. sacculifer	ı	G. sacculifer	Nürnberg et al. [2000]
Guinea Basin (South Equ. Current)	5.77 S	10.75 W	GeoB1112	G. sacculifer	ı	G. sacculifer	Nürnberg et al. [2000]
Northeast Atlantic	20.16 N	19.00 W	BOFS31/1K		7	G. bulloides	Chapmann et al. [1996]
Angola Basin	6.58 S	10.32 E	GeoB1008-3		7	G. ruber, pink	Schneider et al. [1995]
Walfish-Ridge	20.1 S	9.18 W	GeoB1028-5		7	G. ruber	Schneider et al. [1996]
Bengal Fan	19.97 N	90.03 E	SO93-126KL		7	G. ruber	Kudrass et al. [2001]
Indian Ocean	10.47 N	75.23 E	MD77-194		7	G. ruber	Duplessy [1981]; Sonzogni et al. [1999]
South China Sea	8.51 N	112.33 E	GIK17961-2		7	G. ruber	<i>Wang et al.</i> [1999]
South China Sea	20.12 N	117.38 E	GIK17940		7	G. ruber	<i>Wang et al.</i> [1999]
Equatorial Atlantic	0.04 N	23 W	86014-12PC51		7	G. sacculifer	Sikes and Kegwin [1994]
Tropical Atlantic	12.09 N	61.24 W	M35003-4		~	G. ruber, pink	Rühlemann et al. [1999]
Note: * = agree with Mg/Ca result accc	ording to Ti	m Herbert (I	Brown Universit	(A	I		

~
<u>`</u> ``
22
Ð
>
5
~
5
2
ų
ž
<u> </u>
÷
<u> </u>
Ψ
Ą
5
Ψ
1
~
Ľ
Ē
-
0
÷
D
ē
:=
Q
5
ĸ
ŏ
ā
Ξ
ült
sult
esult
result
a result
Ca result
//Ca result
lg/Ca result
Mg/Ca result
Mg/Ca result
th Mg/Ca result
vith Mg/Ca result
with Mg/Ca result
with Mg/Ca result
e with Mg/Ca result
ree with Mg/Ca result
gree with Mg/Ca result
agree with Mg/Ca result
agree with Mg/Ca result
= agree with Mg/Ca result
* = agree with Mg/Ca result
: * = agree with Mg/Ca result
e: * = agree with Mg/Ca result
<pre>ite: * = agree with Mg/Ca result</pre>

The oxygen isotope record preserved in planktonic foraminifera buried in sediments is a function of SST, precipitation-evaporation (P-E) balance, and global ice volume all of which are affected by global radiative forcing. I have subtracted the generally accepted 1 ‰ [*Schrag et al.*, 1996] glacial-interglacial δ^{18} O signal of global ice volume from the planktonic δ^{18} O time series in each record in order to better evaluate the influence of SST and P-E at each location assuming a 120 m drop in sea level at the LGM. All available sea-level data [*Fairbanks*, 1989; *Fairbanks*, 1990; *Chappell & Polach*, 1991; *Edwards et al.*, 1993; *Guilderson et al.*, 2000; *Hanebuth et al.*, 2000] were compiled, corrected for their estimated tectonic uplift, and converted into calendar ages using INTCAL98/Calib4 [*Stuiver et al.*, 1998a, b]. However if available, U/Th ages have been used instead of ¹⁴C ages (Figure 4.3). The best fit is expressed in the polynomial function:

sea level =
$$1.25 + (5.39^{\circ}yr) - (2.29^{\circ}yr)^{2} + (0.39^{\circ}yr)^{3} - (0.022^{\circ}yr)^{4} + (0.00038^{\circ}yr)^{5}$$

The sea level curve has been converted into permil units assuming 0.008 ‰ per meter sea level change [*Schrag et al.*, 1996], and subtracted from each available δ^{18} O record. The δ^{18} O record minus the sea level record will be hereafter referred to as δ^{18} O_{residual}.

4.4 Results

Cores known to exhibit a lead in SST over δ^{18} O at the LGM (Figure 4.4A and B) have been separated from cores where SST changes are synchronous with δ^{18} O during this period (Figure 4.4C & D). All cores where SST estimates were based on Mg/Ca analyses (SST_{Mg/Ca}) indicate a lead in δ^{18} O_{residual}, whereas only three cores with SST derived from alkenones (SST_{Alk}) indicate a lead with respect to δ^{18} O_{residual}. In those cores where SST leads the δ^{18} O_{residual}, δ^{18} O_{residual} increases approximately 0.3 to 0.4 ‰ between 20 to 17 kyr, and decreases thereafter by 1 ‰ (Figure 4.4A). In those cores with SST leading, SST continuously increases by 2 °C until it reaches a maximum at approximately 10 kyr, after which SST drops 0.5 °C (Figure 4.4B). However, this drop in SST after 10 kyr is only true for SST_{Mg/Ca}. SST_{Alk} increases continuously during this time period. One of the main focuses of this study will be to examine the cause of the δ^{18} O_{residual} increase by 0.3-0.4 ‰ in cores where SST is leading the δ^{18} O record (Figure 4.4A).

In cores where SST is synchronous with $\delta^{18}O_{residual}$, $\delta^{18}O_{residual}$, continuously decreases by 0.7 ‰ until 10 kyr, then increases by 0.4 ‰ (Figure 4.4C). Over this same interval SST increases by 1.5 °C (Figure 4.4D). Note that the SST record in Figure 4.4D is based only on alkenones. Comparison of all SST records indicates a linear relationship between 20-10 kyr. However, starting at 10 kyr, SST_{Mg/Ca} indicates minimal change or even a slight reduction in temperature.

Figure 4.4: Oxygen isotope (δ^{18} O) and SST data age in 1000 yrs B.P.. Ice volume change of 1.0 ‰ for glacial-interglacial range has been subtracted from the δ^{18} O record. **A**) Compilation of δ^{18} O of cores where SST is leading the δ^{18} O record. **B**) Compilation of SST from cores where SST is leading δ^{18} O. **C**) Compilation of δ^{18} O from cores where SST is not leading δ^{18} O. **D**) Compilation of SST from cores where SST from cores where SST is not leading δ^{18} O.

4.5 Discussion

The oxygen isotopic ratio of planktonic foraminifera is mainly a function of sea surface temperature (SST), ice volume and sea surface salinity (SSS),

$$\delta^{18}O_{\text{foraminifera}} = \delta^{18}O$$
 (SSS, SST, ice volume)

where SSS is a function of Precipitation (P) minus Evaporation (E), and where evaporation is a function of wind speed and water vapor saturation. Foraminiferal δ^{18} O potentially is a function of water temperature due to temperature-dependent equilibrium oxygen isotopic fractionation (~ 0.22‰ δ^{18} O per °C [*Epstein et al.*, 1953]. Additionally the δ^{18} O of ocean water responds to changes in rainfall, which adds isotopically light (more negative δ^{18} O) water. Therefore, δ^{18} O will increase as SST decreases and as SSS (defined as P-E) decreases. Since the ice volume signal has been subtracted from the δ^{18} O records in Figure 4.4A and Figure 4.4C, changes in the δ^{18} O_{residual} must be due to changes in local SST and SSS. Furthermore, assuming the δ^{18} O_{residual} is only a function of SST, SSS it is possible to subtract SST from the δ^{18} O_{residual} record using the SST estimates based on Mg/Ca and alkenone analyses. Thus, it is potentially possible to isolate and assess the influence of SSS for each sediment core location.

4.5.1 Cores with SST synchronous with $\delta^{18}O$

In cores where the glacial-interglacial SST change is synchronous with δ^{18} O, SST displays a linear increase through the glacial-interglacial transition (Figure 4.4D). In the same cores, the δ^{18} O_{residual} indicates a continuous decrease to ~10 kyr) (Figure 4.4 C), and increases thereafter by 0.3-0.4 ‰. If δ^{18} O_{residual} is

driven mainly by changes in SST, it would be expected that Figure 4.4C and Figure 4.4D would portray the same trend. SST and $\delta^{18}O_{residual}$ do indicate a similar trend until about 10 kyr, but then they differ during the Holocene. However, SST based on Mg/Ca measurements in Figure 4.4B shows a similar pattern to $\delta^{18}O_{residual}$ (Figure 4.4C) suggesting that $\delta^{18}O_{residual}$ is influenced mainly by changes in SST. This difference in inferred temperature changes derived from Mg/Ca and alkenones is puzzling. Since in this study only G. ruber and G. sacculifer have been included (with the exception of one G. bulloides record) the difference between these SST curves might be due to changes in conditions under which G. ruber and G. sacculifer calcify. Alkenones are known to reflect temperature changes over the first 10 m of the water column [Prahl et al., 1988; Müller et al., 1998; Herbert, 2001], whereas G. ruber and G. sacculifer can calcify from the surface to a depth of ~70 m [e.g., Ravaelo and Fairbanks, 1992; Nikolaev et al., 1998]. Typically, the average calcification depth of G. ruber is within the uppermost 25 m [Ravaelo and Fairbanks, 1992]. The isotopic composition of modern oceanic waters partially reflects a dynamic balance between vertical and horizontal mixing, causing homogenization of the isotopic composition in the upper 70 m [Nikolaev et al., 1998]. Because the depth at which G. ruber and G. sacculifer calcify is not exactly known, it is therefore possible to get erroneous SST estimates since we are measuring an average temperature of at least the upper 25 m. A different thermocline structure during glacial and interglacial times could also influence temperature estimates based on foraminiferal Mg/Ca and $\delta^{18}O_{residual}$. For example due to the large temperature gradient in the thermocline, depending on the depth at which G. ruber calcifies, the average temperature of the uppermost 25 m during an interglacial period could be close to the average temperature during glacial times (Figure 4.5).

Therefore, I argue that as temperature proxies foraminiferal Mg/Ca and $\delta^{18}O_{residual}$ are independently affected by thermocline changes. This also suggests that for the purpose of reconstructing past changes in SSS, it is better to use SST estimates based on Mg/Ca rather than alkenones because both Mg/Ca and $\delta^{18}O$ are measured on the same species of foraminifera in the same sample, and thus by subtracting the SST_{Mg/Ca} from the $\delta^{18}O_{residual}$ the additional temperature difference based on the calcification depths in each record will theoretically cancel each other out, and the estimate of $\delta^{18}O_{seawater}$ will be more accurate.

Figure 4.5: Hypothetical thermocline reconstruction for the last glacial maximum and interglacial. Horizontal bars indicate average temperature change for the uppermost 25 meters.

4.5.2 Cores where SST leads δ^{18} O

 $\delta^{18}O_{residual}$ and reconstructed SST for cores where SST leads $\delta^{18}O$ are presented in Figures 4.4A and B. Of particular interest is the observed 0.4 ‰ $^{18}\text{O}_{\text{residual}}$ enrichment between 20-17 kyr in cores where SST is leading $\delta^{18}\text{O}$ at the termination (Figure 4.4A). The independent SST proxies in Figure 4.4B record the same increase in SST during this time period indicating that the ¹⁸O_{residual} enrichment between 20-17 kyr is not related to temperature changes. Since the ice volume signal has already been extracted from the $\delta^{18}O$ record (Figure 4.4A), planktonic foraminiferal $\delta^{18}O_{residual}$ must be lower at the LGM (20 kyr) due to an increase in P-E. For the purpose of calculating δ^{18} O of seawater, only cores with SST estimates based on Mg/Ca, and not on alkenone data, have been included in Figure 4.6 for reasons mentioned in the previous section. Figure 4.6A emphases the 0.4 ‰ ¹⁸O_{residual} enrichment between 20-17 kyr, and thereafter the continuous lowering of ¹⁸O_{residual} into the Holocene. The $\delta^{18}O_{seawater}$ (SSS) has been calculated using the empirically derived temperature : δ^{18} O relationship based on planktonic foraminifera generated by Erez and Luz [1983] The $\delta^{18}O_{seawater}$ record shows a 0.6 ‰ for G. sacculifer (Figure 4.6C). enrichment between the LGM and 14 kyr, suggesting a continuous change from less saline surface oceans during the LGM to more saline conditions at 14 kyr. This trend reverses at 14 kyr, indicating a decrease in SSS.

The P-E state of the tropics at the LGM remains controversial. However, the conclusion that the ¹⁸O depletion at the LGM is due to an increase in P-E appears to be in agreement with observations from forty lake paleo-records

Farrera et al., [1999]. A more positive mean annual LGM P-E is recorded in the now-arid basins of western North America, on the southern Andean Altiplano [Baker et al., 2001], in the Mediterranean region [Prentice et al., 1992; Harrison and Digerfeldt, 1993], in the Middle East [Roberts and Wright, 1993], and in southern Africa [Farrera et al., 1999]. Modelling studies indicate that wetter conditions are found on the western side of New Guinea during the LGM [Hostetler and Clark, 2000]. These authors proposed that the land that emerged between Australia and Indonesia (presently the Arafura Sea and the Torres Strait) led to increased precipitation through increased surface heating. However, in equatorial East Africa, lakes show conditions similar to, or drier than present west of 34 °E, and similar to, or wetter than present to the east of 34 °E [Farrera et al., 1999]. Additionally, there are many examples where regions register drier conditions during the LGM (e.g., Australian subtropics, northwestern Sahara [Conrad 1969; Causse et al. 1988]. Additionally, ice core analyses from the Sajama Mountains in Bolivia indicate increased regional accumulation during the LGM which is consistent with the higher water levels in regional paleolakes [Thompson et al., 1998]. Thompson et al., [1998] concluded that the occurrence of less dust in tropical glacial ice cores indicates that climate conditions must have been wetter, and therefore greater snow cover is possible.

Figure 4.6: (A) Oxygen isotope (δ^{18} O) and (B) SST data versus ages in 1000 years B.P.. Sea level change of 1.0 ‰ for glacial-interglacial range has been subtracted from the δ^{18} O record (δ^{18} O_{residual}). Only data of cores where SST leads δ^{18} O and is based on Mg/Ca measurements are shown. Compare with Figures 4.4A and B, respectively. (C) δ^{18} O_{seawater} calculated using the equation by *Erez and Luz* [1983].

I argue that lower salinity conditions in certain regions of the tropical oceans at the LGM and higher lake levels at high altitudes are linked. Under colder glacial climate, less precipitation is expected because there is less moisture in the air. The apparent wetness of high elevations may have been due to strong cooling and reduced evaporative demand more than an increase in precipitation at these elevations [*Farrera et al.*, 1999]. Generally reduced precipitation in the tropics and sub-tropics and enhanced precipitation in the path of southward-shifted jet streams in the Northern Hemisphere are also consistent features of the Paleoclimate Modeling Intercomparison Project simulations for the LGM [*Pinot et al.*, 1999].

It has been suggested that El Niño-Southern Oscillation (ENSO) variability has existed for at least the past 130,000 years [*Tudhope et al.*, 2001; *Cane and Clement*, 1999; *Clement et al.*, 2000]. *Cane and Clement* [1999] further suggested that the ENSO system could go through periods of more numerous El Niño or La Niña conditions. Glacial conditions would favor prolonged intervals of La Niña conditions. Today, during times of La Niña, cooler conditions occur in the East Pacific when the easterly trade winds over the Pacific increase, allowing more upwelling of water along the equator. Teleconnections through air-sea interactions and the atmosphere spread the effects of La Niña over the globe. For example, the water vapor pattern in the middle troposphere during a strong La Niña month in 1989 (Figure 4.7) indicated that moist air was found predominantly in the Western Pacific. A ENSO-like change in the present water vapor spatial pattern could be the reason why some areas indicate greater P-E changes during the LGM while others do not show this increase. The ocean sediment cores examined in this study that indicate

72

fresher conditions during the LGM are found within the predominantly moist areas depicted in Figure 4.7. Even though La Niña in 1989 is only one example, a schematic map of spatial and temporal responses of global hydroclimatological variables during strong La Niña phases indicates overall the same correlation (Figure 4.8) [*Halbert and Ropelewski*, 1992].

In view of the strong tropical jet streams at the LGM, atmospheric transport alone is probably sufficient to spread the influence of a strong regional atmospheric event over the entire extratropical hemisphere in which it occurs. Water vapor has a rapid response time, and because it is such an effective greenhouse gas, it has leverage over climate [Pierrehumbert, 1999]. Reorganizations of tropical convection could have a profound effect on the water vapor pattern of the tropical Pacific. The water vapor pattern can be influenced by changes in the location and surface area of the convective moisture-source region (Walker circulation), but also by changes in the intensity of subsidence of the air (Hadley circulation), which alters the dryness of the nonconvective regions [Pierrehumbert, 2000]. The Hadley and Walker cells are large-scale features of tropical atmospheric circulation that overturn meridionally and These two interacting circulations cannot always be zonally, respectively. separated into distinct components. Strong atmospheric convection over the Pacific occurs throughout the extensive region associated with the Western Pacific Warm Pool and also in the narrow belt of the intertropical convergence zone (ITCZ).

73

Data are taken from the European Center for Medium Range Weather Forecasts. In a La Niña year, moist air is Figure 4.7: Water vapor concentration in the mid troposphere during January, 1989, a strong La Niña month. found predominantly in the Western Pacific. Solid circles indicate SST leads the 818O record, whereas open circles indicate synchronous SST - $\delta^{18}O$ records, during the Last Glacial Maximum.

It is difficult to determine presently whether the effect on ENSO is related to the impact on tropical atmospheric circulation and the strength of the Asian Monsoon system [*Liu et al.*, 2000; *Otto-Bliesner*, 1999]. As pointed out by *Clement et al.*, [2000] longer modeling experiments are needed to investigate the changes in tropical Pacific. The results of the study highlight the need of more high resolution data from this area.

4.6 Conclusions

I have compiled published planktonic foraminiferal oxygen isotope values and SST data based on Mg/Ca and alkenone analysis from the tropical and subtropical Atlantic and Pacific for the last 20,000 years. This compilation suggests that during the LGM precipitation minus evaporation must have been greater in cores where SST is leading the planktonic foraminiferal oxygen isotopic record by approximately 3,000 years, whereas in cores with no lead/lag relationship between SST and foraminiferal δ^{18} O data colder and drier conditions are indicated. Additionally, cores where SST is leading the δ^{18} O record are preferentially located in areas influenced by greater water vapor content during times of La Niña assuming that an ENSO system existed during glacial times.

REFERENCES

- Anderson, R.Y., Linsley, B.K., Gardner, J.V., **1990**, Expression of seasonal and ENSO forcing in climatic variability at lower than ENSO frequencies: Evidence from Pleistocene marine varves of California. In Benson, LV., and Meyers, P.A. (eds), Paleoclimates: The record from Lakes, Ocean, and Land. *Palaeogeography, Palaeoclimatology, Palaeoecology.*, v. 78, p. 287-300.
- Baker, P. A., Rigsby, C. A., Seltzer, G. O., Fritz, S. C., Lowenstein, T. K., Bacher, N. P., and Veliz, C., 2001, Tropical climate changes at millennial and orbital timescales on the South American Altiplano. *Nature*, v. 409, p. 698-701.
- Bard, E., Arnold, M., Fairbanks, R.G., and Hamelin, B., **1993**, ²³⁰Th-²³⁴U and ¹⁴C ages obtained by mass spectrometry on coral. *Radiocarbon*, v. 35, no. 1, p. 191-199.
- Bé, A.W.H., **1960**, Ecology of recent planktonic Foraminifera, Part 2. Bathymetric and season distributions in the Sargasso Sea off Bermuda. *Micropaleontology*, v. 6, p. 144-151.
- Berger, A., and Loutre, M.F., **1991**, Insolation values for the climate of the last 10 million years. *Quaternary Science Reviews*, v. 10, p. 297-317.
- Berger, W.H., Killingley, J.S., and Vincent, E., **1978**. Stable isotopes in deep-sea carbonates: box cores ERDC-92, west equatorial Pacific. *Oceanol. Acta*, v. 1, p. 203-216.
- Blunier T., and Brooks, E.J., **2001**, Timing of Millennial-Scale Climate Change in Antarctica and Greenland During the Last Glacial Period. *Science*, v. 291, p. 109-112.
- Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T.F., Raynaud, D., Jouzel, J., Clausen, H.B., Hammer, C.U., and Johnson, S.J., **1998**, Asynchrony of Antarctic and Greenland climate change during the last glacial period. *Nature*, v. 394, p. 739-743.
- Broecker, W.S., and Denton, G.H., **1989**, The role of ocean-atmosphere reorganizations in glacial cycles. *Geochimica et Cosmochimica Acta*, v. 53 p. 2,465-2,501.
- Brown, S.J., and Elderfield, H., **1996**, Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg-dependent dissolution. *Paleoceanography*, v. 11, No. 4, p. 543-551.

Cane, M.A., **1998**, A Role for the Tropical Pacific. Science, v. 282, p.59-61.

- Cane, M., and Clement, A.C, **1999**, A Role for the Tropical Pacific Coupled Ocean-Atmosphere System on Milankovitch and Millennial Timescales Part II: Global Impacts. *In*: Clark, P.U., Webb, R.S., and Keigwin, L.D. (editors) Mechanisms of global climate change at millennial time scales, *Geophysical Monograph*, v. 112, p. 373-384.
- Causse, C., Gasse, F., Gibert, E., Kassir, A., Conrad, G., and Fontes, J.-C., 1988, The last Pleistocene humid phase in the western Sahara, dated to about 80-100 ka. *Comptes Rendus - Academie des Sciences*, vol. 306, No.20, p. 1459-1464.
- Chaisson, W.P., and Ravelo, A.C., **1997**, Changes in upper water-column structure at site 925, Late Miocene-Pleistocene: Planktonic Foraminifer assemblage and Isotopic Evidence. *In*: Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, I.J., (Eds.), 1997, *Proceedings of the Ocean Drilling Program, Scientific Results*, v. 154, p. 255-268.
- Chapman, M.R.; Shackleton, N.J.; Zhao, M., and Eglinton, G, **1996**,: Faunal and alkenone reconstructions of subtropical North Atlantic surface hydrography and paleotemperature over the last 28 kyr, *Paleoceanography*, v. 11, p. 343-357.
- Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y. and Pillans, B., **1996**, Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. *Earth and Planetary Science Letters*, v. 141, p. 227-236.
- Chappell, J., and Polach, H., **1991**, Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea. *Nature*, v. 349, p. 147-149.
- Charles, C. D., Lynch-Stieglitz, J., Ninnemann, U. S., and Fairbanks, R. G., **1996**, Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations, *Earth and Planetary Science Letters*, v. 142, No. 1-2, p. 19-27.
- Chen, F.H., Bloemendal, J., Wang, J.M., Li, J.J., and Oldfield, F., **1997**, Highresolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes over the last 75kyr. *Palaeogeography, Palaeoclimatology, Palaeoecology*, v. 130, p. 323-335.

- Chen L., and Wu R., 2000, The role of the Asian/Australian monsoons and the Southern/Northern oscillation in the ENSO cycle. *Theoretical and Applied Climatology*, v. 65, no. 1-2, P. 37-47.
- Clark, P.U., Alley, R.B., and Pollard, D., **1999**, Northern hemisphere ice-sheet influences on global climate change. *Science*, v. 286, p. 1104-1111.
- Clement, A.C., Seager, R., and Cane, M.A., 2000, Suppression of El Niño during the mid-Holocene by changes in the Earth's orbit. *Paleoceanography*, v. 15, No.6, p. 731-737.
- Clement, A.C., and Cane, M., **1999**, A Role for the Pacific Coupled Ocean-Atmosphere System on Milankovitch and Millennial Timescales Part I: A Modeling Study of Tropical Pacific Variability. *In*: Clark, P.U., Webb, R.S., and Keigwin, L.D. (editors), **1999**, Mechanisms of global climate change at millennial time scales, *Geophysical Monograph*, v. 112, p.363-372.
- Clement, A.C., Seager, R., and Cane, M.A., **1999**, Orbital controls on the El Niño/Southern Oscillation and the tropical climate, *Paleoceanography*, v. 14, No. 4, p. 441-456.
- CLIMAP, **1981**, Seasonal reconstruction of the Earth's surface at the last glacial maximum. *Geological Society of America, Map and Chart Series*, v. C36.
- Conkright, M., Levitus, S., O'Brien, T., Boyer, T., Antonov, J., and Stephens, C., **1998**, World Ocean Atlas 1998 CD-ROM Data Set Documentation. *Tech. Rep. 15, NODC Internal Report*, 16 pp.
- Conrad, G., **1969**, L'évolution continentale post-hercynienne du Sahara algérien (Saoura, Erg, Chech, Tanezrouft, Ahnet-Mouydir). *Publication du Centre de Recherche sur les Zones arides CNRS sér Géol*, v. 10, pp. 527.
- Curry, W.B., Thunell, R.C., and Honjo, S., **1983**, Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama Basin sediment traps. *Earth and Planetary Science Letters*, v. 64, p. 33-43.
- deGaridel-Thoron, T., Beaufort, L., Linsely, B., and Dannenmann, S., **in press**, Millennial-scale dynamics of the East Asian winter monsoon during the last 200,000 years. *Paleoceanography*.
- Duplessy, J.C., Be, A.W.H., Blank, P.L., **1981**, Oxygen and carbon isotopic composition and biogeographic distribution of planktonic foraminifera in the Indian Ocean. *Paleogeography, Paleoclimatology, Paleoecology*, v. 33, p. 9-46.

- Edwards, R.L., et al, **1993**, A large drop in atmospheric ¹⁴C/¹²C and reduced melting in the Younger Dryas documented with Th-230 ages of corals. *Science*, v. 260, p. 962-968.
- Elderfieid, H., and Gansen, G., **2000**, Past temperature and δ^{18} O surface ocean waters inferred from foraminiferal Mg/Ca ratios. *Nature*, v. 405, p.442-445.
- Emiliani, C., **1954**, Depth habitats of some species of pelagic Foraminifera as indicated by oxygen isotope ratios. *American Journal of Science*, v. 252, No. 3, p. 149-158.
- Epstein, S., Buchsbaum, R., Lowenstam, H.A., and Urey, H.C., **1953**, Revised carbonate-water isotopic temperature scale. *Bulletin of the Geological Society of America*, v. 64, p.1315-1326.
- Erez, J., and Honjo, S., **1981**, Comparison of isotopic composition of planktonic foraminifera in plankton tows, sediment traps and sediments. *Palaeogeography, Palaeoclimatology, Palaeoecology*, v. 33, No. 1-3, p. 129-156.
- Erez, J., and Luz, B., **1983**, Experimental paleotemperature equation for planktonic foraminifera. *Geochimica et Cosmochimica Acta*, v. 74, p. 1025-1031.
- Exon, N. F., Haake, F. W., Hartmann, M., Koegler, F. C., Mueller, P. J., and Whiticar, M. J., **1981**, Morphology, water characteristics and sedimentation in the silled Sulu Sea, Southeast Asia, *Marine Geology*, v. 39, No. 3-4, p. 165-195.
- Fairbanks, R.G., **1989**, A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. *Nature*, v. 342, p. -637-642.
- Fairbanks, R.G., **1990**, The origin of the Younger Dryas climate event in Greenland ice cores. *Paleoceanography*, v. 6, p. 937-948.
- Fairbanks, R. G., and Wiebe, P. H., **1980**, Foraminifera and chlorophyll maximum; vertical distribution, seasonal succession, and paleoceanographic significance. *Science*, v. 209, No. 4464, p. 1524-1526.
- Fairbanks, R.G., Sverdlove, M., Free, R., Wiebe, P.H., and Bé, A.W.H., **1982**, Vertical distribution and isotopic fraction of living planktonic foraminifera from the Panama Basin. *Nature*, v. 298, p. 841-844.

- Fairbanks, R.G., Wiebe, P.H., and Bé, A.W.H., **1980**, Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic. *Science*, v. 207, p. 61-63.
- Farrera, I., Harrison, S. P., Prentice, I. C., Ramstein, G., Guiot, J., and Bartlein, P. J., **1999**, Tropical climates at the last glacial maximum; a new synthesis of terrestrial palaeoclimate data; 1, Vegetation, lake-levels and geochemistry. *Climate Dynamics*, v. 15, No. 11, p. 823-856.
- Guilderson, T.P., Burckle, L., Hemming, S., and Peltier, W.R., **2000**, Late Pleistocene sea level variations derived from the Argentine Shelf. *Geochemistry, Geophysics, Geosystems*, v. 1, Paper number 2000GC000098. (Available at http://www.g-cubed.org)
- Guilderson, T.P., Fairbanks, R.G., and Rubenstone, J.L., **1994**, Tropical Temperature Variations Since 20,000 Years Ago: Modulating Interhemispheric Climate Change. *Science*, v. 263, p. 663-665.
- Hanebuth T., Stattegger, K., and Grootes, P.M., **2000**, Rapid flooding of the Sunda Shelf: A late-glacial sea-level record. *Science*, p. 1033-1035.
- Halpert, M.S., and Ropelewski, C.F., **1992**, Surface temperature patterns associated with the Southern Oscillation. *Journal of Climate*, v. 5, p. 577-593.
- Harrison, S.P., and Digerfeldt, G., **1993**, European lakes as palaeohydrological and palaeoclimatic indicators. *Quaternary Science Review*, v. 12, p. 233-248.
- Hastings, D.W., Russell, A.D., and Emerson, S.R., **1998**, Foraminiferal magnesium in *Globeriginoides sacculifer* as a paleotemperature proxy. *Paleoceanography*, v. 13, No. 2, p. 150-169.
- Hemleben, C., Spindler, M., Anderson, O.R., **1989**, Modern Planktonic Foraminifera. Springer-Verlag, New York, pp. 370.
- Herbert, T.D., 2001, Review of alkenone calibrations (culture, water column, and sediments). Geochem. Geophys. Geosys., vol. 2, Paper number 2000GC000055. (Available at http://www.g-cubed.org)
- Hostetler, S. T., and Clark, P.U., 2000, Tropical Climate at the Last Glacial Maximum Inferred from Glacier Mass-Balance Modeling. Science, v. 290, p. 1747-1750.

- Kienast, M., Steineke, S., Stattegger, K., Calvert, S.E., 2001, Synchronous tropical South China Sea SST changes and Greenland warming during deglaciation. *Science*, v. 291, p. 2,132-2,134.
- Kudrass, H.R., Erlenkeuser, H., Vollbrecht, R., and Weiss, W., **1991**, Global nature of the Younger Dryas cooling event inferred from oxygen isotope data from Sulu Sea cores. *Nature*, v. 349, p. 406- 409.
- Kudrass, H. R., Hofmann, A., Doose, H., Emeis, K., and Erlenkeuser, H., 2001, Modulation and amplification of climatic changes in the Northern Hemisphere by the Indian summer monsoon during the past 80 k.y., *Geology*, v. 29, No. 1, p. 63-66.
- Kuehl, S.A., Fuglseth, T.J., and Thunell, R.C., **1993**, Sediment mixing and accumulation rates in the Sulu and South China Seas: Implications for organic carbon preservation in deep-sea environments. *Marine Geology*, v. 111, p. 15-35.
- Kutzbach, G., **1987**, Monsoons, Eds. Fein, J.S., and Stephens, P.L.. Wiley-Interscience Publications. John Wiley and sons.
- Lea, D. W., Pak, D. K., Spero, H. J., 2000, Climate impact of late Quaternary Equatorial Pacific sea surface temperature variations, *Science*, v. 289, No. 5485, p. 1719-1724.
- Levitus, S., Burgett, R., and Boyer, T.P., **1994**, World Ocean Atlas 1994, Volume 3: Nutrients. *NOAA Atlas NESDIS* 3, U.S. Department of Commerce, Washington D.C., pp. 117.
- Li, C. Y., **1989**, Frequent activities of stronger aerotroughts in East Asia in wintertime and the occurrence of the El Niño event. *Science in China (Series B)*, v. 32, no. 8, p. 976-985.
- Linsley, B.K., **1996**, Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150,000 years. *Nature*, v. 380, p. 234-237.
- Linsley, B.K., and Thunell, R.C., **1990**, The record of deglaciation in the Sulu Sea: Evidence for the Younger Dryas event in the tropical Western Pacific. *Paleoceanography*, v. 5, No. 6, p. 1025-1039.
- Linsley, B. K., Thunell, R. C., Morgan, C., Williams, D. F., **1985**, Oxygen minimum expansion in the Sulu Sea, western Equatorial Pacific, during the last glacial low stand of sea level. *Marine Micropaleontology*, v. 9, No. 5, p. 395-418.

- Liu, Z., Kutzbach, J., and Wu, L., **2000**, Modeling climate shift of El Niño variability in the Holocene. *Geophysical Research Letters*, v. 27, p. 15, p. 2265-2268.
- Lohman, G.P., **1995**, A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. *Paleoceanography*, v. 10, No. 3, p. 445-457.
- Manabe, S., and Stauffer, R.J., **1988**, Two stable equilibria of a coupled oceanatmosphere model. *Journal of Climate*, v. 1., p. 841-866.
- Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackelton, N.H., **1987**, Age dating and the orbital theory of the Ice Ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. *Quaternary Research*, v. 27, p. 1-29.
- Miao, Q., Thunell, R.C., and Anderson, D.M., **1994**, Glacial-Holocene carbonate dissolution and sea surface temperature in the South China and Sulu seas. *Paleoceanography*, v. 9, No. 2, p. 269-290.
- Mix, A.C., Bard, E., and Schneider, R., 2001, Environmental processes of the ice age: land, oceans, glaciers (EPILOG). *Quaternary Science Reviews*, v. 20, p. 627-657.
- Müller, P.J., Kirst, G., Ruhland, G., Storch, I.V., and Rosell-Mele, A., **1998**, Calibration of the Alkenone paleotemperature index U^{k'}₃₇ based on core-tops from the eastern South Atlantic and the global ocean 60°N-60°S. *Geochim. Cosmochim. Acta*, v. 62. No. 10, p. 1757-1772.
- Nikolaev, S.D., Oskina, N.S., Blyum, N.S., and Bubenshckikova, N.V., **1998**, Neogene-Quaternary variations of the 'Pole-Equator' temperature gradient of the surface oceanic waters in the North Atlantic and North Pacific. *Global and Planetary Change*, v. 18, p. 85-111.
- Norris, R.D., Corfield, R.M., and Cartlidge, J.E., **1993**. Evolution of depth ecology in the planktic foraminifera lineage *Globorotalia (Fohsella)*. *Geology*, v.21, p. 975-978.
- Norris, R. D., **1994**. Evolutionary ecology of *Globorotalia (Globoconella)* (planktic foraminifera). *Marine Micropaleontol.*, v. 23, p. 121-145.

- Nozaki, Y., Alibo, D.-S., Amakawa, H., Gamo, T., Hasumoto, H., **1999**, Dissolved rare earth elements and hydrography in the Sulu Sea. *Geochimica et Cosmochimica Acta*, v. 63, No. 15, p. 2171-2181.
- Nurnberg, D., Bjima, J., and Hemleben, C., **1996a**, Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. *Geochimica et Cosmochimica Acta*, v. 60, no. 5, p. 803-814.
- Nurnberg, D., Bjima, J., and Hemleben, C., **1996b**, Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures Erratum. *Geochimica et Cosmochimica Acta*, v. 60, no. 13, p. 2483-2484.
- Nürnberg, D., Müller, A., and Schneider, R.R., **2000**, Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates from U^{K'}₃₇, oxygen isotopes, and foraminiferal transfer function. *Paleoceanography*, v. 15, No. 1, p. 124-134.
- Otto-Bliesner, B. L., **1999**, ENSO and NAO; present and 6000 years before present as simulated by the NCAR Climate System Model (CSM). *In:* Karl, Thomas R. (chairperson), The ENSO Experiment research activities; exploring the linkages between the El Niño-Southern Oscillation (ENSO) and human health, *Symposium on Global Change Studies*, v. 10, p. 313-316.
- Pelejero, C., Grimalt, J.O., Sarnthein, M., Wang, L., and Flores, J.-A., **1999**, Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140,000 years. *Marine Geology*, v. 156, p. 109-121.
- Pierrehumbert, R. T., **2000**, Climate change and the tropical Pacific: The sleeping dragon wakes. *PNAS*, vol. 97, No. 4, p. 1355-1358.
- Pierrehumbert, R. T., **1999**, Huascaran δ^{18} O as an indicator of tropical climate during the Last Glacial Maximum. *Geophysical Research Letters*, v. 26, p. 1345-1348.
- Pinot, S., Ramstein, G., Harrison, S. P., Prentice, I. C., Guiot, J., Stute, M., Joussaume, S., **1999**, Tropical paleoclimates at the last glacial maximum; comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata. *Climate Dynamics*, v. 15, No.11, p. 857-874.
- Porter, S.C., and Zhisheng, A., **1995**, Correlation between climate events in the North Atlantic and China during the last glaciation, *Nature*, vol. 375, p. 305-308.

- Prahl, F.G., Muelhausen, L.A., and Zahnle, D.L., **1988**, Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. *Geochim. Cosmochim. Acta*, v. 52, p. 2303-2310.
- Prentice, I. C., Guiot, J., Harrison, S. P., **1992**, Mediterranean vegetation, lake levels and palaeoclimate at the last glacial maximum, *Nature*, v. 360, No. 6405, p. 658-660.
- Qu, T. ; Mitsudera, H. ; Yamagata, T., **2000**, Intrusion of the North Pacific waters into the South China Sea. *Journal of Geophysical Research*, v. 105, No. C3, p. 6415-6424.
- Rahmstorf, S., **1994**, Rapid climate transitions in a coupled ocean-atmosphere model, Nature, v. 372, No. 6501, p. 82-85.
- Rasmusson, E.M., and Arkin, P.A., **1993**, A global view of large-scale precipitation variability. *Journal of Climate*, v. 6, No.8, p. 1495-1522.
- Rasmusson, E.M., and Carpenter, T.H., **1983**, Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillations/ El Niño. *Monthly Weather Review*, v. 110, p. 354-384.
- Ravelo, A.C., and Fairbanks, R.G., **1992**, Oxygen isotopic composition of multiple species of planktonic foraminifera: records of the modern photic zone temperature gradient. *Paleoceanography*, v. 7, No. 6, p. 815-831.
- Rind, D., and Peteet, D., **1986**, Terrestrial Conditions at the Last Glacial Maximum and CLIMAP Sea- Surface Temperature Estimates: Are They Consistent? *Quaternary Research*, v.24, p. 1-22.
- Rind, D., Peteet, D., Broecker, W., McIntyre, A., and Ruddiman, W.R., **1986**, The impact of cold North Atlantic sea surface temperature on climate: implication for Younger Dryas cooling (11-10k). Climate Dynamics, v. 1, p. 3-33.
- Roberts, N., and Wright, Jr H.E., **1993**, Vegetational, Lake-Level, and Climatic History of the Near East and Southwest Asia. In: Wright, H.E., Kutzbach, J.E., Webb III, T., Ruddiman, W.F., Street- Perrott, F.A., Bartlein, P.J. (eds) *Global Climates since the Last Glacial Maximum*. University of Minnesota Press, Minneapolis- London, p. 194-220.
- Rosenthal, Y., Field, M. P., and Sherrell, R.M, **1999**, Precise Determination of Element/Calcium Ratios in Calcareous Samples Using Sector Field Inductively Coupled Plasma Mass Spectrometry. *Analytical Chemistry*, v.71, No.15, p. 3248-3253.

- Rosenthal, Y., Lohmann, G.P., Lohmann, K.C., and Sherrell, R.M., 2000, Incorporation and preservation of Mg in *Globigerinoides sacculifer*: Implications for reconstructing the temperature and ¹⁸O/¹⁶O of seawater. *Paleoceanography*, v. 15, No. 1, p. 135-145.
- Rosenthal, Y., Oppo, D. W., Dannenmann, S., and Linsley, B. K., **in prep.**, Millennial-scale variations in western equatorial Pacific sea surface temperature during glacial and Holocene climates.
- Rühlemann, C., Mulitza, S., Müller, P.J., Wefer, G., and Zahn, R., **1999**, Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. *Nature*, v. 402, p. 511-514.
- Schneider, R.R., Müller, P.J., and Ruhland, G., **1995**, Late Quaternary surface circulation in the east-equatorial South Atlantic: evidence from alkenone sea surface temperatures. *Paleoceanography*, v. 10, p. 197-219.
- Schneider, R.R., Müller, P.J., Ruhland, G., Meinecke, G., Schmidt, H., and Wefer, G., **1996**, Late Quarternary surface temperatures and productivity in the east-equatorial South Atlantic: response to changes in trade/monsoon wind forcing and surface water advection, *In*: Wefer, G., Berger, W.H., Siedler, G., and Webb, D. (eds.), *The South Atlantic: Present and Past Circulation*, Springer-Verlag, p. 527-551.
- Schrag, D.P., Hampt, G., and Murray, D.W., **1996**, Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. *Science*, v. 272, p. 1930-1932.
- Shackleton, N. J., and Vincent, E., **1978**, Oxygen and carbon isotope studies in Recent foraminifera from the Southwest Indian Ocean. *Marine Micropaleontology*, v. 3, No. 1, p. 1-13.
- Shaw, P.-T., Chao, S.-Y., Liu, K.-K., Pai, S.-C., and Liu, C.-T., **1996**, Winter upwelling off Luzon in the northeastern South China Sea. *Journal of Geophysical Research*, v. 101, No. C7, p. 16,435-16,448.
- Shaw, P.-T., and Chao, S.-Y., **1994**, Surface circulation in the South China Sea. *Deep-Sea Research I*, v. 41, No. 11-12, p. 1663-1683.
- Sikes, E.L., and Keigwin, L.D., **1994**, Equatorial Atlantic sea surface temperature for the last 30 kyr: A comparison of Uk37, δ¹⁸O and foraminiferal assemblage temperature estimates. *Paleoceanography*, v. 9, p. 31-45.

- Sirocko, D. Leuscher, M. Staubwasser, J. Maley, L. Heusser, **1999**, Highfrequency Oscillations of the Last 70,000 years in the Tropical/Subtropical and Polar Climates. *In*: Clark, P.U., Webb, R.S., and Keigwin, L.D. (editors), **1999**, Mechanisms of global climate change at millennial time scales, *Geophysical Monograph*, v. 112, p.113-126.
- Sonzogni, C., Bard, E., and Rostek, F., **1998**, Tropical sea-surface temperature during the last glacial period: a view based on alkenones in Indian Ocean sediments. *Quaternary Science Reviews*, v. 17, p. 1185-1201.
- Stuiver, M., and Braziunas T. F.,**1993**, Modeling atmospheric ¹⁴C influences and ¹⁴C ages of marine samples back to 10,000 BC. *Radiocarbon*, 35, 137-189.
- Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M., **1998a**, INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. *Radiocarbon*, v. 40, No. 3, p. 1041-1083.
- Stuiver, M., Reimer, P. J., Braziunas, T. F., **1998b**, High-precision radiocarbon age calibration for terrestrial and marine samples, *Radiocarbon*, v. 40, No. 3, p. 1127-1151.
- Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., and Bonani,G., **1995**, Cooling of tropical Brazil (5°C) during the last glacial maximum. *Science*, v. 269, p. 46-50.
- Talley, L.D, **1999**, Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. *In*: Clark, P.U., Webb, R.S., and Keigwin, L.D. (editors), **1999**, Mechanisms of global climate change at millennial time scales, *Geophysical Monograph*, v. 112, p.1-22.
- Thompson, L. G., Mosley-Thompson, E., and Henderson, K. A., **2000**, Ice-core paleoclimate records in tropical South America since the Last Glacial Maximum. J. Quat. Sci., v. 15, 377-394.
- Thompson, L.G., Davis, M.E., Thompson, E.M., Sowers, T.A., Henderson, K.A., Zagorodnov, V.S., Lin, P.N., Mikhalenko, V.N., Campen, R.K., Bolzan, J.F., Cole-Dai, J., and Francou, B., **1998**, A 25,000 year tropical climate history from Bolivian ice cores. *Science*, v. 282, No. 5295, p.1858-1864.
- Trenberth, K.,E., and Shea, D.J., **1987**, On the evolution of the Southern Oscillation. *Monthly Weather Review*, v. 115, p. 3,078-3,096.

- Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W., Lough, J.M., and Shimmield, G.B., **2001**, Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. *Science*, v. 291, p. 1511-1517.
- Van der Kaars, S., Wang, X., Kershaw, P., Guichard, F., Setiabudi, D.A., 2000, A late Quaternary palaeoecological record from the Banda Sea, Indonesia: patterns of vegetation, climate and biomass burning in Indonesia and northern Australia. *Palaeogeography, Palaeoclimatology, Palaeoecology*, v. 155, p. 135-153.
- Walker, G.T., **1923**, Correlation in seasonal variations of weather. III: A preliminary study of world weather. *Memoir of the Indian Meteorological Department*, v. 24, p. 75-131.
- Walker, G.T., **1924**, Correlation in seasonal variations of weather. IV: A further study of world weather. *Memoir of the Indian Meteorological Department*, v. 24, p. 275-332.
- Walker, G.T., **1928**, World weather. III: *Memoir of Royal Meteorological Society*, v.2, p. 97-106.
- Walker, G.T., and, Bliss, E.W., **1932**, World weather. V: *Memoir of Royal Meteorological Society*, v. 4, p. 53-84.
- Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U., **1999**, East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. *Marine Geology*, v.156, No.1-4, pp. 245-284.
- Webster, P.J., and Yang, S., **1992**, Monsoon and ENSO: selectively interactive systems. *Quaternary Journal of Research of the Meteorological Society*, v. 118, p. 877-926.
- Wyrtki, K., **1961**, Scientific results of marine investigations of the South China Sea and the Gulf of Thailand, physical oceanography of the Southeast Asian water. *Univer. of Calif., Scripps Inst. of Oceanogr., La Jolla, Calif.,* pp. 195.
- Wyrtki, K., **1975**, El Niño The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. *Journal of Physical Oceanography*, v. 5, p. 572-584.
- Yuan, X. J., and Martinson, D.G., **2000,** Antarctic Sea Ice Extent Variability and Its Global Connectivity. *Journal of Climate*, v. 13, p.1697-1717.

NOTE: The tables of this appendix were reconstructed by Bill Kidd to digital form using Omnipage Pro X OCR software on scans of the pages from the printed dissertation. Although visual editing inspection removed a few obvious recognition errors, some may remain undetected. For critical uses, check numbers with the original printed pages.

APPENDIX I

IMAGES core MD97-2141: δ^{18} O and δ^{13} C data from *Globigerinoides ruber*

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ¹³C
(cm)	(kvr)	(G.rub) [‡]	(G.rub) [‡]	(cm)	(kvr)	(G.rub) [‡]	(G.rub) [‡]
()		(‰)	(‰)	()		(‰)	(‰)
		()	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(100)	(100)
0	4.29	-2.531	1.368	46	6.00	-2.666	1.221
1	4.33	-2.462	0.992	47	6.03	-2.653	0.868
2	4.38	-2.579	1.133	48	6.06	-2.528	1.044
3	4.43	-2.629	1.142	49	6.10	-2.613	1.149
4	4.48	-2.624	0.936	50	6.13	-2.638	1.296
5	4.53	-2.581	0.863	51	6.16	-2.481	1.104
6	4.58	-2.483	0.982	52	6.19	-2.629	1.051
7	4.62	-2.509	0.974	53	6.23	-2.605	1.047
8	4.67	-2.677	0.920	54	6.26	-2.525	1.219
9	4.72	-2.546	1.078	55	6.29	-2.644	1.143
10	4.77	-2.484	1.124	56	6.32	-2.587	0.966
11	4.82	-2.490	0.894	57	6.36	-2.702	1.029
12	4.87	-2.467	0.903	58	6.39	-2.635	0.965
13	4.91	-2.736	0.888	59	6.42	-2.604	0.933
14	4.96	-2.789	0.929	60	6.48	-2.621	1.278
15	4.99	-2.668	1.163	61	6.54	-2.694	0.912
16	5.03	-2.479	0.958	62	6.60	-2.577	1.042
17	5.06	-2.529	1.146	63	6.66	-2.643	1.132
18	5.09	-2.628	1.124	64	6.73	-2.611	1.138
19	5.12	-2.632	1.077	65	6.79	-2.535	1.089
20	5.16	-2.580	1.037	66	6.85	-2.655	1.097
21	5.19	-2.740	1.036	67	6.91	-2.773	1.192
22	5.22	-2.591	0.942	68	6.97	-2.640	1.035
23	5.25	-2.529	0.985	69	7.03	-2.651	0.987
24	5.29	-2.471	0.957	70	7.09	-2.612	1.040
25	5.32	-2.524	0.985	71	7.15	-2.711	1.038
26	5.35	-2.590	0.965	72	7.21	-2.576	0.981
27	5.38	-2.559	0.927	73	7.27	-2.469	1.109
28	5.42	-2.462	0.869	74	7.33	-2.448	1.064
29	5.45	-2.411	1.136	75	7.39	-2.534	1.064
30	5.48	-2.627	1.158	76	7.45	-2.577	1.118
31	5.51	-2.552	1.279	77	7.51	-2.511	1.068
32	5.55	-2.675	0.960	78	7.56	-2.483	0.905
33	5.58	-2.575	0.955	79	7.62	-2.549	1,189
34	5.60	-2 590	1 086	80	7.68	-2 497	1 112
35	5.64	-2.568	1.070	81	7.74	-2.619	0.964
36	5 67	-2 479	0.836	82	7 80	-2 458	0.972
37	5 71	-2 582	0.941	83	7.85	-2 370	0.954
38	5 74	-2 669	1 042	84	7 91	-2 520	0.947
39	5 77	-2 466	0.947	85	7.97	-2 577	1 013
40	5.80	-2 686	1 139	86	8.03	-2.314	0.904
41	5 84	-2 738	1 118	87	8 09	-2 539	0.977
<u>4</u> 2	5.87	-2 502	1 069	22	8 1 <i>4</i>	-2 423	0.085
43	5 90	-2 545	1 022	89	8 20	-2 503	0.888
44	5 93	-2 751	0 974	90 90	8 26	-2 357	0.942
45	5.97	-2.610	1.065	91	8.32	-2.491	0.964
10	0.07	2.010		U 1	0.02		0.001

$ \begin{array}{c cm} (kyr) & (G.rub)^{\dagger} & (G.rub)^{\dagger} & (G.rub)^{\dagger} & (m) & (kyr) & (G.rub)^{\dagger} & (G.rub)^{\dagger} & (Kyr) & (Kyr) & (G.rub)^{\dagger} & (Kyr) & (Kyr) & (G.rub)^{\dagger} & (Kyr) & (Ky$	Depth	Aae ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(cm)	(kvr)	(G.rub) [‡]	(G.rub) [‡]	(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	()	((%)	(%)	()	((%)	(%)
92 8.38 -2.414 0.725 138 10.63 -2.394 0.473 93 8.43 -2.338 0.715 139 10.66 -2.331 0.459 94 8.49 -2.249 0.790 140 10.70 -2.594 0.586 95 8.55 -2.505 1.073 141 10.73 -2.395 0.554 96 8.61 -2.603 0.797 143 10.80 -2.393 0.625 98 8.72 -2.384 0.897 144 10.84 -2.171 0.6633 99 8.78 -2.544 0.792 146 10.91 -2.408 0.612 101 8.90 -2.574 0.792 146 10.94 -2.386 0.392 102 8.96 -2.574 0.696 148 10.98 -2.406 0.586 104 9.07 -2.510 0.807 149 11.01 -2.460 0.586 105 9.13 -2.606 0.790 151 11.06 -2.472 0.462 106 9.19 -2.516 0.704 153 11.09 -2.431 0.532 106 9.19 -2.562 0.787 154 11.10 -2.129 0.721 108 9.30 -2.562 0.787 156 11.13 -2.035 0.568 110 9.42 -2.528 0.707 156 11.13 -2.306 0.572 113 9.59 -2.642 0.772 <th></th> <th></th> <th>(700)</th> <th>(700)</th> <th></th> <th></th> <th>(700)</th> <th>(700)</th>			(700)	(700)			(700)	(700)
938.43 -2.338 0.71513910.66 -2.331 0.469948.49 -2.249 0.79014010.70 -2.594 0.586958.55 -2.565 1.0731.4110.73 -2.395 0.554968.61 -2.568 0.9611.4210.77 -2.318 0.504978.67 -2.603 0.7971.4310.80 -2.333 0.625988.72 -2.384 0.6011.4510.87 -2.296 0.5551008.84 -2.561 0.7921.4610.91 -2.408 0.6121018.90 -2.344 0.7381.4710.94 -2.386 0.3921028.96 -2.574 0.6981.4810.98 -2.486 0.4271039.01 -2.510 0.8071.4911.01 -2.460 0.5861049.07 -2.391 0.84615011.05 -2.474 0.5321069.19 -2.516 0.70715511.11 -2.226 0.6011079.25 -2.435 0.70715611.13 -2.035 0.5681109.42 -2.562 0.77215911.20 -721 0.57211099.36 -2.642 0.77215911.21 -2.663 0.6741119.48 -2.565 0.70715611.13 -2.036 0.5721139.59 -2.642 0.77215911.24 <td>92</td> <td>8.38</td> <td>-2.414</td> <td>0.725</td> <td>138</td> <td>10.63</td> <td>-2.394</td> <td>0.473</td>	92	8.38	-2.414	0.725	138	10.63	-2.394	0.473
948.49 -2.249 0.79014010.70 -2.594 0.586958.55 -2.505 1.07314110.73 -2.395 0.554978.67 -2.603 0.79714310.80 -2.393 0.625988.72 -2.384 0.89714410.84 -2.171 0.653998.78 -2.138 0.60114510.87 -2.298 0.5551008.84 -2.561 0.79214610.91 -2.408 0.6121018.90 -2.344 0.73814710.94 -2.386 0.3921028.96 -2.574 0.69814810.98 -2.466 0.4271039.01 -2.510 0.80714911.01 -2.460 0.5861049.07 -2.391 0.84615011.05 -2.432 0.4621059.13 -2.606 0.79015111.06 -2.474 0.5321069.19 -2.562 0.76715411.10 -2.226 0.6011079.25 -2.405 0.70415311.09 -2.431 0.5491089.30 -2.622 0.77115611.13 -2.236 0.5751109.42 -2.528 0.70715611.13 -2.306 0.5751139.59 -2.642 0.77215911.20 -2.306 0.5721149.71 -2.553 0.68016211.33	93	8.43	-2.338	0.715	139	10.66	-2.331	0.459
958.55 -2.505 1.073 141 10.73 -2.395 0.554 968.61 -2.668 0.961 142 10.77 -2.318 0.504 978.67 -2.603 0.797 143 10.80 -2.393 0.625 988.72 -2.384 0.897 144 10.84 -2.171 0.653 998.78 -2.138 0.601 145 10.87 -2.298 0.555 100 8.84 -2.561 0.792 146 10.91 -2.408 0.612 101 8.90 -2.344 0.738 147 10.94 -2.386 0.392 102 8.96 -2.574 0.698 148 10.98 -2.486 0.4271 103 9.01 -2.510 0.807 149 11.01 -2.400 0.586 104 9.07 -2.391 0.846 150 11.05 -2.432 0.601 107 9.25 -2.405 0.704 153 11.09 -2.420 0.721 108 9.30 -2.562 0.737 154 11.10 -2.129 0.721 109 9.36 -2.435 0.736 155 11.11 -2.206 0.674 111 9.42 -2.528 0.707 156 11.13 -2.035 0.568 111 9.48 -2.506 0.802 160 11.24 -1.928 0.572 112 9.54 -2.367 0.718	94	8.49	-2.249	0.790	140	10.70	-2.594	0.586
968.61 -2.668 0.96114210.77 -2.318 0.504978.67 -2.603 0.79714310.80 -2.393 0.625988.72 -2.384 0.89714410.81 -2.298 0.5551008.84 -2.661 0.79214610.91 -2.408 0.6121018.90 -2.344 0.73814710.94 -2.386 0.3921028.96 -2.574 0.69614810.98 -2.460 0.5861049.07 -2.391 0.84615011.05 -2.432 0.4621059.13 -2.606 0.70715211.07 -2.226 0.6011079.25 -2.405 0.70415311.09 -2.431 0.5491089.30 -2.652 0.73615511.11 -2.210 0.3551109.42 -2.528 0.70715611.13 -2.306 0.5751139.59 -2.642 0.77215911.20 -2.306 0.5721149.84 -2.566 0.80216011.24 -1.928 0.5721159.71 -2.516 0.55616111.29 -1.804 0.6411149.88 -2.565 0.70016411.42 -2.060 0.6381219.44 -2.581 0.75916511.14 -1.891 0.5121159.71 -2.516 0.55616111.29 <t< td=""><td>95</td><td>8.55</td><td>-2.505</td><td>1.073</td><td>141</td><td>10.73</td><td>-2.395</td><td>0.554</td></t<>	95	8.55	-2.505	1.073	141	10.73	-2.395	0.554
97 8.67 -2.603 0.797 143 10.80 -2.393 0.625 98 8.72 -2.384 0.897 144 10.84 -2.171 0.653 100 8.84 -2.561 0.792 146 10.91 -2.408 0.612 101 8.90 -2.344 0.738 147 10.94 -2.386 0.392 102 8.96 -2.574 0.698 148 10.98 -2.460 0.586 103 9.01 -2.510 0.807 149 11.01 -2.460 0.586 104 9.07 -2.391 0.846 150 11.05 -2.432 0.462 105 9.13 -2.606 0.790 151 11.06 -2.474 0.532 106 9.19 -2.516 0.704 153 11.09 -2.431 0.549 108 9.30 -2.562 0.787 154 11.10 -2.129 0.721 109 9.36 -2.435 0.707 156 11.13 -2.035 0.568 111 9.44 -2.506 0.592 157 11.14 -1.891 0.572 112 9.54 -2.367 0.772 159 11.20 -2.063 0.674 114 9.65 -2.565 0.700 164 11.24 -1.928 0.572 115 9.71 -2.516 0.656 161 11.29 -1.804 0.641 114 9.65 -2.565 0.70	96	8.61	-2.568	0.961	142	10.77	-2.318	0.504
98 8.72 -2.384 0.897 144 10.84 -2.171 0.653 99 8.78 -2.138 0.601 145 10.91 -2.298 0.555 100 8.90 -2.344 0.738 147 10.94 -2.386 0.392 102 8.96 -2.574 0.698 148 10.98 -2.486 0.427 103 9.01 -2.510 0.807 149 11.01 -2.460 0.586 104 9.07 -2.391 0.846 150 11.05 -2.432 0.462 105 9.13 -2.606 0.790 151 11.06 -2.474 0.532 106 9.19 -2.516 0.807 152 11.07 -2.226 0.601 107 9.25 -2.405 0.704 153 11.09 -2.431 0.549 108 9.30 -2.562 0.787 154 11.10 -2.129 0.721 109 9.36 -2.435 0.736 155 11.11 -2.203 0.674 110 9.42 -2.526 0.707 156 11.13 -2.306 0.575 111 9.48 -2.506 0.592 157 11.14 -1.891 0.512 112 9.54 -2.367 0.718 158 11.15 -2.306 0.572 113 9.59 -2.642 0.772 159 11.24 -1.928 0.572 114 9.66 -2.566 0.603	97	8.67	-2.603	0.797	143	10.80	-2.393	0.625
99 8.78 -2.138 0.601 145 10.87 -2.298 0.555 100 8.84 -2.561 0.792 146 10.91 -2.408 0.612 101 8.96 -2.574 0.698 148 10.98 -2.460 0.392 102 8.96 -2.574 0.698 148 10.98 -2.460 0.586 104 9.07 -2.391 0.846 150 11.05 -2.432 0.462 105 9.13 -2.606 0.790 151 11.06 -2.474 0.532 106 9.19 -2.516 0.807 152 11.07 -2.226 0.601 107 9.25 -2.405 0.704 153 11.99 -2.431 0.549 108 9.30 -2.562 0.707 156 11.11 -2.129 0.721 109 9.36 -2.435 0.736 155 11.11 -2.210 0.355 110 9.42 -2.528 0.707 156 11.13 -2.036 0.575 113 9.59 -2.642 0.772 159 11.20 -2.063 0.674 114 9.65 -2.566 0.802 160 11.24 -1.928 0.572 113 9.59 -2.642 0.772 159 11.20 -2.063 0.674 114 9.65 -2.565 0.603 161 11.29 -1.804 0.641 116 9.77 -2.516 0.566	98	8.72	-2.384	0.897	144	10.84	-2.171	0.653
1008.84 -2.661 0.792 146 10.91 -2.408 0.612 1018.90 -2.344 0.738 147 10.94 -2.386 0.392 1028.96 -2.574 0.698 148 10.98 -2.486 0.427 1039.01 -2.510 0.807 149 11.01 -2.460 0.586 1049.07 -2.391 0.846 150 11.05 -2.432 0.462 1059.13 -2.606 0.790 151 11.06 -2.474 0.532 1069.19 -2.516 0.807 152 11.07 -2.226 0.601 107 9.25 -2.405 0.704 153 11.09 -2.431 0.549 108 9.30 -2.562 0.787 154 11.10 -2.129 0.721 109 9.36 -2.435 0.736 155 11.11 -2.206 0.575 110 9.42 -2.566 0.592 157 11.14 -1.891 0.575 113 9.59 -2.642 0.772 159 11.20 -2.063 0.674 114 9.65 -2.565 0.802 160 11.24 -1.928 0.572 115 9.71 -2.565 0.602 166 11.33 -1.664 0.572 117 9.83 -2.665 0.603 166 11.46 -2.060 0.638 120 10.00 -2.363 0.603 166	99	8.78	-2.138	0.601	145	10.87	-2.298	0.555
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	8.84	-2.561	0.792	146	10.91	-2.408	0.612
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	101	8.90	-2.344	0.738	147	10.94	-2.386	0.392
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102	8.96	-2.574	0.698	148	10.98	-2.486	0.427
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	103	9.01	-2.510	0.807	149	11.01	-2.460	0.586
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	104	9.07	-2.391	0.846	150	11.05	-2.432	0.462
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105	9.13	-2.606	0.790	151	11.06	-2.474	0.532
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	106	9.19	-2.516	0.807	152	11.07	-2.226	0.601
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	107	9.25	-2.405	0.704	153	11.09	-2.431	0.549
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108	9.30	-2.562	0.787	154	11.10	-2.129	0.721
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109	9.36	-2.435	0.736	155	11.11	-2.210	0.355
1119.48-2.5060.59215711.14-1.8910.5121129.54-2.3670.71815811.15-2.3060.5751139.59-2.6420.77215911.20-2.0630.6741149.65-2.5650.80216011.24-1.9280.5721159.71-2.5160.55616111.29-1.8040.6411169.77-2.5530.68016211.33-1.6640.5721179.83-2.6650.46616311.37-1.8410.5731189.98-2.5250.70016411.42-2.0380.4981199.94-2.5810.75916511.46-2.0000.63812010.00-2.3630.60316611.51-1.8520.51312110.04-2.6410.70716711.55-1.9570.53512210.07-2.6480.88916811.60-2.0110.60412310.11-2.5740.56416911.64-1.9180.50212410.14-2.5620.40517111.73-1.9400.64612610.21-2.3630.54917211.77-1.9430.65812810.28-2.4620.84817411.86-1.8920.56812810.28-2.4630.79317511.91-1.9180.57713010.	110	9.42	-2.528	0.707	156	11.13	-2.035	0.568
1129.54-2.3670.71815811.15-2.3060.5751139.59-2.6420.77215911.20-2.0630.6741149.65-2.5650.80216011.24-1.9280.5721159.71-2.5160.55616111.29-1.8040.6411169.77-2.5530.68016211.33-1.6640.5721179.83-2.6650.46616311.37-1.8410.5731189.88-2.5250.70016411.42-2.0380.4981199.94-2.5810.75916511.46-2.0600.63812010.00-2.3630.60316611.51-1.8520.51312110.04-2.6410.70716711.55-1.9570.53512210.07-2.6480.88916811.64-1.9180.50212410.14-2.5660.67317011.68-1.9280.56612510.18-2.3620.40517111.77-1.9430.65412610.21-2.3500.54917211.77-1.9430.65412710.24-2.4820.84817411.86-1.8920.56812810.28-2.4820.84817411.86-1.8920.56812910.31-2.4630.79317511.91-1.9180.57713010	111	9.48	-2 506	0.592	157	11 14	-1 891	0.512
1139.59-2.6420.77215911.20-2.0630.6741149.65-2.5650.80216011.24-1.9280.5721159.71-2.5160.55616111.29-1.8040.6411169.77-2.5530.68016211.33-1.6640.5721179.83-2.6650.46616311.37-1.8410.5731189.88-2.5250.70016411.42-2.0380.4981199.94-2.5810.75916511.46-2.0600.63812010.00-2.3630.60316611.51-1.8520.51312110.04-2.6410.70716711.55-1.9570.53512210.07-2.6480.88916811.64-1.9180.50212410.14-2.5660.67317011.68-1.9280.56612510.18-2.5620.40517111.77-1.9430.65412710.24-2.4820.84817411.86-1.8920.56812810.28-2.5160.64717611.95-1.9030.49113110.38-2.4990.58017712.00-1.8680.61513210.42-2.5680.56217812.04-1.7020.62813310.45-2.6090.43617912.08-1.9020.3711341	112	9.54	-2.367	0.718	158	11.15	-2.306	0.575
1130.65 -2.565 0.80216011.24 -1.928 0.5721159.71 -2.516 0.55616111.29 -1.804 0.6411169.77 -2.553 0.68016211.33 -1.664 0.5721179.83 -2.665 0.46616311.37 -1.841 0.5731189.88 -2.525 0.70016411.42 -2.038 0.4981199.94 -2.581 0.75916511.46 -2.060 0.63812010.00 -2.363 0.60316611.51 -1.852 0.51312110.04 -2.641 0.70716711.55 -1.957 0.53512210.07 -2.648 0.88916811.60 -2.011 0.60412310.11 -2.574 0.56416911.64 -1.918 0.50212410.14 -2.566 0.67317011.68 -1.928 0.56612510.18 -2.562 0.40517111.77 -1.943 0.65412610.21 -2.350 0.54917211.77 -1.943 0.65412710.24 -2.469 0.38617311.82 -1.883 0.65812810.28 -2.482 0.84817411.86 -1.892 0.56812910.31 -2.668 0.56217812.04 -1.702 0.62813110.38 -2.499 0.580177 <t< td=""><td>113</td><td>9 59</td><td>-2 642</td><td>0 772</td><td>159</td><td>11 20</td><td>-2.063</td><td>0.674</td></t<>	113	9 59	-2 642	0 772	159	11 20	-2.063	0.674
1159.71-2.5160.55616111.29-1.8040.6411169.77-2.5530.68016211.33-1.6640.5721179.83-2.6650.46616311.37-1.8410.5731189.88-2.5250.70016411.42-2.0380.4981199.94-2.5810.75916511.46-2.0600.63812010.00-2.3630.60316611.51-1.8520.51312110.04-2.6410.70716711.55-1.9570.53512210.07-2.6480.88916811.60-2.0110.60412310.11-2.5740.56416911.64-1.9180.50212410.14-2.5660.67317011.68-1.9280.56612510.18-2.5620.40517111.73-1.9430.65412610.21-2.3500.54917211.77-1.9430.65412710.24-2.4690.38617311.82-1.8830.65812810.28-2.4820.84817411.86-1.8920.56812910.31-2.6680.69217812.04-1.7020.62813010.35-2.5160.64717611.95-1.9030.49113110.38-2.4990.58017712.00-1.8680.615132 <td< td=""><td>114</td><td>9.65</td><td>-2.565</td><td>0.802</td><td>160</td><td>11.24</td><td>-1.928</td><td>0.572</td></td<>	114	9.65	-2.565	0.802	160	11.24	-1.928	0.572
1169.77 -2.553 0.68016211.33 -1.664 0.5721179.83 -2.665 0.46616311.37 -1.841 0.5731189.88 -2.525 0.70016411.42 -2.038 0.4981199.94 -2.581 0.75916511.46 -2.060 0.63812010.00 -2.363 0.60316611.51 -1.852 0.51312110.04 -2.641 0.70716711.55 -1.957 0.53512210.07 -2.648 0.88916811.60 -2.011 0.60412310.11 -2.574 0.56416911.64 -1.918 0.50212410.14 -2.566 0.67317011.68 -1.928 0.56612510.18 -2.562 0.40517111.73 -1.943 0.65412610.21 -2.350 0.54917211.77 -1.943 0.65412710.24 -2.469 0.38617311.82 -1.883 0.65812810.28 -2.482 0.84817411.86 -1.992 0.56812910.31 -2.463 0.79317511.91 -1.918 0.57713010.35 -2.516 0.64717611.95 -1.903 0.49113110.38 -2.499 0.58017712.00 -1.868 0.61513210.42 -2.568 0.562178	115	9 71	-2 516	0.556	161	11 29	-1 804	0.641
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116	9 77	-2 553	0.680	162	11.33	-1 664	0.572
1189.88 -2.525 0.70016411.42 -2.038 0.4981199.94 -2.581 0.75916511.46 -2.060 0.63812010.00 -2.363 0.60316611.51 -1.852 0.51312110.04 -2.641 0.70716711.55 -1.957 0.53512210.07 -2.648 0.88916811.60 -2.011 0.60412310.11 -2.574 0.56416911.64 -1.918 0.50212410.14 -2.566 0.67317011.68 -1.928 0.56612510.18 -2.562 0.40517111.73 -1.940 0.64412610.21 -2.350 0.54917211.77 -1.943 0.66412610.21 -2.350 0.54817311.82 -1.883 0.65812710.24 -2.469 0.38617311.82 -1.883 0.65812810.28 -2.482 0.84817411.86 -1.992 0.56812910.31 -2.463 0.79317511.91 -1.918 0.57713010.35 -2.516 0.64717611.95 -1.903 0.49113110.38 -2.499 0.58017712.00 -1.868 0.61513210.42 -2.568 0.56217812.04 -1.702 0.62813310.45 -2.609 0.436179 <td>117</td> <td>9.83</td> <td>-2.665</td> <td>0.466</td> <td>163</td> <td>11.37</td> <td>-1.841</td> <td>0.573</td>	117	9.83	-2.665	0.466	163	11.37	-1.841	0.573
110 9.94 -2.581 0.759 165 11.46 -2.060 0.638 120 10.00 -2.363 0.603 166 11.51 -1.852 0.513 121 10.04 -2.641 0.707 167 11.55 -1.957 0.535 122 10.07 -2.648 0.889 168 11.60 -2.011 0.604 123 10.11 -2.574 0.564 169 11.64 -1.918 0.502 124 10.14 -2.566 0.673 170 11.68 -1.928 0.566 125 10.18 -2.562 0.405 171 11.73 -1.940 0.646 126 10.21 -2.350 0.549 172 11.77 -1.943 0.654 127 10.24 -2.469 0.386 173 11.82 -1.883 0.658 128 10.28 -2.482 0.848 174 11.86 -1.892 0.568 129 10.31 -2.463 0.793 175 11.91 -1.918 0.577 130 10.35 -2.516 0.647 176 11.95 -1.903 0.491 131 10.38 -2.499 0.580 177 12.00 -1.868 0.615 132 10.42 -2.568 0.562 178 12.04 -1.702 0.628 133 10.45 -2.609 0.436 179 12.08 -1.902 0.571 134	118	9.88	-2 525	0 700	164	11 42	-2 038	0 498
12010.00 -2.363 0.60316611.51 -1.852 0.51312110.04 -2.641 0.70716711.55 -1.957 0.53512210.07 -2.648 0.88916811.60 -2.011 0.60412310.11 -2.574 0.56416911.64 -1.918 0.50212410.14 -2.566 0.67317011.68 -1.928 0.56612510.18 -2.562 0.40517111.73 -1.940 0.64612610.21 -2.350 0.54917211.77 -1.943 0.65412710.24 -2.469 0.38617311.82 -1.883 0.65812810.28 -2.482 0.84817411.86 -1.892 0.56612910.31 -2.463 0.79317511.91 -1.918 0.57713010.35 -2.516 0.64717611.95 -1.903 0.49113110.38 -2.499 0.58017712.00 -1.868 0.61513210.42 -2.568 0.56217812.04 -1.702 0.62813310.45 -2.609 0.43617912.08 -1.902 0.37113410.49 -2.519 0.38818012.13 -1.962 0.55813510.52 -2.595 0.50118112.17 -1.809 0.39413610.56 -2.469 0.497182<	119	9.94	-2.581	0.759	165	11.46	-2.060	0.638
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120	10.00	-2.363	0.603	166	11.51	-1.852	0.513
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121	10.04	-2.641	0.707	167	11.55	-1.957	0.535
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122	10.07	-2.648	0.889	168	11.60	-2.011	0.604
124 10.14 -2.566 0.673 170 11.68 -1.928 0.566 125 10.18 -2.562 0.405 171 11.73 -1.940 0.646 126 10.21 -2.350 0.549 172 11.77 -1.943 0.654 127 10.24 -2.469 0.386 173 11.82 -1.883 0.658 128 10.28 -2.482 0.848 174 11.86 -1.892 0.568 129 10.31 -2.463 0.793 175 11.91 -1.918 0.577 130 10.35 -2.516 0.647 176 11.95 -1.903 0.491 131 10.38 -2.499 0.580 177 12.00 -1.868 0.615 132 10.42 -2.568 0.562 178 12.04 -1.702 0.628 133 10.45 -2.609 0.436 179 12.08 -1.902 0.371 134 10.49 -2.519 0.388 180 12.13 -1.962 0.558 135 10.52 -2.595 0.501 181 12.17 -1.809 0.394 136 10.56 -2.469 0.497 182 12.22 -2.074 0.476 137 10.59 -2.397 0.414 183 12.26 -1.948 0.587	123	10.11	-2.574	0.564	169	11.64	-1.918	0.502
125 10.18 -2.562 0.405 171 11.73 -1.940 0.646 126 10.21 -2.350 0.549 172 11.77 -1.943 0.654 127 10.24 -2.469 0.386 173 11.82 -1.883 0.658 128 10.28 -2.482 0.848 174 11.86 -1.892 0.568 129 10.31 -2.463 0.793 175 11.91 -1.918 0.577 130 10.35 -2.516 0.647 176 11.95 -1.903 0.491 131 10.38 -2.499 0.580 177 12.00 -1.868 0.615 132 10.42 -2.568 0.562 178 12.04 -1.702 0.628 133 10.45 -2.609 0.436 179 12.08 -1.902 0.371 134 10.49 -2.519 0.388 180 12.13 -1.962 0.558 135 10.52 -2.595 0.501 181 12.17 -1.809 0.394 136 10.56 -2.469 0.497 182 12.22 -2.074 0.476 137 10.59 -2.397 0.414 183 12.26 -1.948 0.587	124	10.14	-2.566	0.673	170	11.68	-1.928	0.566
126 10.10 1.602 0.160 111 1110 1100 1100 1010 126 10.21 -2.350 0.549 172 11.77 -1.943 0.654 127 10.24 -2.469 0.386 173 11.82 -1.883 0.658 128 10.28 -2.482 0.848 174 11.86 -1.892 0.568 129 10.31 -2.463 0.793 175 11.91 -1.918 0.577 130 10.35 -2.516 0.647 176 11.95 -1.903 0.491 131 10.38 -2.499 0.580 177 12.00 -1.868 0.615 132 10.42 -2.568 0.562 178 12.04 -1.702 0.628 133 10.45 -2.609 0.436 179 12.08 -1.902 0.371 134 10.49 -2.519 0.388 180 12.13 -1.962 0.558 135 10.52 -2.595 0.501 181 12.17 -1.809 0.394 136 10.56 -2.469 0.497 182 12.22 -2.074 0.476 137 10.59 -2.397 0.414 183 12.26 -1.948 0.587	125	10.18	-2 562	0.405	171	11.00	-1.940	0.646
127 10.24 -2.469 0.386 173 11.82 -1.883 0.658 128 10.28 -2.482 0.848 174 11.86 -1.892 0.568 129 10.31 -2.463 0.793 175 11.91 -1.918 0.577 130 10.35 -2.516 0.647 176 11.95 -1.903 0.491 131 10.38 -2.499 0.580 177 12.00 -1.868 0.615 132 10.42 -2.568 0.562 178 12.04 -1.702 0.628 133 10.45 -2.609 0.436 179 12.08 -1.902 0.371 134 10.49 -2.519 0.388 180 12.13 -1.962 0.558 135 10.52 -2.595 0.501 181 12.17 -1.809 0.394 136 10.56 -2.469 0.497 182 12.22 -2.074 0.476 137 10.59 -2.397 0.414 183 12.26 -1.948 0.587	126	10.10	-2 350	0.549	172	11 77	-1 943	0.654
128 10.28 -2.482 0.848 174 11.82 1.632 0.568 129 10.31 -2.463 0.793 175 11.91 -1.918 0.577 130 10.35 -2.516 0.647 176 11.95 -1.903 0.491 131 10.38 -2.499 0.580 177 12.00 -1.868 0.615 132 10.42 -2.568 0.562 178 12.04 -1.702 0.628 133 10.45 -2.609 0.436 179 12.08 -1.902 0.371 134 10.49 -2.519 0.388 180 12.13 -1.962 0.558 135 10.52 -2.595 0.501 181 12.17 -1.809 0.394 136 10.56 -2.469 0.497 182 12.22 -2.074 0.476 137 10.59 -2.397 0.414 183 12.26 -1.948 0.587	120	10.21	-2 469	0.386	173	11.82	-1 883	0.658
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128	10.28	-2 482	0.848	174	11.86	-1 892	0.568
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129	10.20	-2 463	0 793	175	11.00	-1 918	0.577
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	130	10.35	-2 516	0.647	176	11.01	-1 903	0 491
131 10.00 2.400 0.000 111 12.00 1.000 0.010 132 10.42 -2.568 0.562 178 12.04 -1.702 0.628 133 10.45 -2.609 0.436 179 12.08 -1.902 0.371 134 10.49 -2.519 0.388 180 12.13 -1.962 0.558 135 10.52 -2.595 0.501 181 12.17 -1.809 0.394 136 10.56 -2.469 0.497 182 12.22 -2.074 0.476 137 10.59 -2.397 0.414 183 12.26 -1.948 0.587	131	10.00	-2 499	0.580	173	12.00	-1 868	0.615
132 10.42 2.600 0.602 110 12.04 11.02 0.620 133 10.45 -2.609 0.436 179 12.08 -1.902 0.371 134 10.49 -2.519 0.388 180 12.13 -1.962 0.558 135 10.52 -2.595 0.501 181 12.17 -1.809 0.394 136 10.56 -2.469 0.497 182 12.22 -2.074 0.476 137 10.59 -2.397 0.414 183 12.26 -1.948 0.587	132	10.00	-2 568	0.562	178	12.00	-1 702	0.628
134 10.49 -2.519 0.388 180 12.13 -1.962 0.558 135 10.52 -2.595 0.501 181 12.17 -1.809 0.394 136 10.56 -2.469 0.497 182 12.22 -2.074 0.476 137 10.59 -2.397 0.414 183 12.26 -1.948 0.587	133	10.45	-2 609	0.436	170	12.04	-1 902	0.371
135 10.52 -2.595 0.501 181 12.17 -1.809 0.394 136 10.56 -2.469 0.497 182 12.22 -2.074 0.476 137 10.59 -2.397 0.414 183 12.26 -1.948 0.587	134	10.40	_2.003	0.400	180	12.00	_1 062	0.558
136 10.52 2.600 0.601 101 12.17 -1.609 0.594 136 10.56 -2.469 0.497 182 12.22 -2.074 0.476 137 10.59 -2.397 0.414 183 12.26 -1.948 0.587	135	10.49	-2.515	0.501	181	12.13	-1 802	0.394
137 10.59 -2.397 0.414 183 12.26 -1.948 0.587	136	10.52	-2 469	0 497	182	12.17	-2 074	0.476
	137	10.59	-2.397	0.414	183	12.26	-1.948	0.587

B ''	• •	-10 -	=13 -	<u> </u>	e	- 10 -	-12 -
Depth	Age [*]	δ¹®Ο	δ'°C	Depth	Age [*]	δ'ŏO	δ'°C
(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]	(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]
		(‰)	(‰)			(‰)	(‰)
184	12.31	-1.924	0.447	230	15.12	-1.394	0.626
185	12.35	-1.896	0.396	231	15.21	-1.544	0.573
186	12.39	-1 775	0.665	232	15.31	-1 746	0.639
187	12 44	-1 919	0.584	233	15 40	-1 610	0.514
188	12.11	-2.065	0.399	234	15 49	-1 651	0.364
189	12.10	-2.000	0.545	235	15 59	-1.377	0.348
190	12.00	_1 899	0.370	236	15.68	-1 381	0.574
191	12.67	-2 124	0.583	237	15.00	-1 470	0.07 1
102	12.02	_1 034	0.500	238	15.86	-1 378	0.432
192	12.00	1 9/2	0.075	230	15.00	-1.370	0.010
193	12.70	-1.042	0.491	239	15.90	-1.372	0.402
194	12.75	-2.039	0.599	240	10.05	-1.300	0.520
195	12.79	-1.0/0	0.503	241	10.14	-1.334	0.511
196	12.84	-1.912	0.547	242	10.24	-1.202	0.496
197	12.88	-2.048	0.438	243	10.33	-1.225	0.695
198	12.93	-2.137	0.603	244	16.42	-1.1/1	0.509
199	12.97	-1.983	0.735	245	16.45	-1.320	0.619
200	13.01	-2.157	0.440	246	16.48	-1.313	0.575
201	13.06	-2.103	0.546	247	16.52	-1.364	0.641
202	13.10	-2.028	0.516	248	16.55	-1.512	0.489
203	13.15	-2.084	0.663	249	16.58	-1.581	0.780
204	13.19	-2.028	0.739	250	16.61	-1.413	0.557
205	13.24	-2.118	0.657	251	16.64	-1.420	0.574
206	13.31	-2.158	0.577	252	16.67	-1.427	0.742
207	13.41	-2.045	0.483	253	sample mixed	I with other sar	nple
208	13.52	-2.048	0.567	254	16.73	-1.470	0.784
209	13.62	-1.869	0.427	255	16.76	-1.565	0.753
210	13.72	-2.117	0.555	256	16.80	-1.590	0.735
211	13.83	-1.877	0.735	257	16.83	-1.581	0.793
212	13.93	-1.715	0.680	258	16.86	-1.447	0.766
213	13.99	-1.818	0.653	259	16.89	-1.365	0.624
214	14.05	-1.766	0.470	260	16.92	-1.484	0.628
215	14.11	-1.961	0.474	261	16.95	-1.319	0.647
216	14.17	-1.910	0.627	262	16.98	-1.520	0.755
217	14 23	-1 923	0.509	263	17 01	-1 400	0.651
218	14 29	-1 824	0.547	264	17.04	-1 493	0.693
219	14.35	-1 842	0.387	265	17.08	-1 343	0.809
220	14 41	-1 683	0.629	266	17.00	-1 488	0.772
221	14 47	-1 829	0.607	260	17 14	-1 401	0.736
222	14 53	_1 842	0.662	267	17 17	_1 3/17	0.75
222	14.55	1 576	0.002	200	17.17	1 26/	0.715
220	14.09	-1.570	0.040	209	17.20	-1.204 1 / E0	0.700
224	14.00	-1.007	0.000	270	17.20	-1.400	0.072
220	14.71	-1.438	0.030	2/1	17.20	-1.303	0.738
220	14.//	-1.595	0.564	272	17.29	-1.376	0.553
227	14.84	-1.2/6	0.547	2/3	17.32	-1.406	0.626
228	14.94	-1.45/	0.635	2/4	17.35	-1.480	0.779
229	15.03	-1.568	0.621	275	17.38	-1.507	0.625

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]	(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]
()	((%)	(%0)	()	((%)	(%)
		(700)	(700)			(700)	(700)
276	17.41	-1.445	0.826	322	19.11	-1.529	0.822
277	17.44	-1.428	0.656	323	19.14	-1.348	0.610
278	17.47	-1.357	0.638	324	19.18	-1.834	0.939
279	17.50	-1.510	0.769	325	19.22	-1.472	0.668
280	17.53	-1.473	0.610	326	19.26	-1.451	0.752
281	17.56	-1.409	0.653	327	19.29	-1.802	0.856
282	17.59	-1.542	0.649	328	19.33	-1.585	0.658
283	17.63	-1.363	0.641	329	19.37	-1.528	0.901
284	17.67	-1.631	0.754	330	19.41	-1.716	0.848
285	17.70	-1.406	0.570	331	19.45	-1.510	0.811
286	17.74	-1.323	0.586	332	19.48	-1.652	0.781
287	17 78	-1 501	0 750	333	19.52	-1 567	0 795
288	17.82	-1 425	0.720	334	19.56	-1 737	0.845
289	17.86	-1 551	0.851	335	19.60	-1 798	0.573
290	17.80	-1 449	0.813	336	19.64	-1 581	0.624
291	17.93	-1 404	0.573	337	19.67	-1 762	0.941
292	17.00	-1 599	0.807	338	19 71	-1 467	0 701
202	18.01	-1 508	0.659	339	19.71	-1 520	0 774
200	18.05	-1 551	0.853	340	19.70	-1 535	0.656
204	18.08	-1 540	0.682	341	10.77	-1 516	0.000
296	18.00	-1 573	0.769	342	19.80	-1 546	0.738
200	18.12	-1 517	0.730	343	10.02	-1 505	0.682
298	18.20	-1 382	0.700	344	19.87	-1 380	0.577
200	18.20	-1 563	0.704	345	19.89	-1 531	0.751
300	18.20	-1 577	0.796	346	10.00	-1 554	0.536
301	18.31	-1.642	0.730	347	10.04	-1.603	0.550
302	18.35	-1.042	0.716	348	10.04	1 650	0.007
302	18 30	-1.404	0.710	340	10.08	-1.039	0.720
303	18.42	-1.669	0.097	350	20.01	-1.640	0.304
305	18.46	-1.003	0.647	351	20.01	1 523	0.652
306	18.50	-1.511	0.047	352	20.05	-1.525	0.052
307	18.50	-1.027	0.022	353	20.03	-1.0 4 0 1.482	0.024
308	18.58	-1.400	0.040	354	20.00	-1.402	0.440
300	19.50	-1.400	0.095	355	20.10	-1.010	0.714
310	18.65	-1.554	0.737	356	20.15	-1.020	0.711
311	18.60	1 736	0.865	357	20.15	1 634	0.009
312	18.73	1 620	0.000	358	20.17	1 585	0.090
312	10.75	-1.029	0.000	350	20.20	-1.565	0.734
214	10.70	-1.575	0.094	309	20.22	-1.452	0.005
314	18 94	-1.470	0.730	300	20.24	1 551	0.724
210	10.04	1 440	0.131	30 I 260	20.21	1 720	0.740
310	10.00	- 1.44U 1 775	0.095	30Z	20.29	-1./00	0.012
J1/ 240	10.92	-1.//0	0.007	303	20.31	-1.000	0.790
310 210	10.90	-1.47U	0.724	304 265	20.34	-1./0/	0.071
330	10.99	1 756	0.702	303	20.00	- 1.7 34 1 E74	0.000
320	19.03	-1./00	0.190	300	20.30	-1.0/4	0.037
321	19.07	-1.400	0.019	307	20.41	-1.010	0.074
Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
--------	-------------------	----------------------	----------------------	-------	-------------------	----------------------	----------------------
(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]	(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]
(0111)	((()))	(%)	(%)	(oni)	((()))	(%)	(%)
		(700)	(700)			(700)	(700)
368	20.43	-1.507	0.759	414	hiatus	-1.733	0.745
369	20.47	-1.619	0.717	415	hiatus	-1.900	0.821
370	sample mixed	d with other san	nple	416	hiatus	-1.880	0.879
371	20.56	-1.720	0.725	417	hiatus	-2.017	0.708
372	20.61	-1.510	0.677	418	hiatus	-1.943	0.731
373	20.65	-1.639	0.614	419	hiatus	-1.997	0.779
374	20.70	-1.602	0.697	420	hiatus	-1.940	0.729
375	20.74	-1.396	0.849	421	27.23	-1.776	0.751
376	20.79	-1.387	0.678	422	27.49	-1.873	0.821
377	20.83	-1.719	0.640	423	27.74	-2.181	0.800
378	20.87	-1.568	0.673	424	28.00	-2.111	0.777
379	20.92	-1.458	0.604	425	28.26	-1.861	0.643
380	20.96	-1.672	0.492	426	28.51	-2.106	0.697
381	21.01	-1.485	0.634	427	28.77	-1.724	0.711
382	21.05	-1.699	0.693	428	29.03	-2.002	0.690
383	21.10	-1.617	0.770	429	29.28	-1.959	0.771
384	21.14	-1.557	0.905	430	29.54	-1.878	0.836
385	21.18	-1.562	0.785	431	29.79	-1.916	0.788
386	21.23	-1.643	0.703	432	30.05	-2.037	0.881
387	21.27	-1.632	0.914	433	30.31	-2.052	0.926
388	21.32	-1.578	0.757	434	30.56	-1.983	0.931
389	21.36	-1.513	0.808	435	30.82	-1.780	0.762
390	21.41	-1.677	0.547	436	31.08	-1.775	0.775
391	21.45	-1.765	0.867	437	31.33	-1.919	0.734
392	21.50	-1.725	0.816	438	31.59	-1.829	0.866
393	21.54	-1.931	0.708	439	31.84	-1.969	0.818
394	21.58	-1.730	0.712	440	32.10	-1.941	0.964
395	21.63	-1.580	0.711	441	32.16	-1.881	0.771
396	21.67	-1.740	0.743	442	32.23	-2.036	1.132
397	21.72	-1.542	0.806	443	32.29	-1.699	0.590
398	21.76	-1.570	0.706	444	32.36	-1.875	0.719
399	21.81	-1.672	0.785	445	32.42	-1.885	0.746
400	21.85	-1.643	0.499	446	32.49	-1.920	0.806
401	hiatus	-1.436	0.743	447	32.55	-2.016	0.815
402	hiatus	-1.589	0.840	448	32.62	-2.045	0.936
403	hiatus	-1.597	0.761	449	32.68	-1.906	0.915
404	hiatus	-1.701	0.700	450	32.75	-1.935	0.788
405	hiatus	-1.696	0.759	451	32.81	-2.162	0.724
406	hiatus	-1.398	0.720	452	32.88	-1.884	0.775
407	hiatus	-1.766	0.647	453	32.94	-2.215	0.954
408	hiatus	-1.702	0.628	454	33.01	-2.019	0.796
409	hiatus	-1.675	0.568	455	33.07	-2.134	0.655
410	hiatus	-2.018	0.635	456	33.14	-2.116	0.890
411	hiatus	-1.757	0.946	457	33.20	-2.174	0.758
412	hiatus	-1.910	0.713	458	33.27	-2.084	0.769
413	hiatus	-2.003	0.580	459	33.33	-1.860	0.803

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]	(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]
(0)	((()))	(%)	(%)	(0)	((()))	(%)	(%)
		(700)	(,00)			(700)	(700)
460	33.40	-1.988	0.938	506	37.24	-2.203	0.766
461	33.46	-2.219	0.613	507	37.30	-2.292	0.785
462	33.53	-2.228	0.867	508	37.31	-2.181	0.758
463	33.59	-2.025	0.702	509	37.33	-1.916	0.700
464	33.66	-2.329	0.858	510	37.35	-1.884	0.680
465	33.72	-2.066	0.645	511	37.36	-2.000	0.791
466	33.79	-2.081	0.878	512	37.38	-2.207	0.779
467	33.85	-1.781	0.703	513	37.40	-2.009	0.794
468	33.92	-2.037	0.904	514	37.41	-1.881	0.763
469	33.98	-2.057	0.890	515	37.43	-2.083	0.996
470	34.05	-1.944	0.934	516	37.45	-1.912	0.841
471	34.11	-2.186	0.856	517	37.46	-1.954	0.861
472	34.18	-2.020	0.792	518	37.48	-1.802	0.788
473	34.24	-2.043	0.681	519	37.50	-1.883	0.850
474	34.31	-1.975	0.841	520	37.51	-1.959	0.767
475	34.37	-2.000	0.809	521	37.53	-1.711	0.854
476	34.44	-1.855	0.721	522	37.55	-1.709	0.884
477	34.50	-1.857	0.779	523	37.56	-1.798	0.654
478	34.57	-2.024	0.651	524	37.58	-1.812	0.961
479	34.63	-2.169	0.833	525	37.60	-1.842	0.587
480	34.70	-1.862	0.764	526	37.61	-1.480	0.703
481	34.76	-1.847	0.793	527	37.63	-1.635	0.851
482	34.83	-1.925	0.702	528	37.65	-1.735	0.785
483	34.89	-1.922	0.803	529	37.66	-1.481	0.853
484	34.96	-2.128	0.882	530	37.68	-1.809	0.864
485	35.02	-2.026	0.902	531	37.69	-1.510	0.764
486	35.09	-1.922	0.873	532	37.71	-1.515	0.856
487	35.15	-2.019	0.848	533	37.73	-1.735	0.922
488	35.26	-2.083	0.718	534	37.74	-1.538	0.672
489	35.37	-2.220	0.787	535	37.76	-1.636	0.754
490	35.48	-1.884	0.870	536	37.78	-1.546	0.785
491	35.59	-2.011	0.749	537	37.79	-1.738	0.798
492	35.70	-2.144	0.610	538	37.81	-1.452	0.691
493	35.81	-2.040	0.607	539	37.83	-1.495	0.593
494	35.92	-2.021	0.894	540	37.84	-1.632	0.842
495	36.03	-1.942	0.800	541	37.86	-1.705	0.647
496	36.14	-2.209	0.739	542	37.88	-1.471	0.830
497	36.25	-2.033	0.748	543	37.89	-1.467	0.761
498	36.36	-1.896	0.834	544	37.98	-1.486	0.776
499	36.47	-2.069	0.471	545	38.07	-1.615	0.956
500	36.58	-1.814	0.673	546	38.16	-1.678	0.821
501	36.69	-1.780	0.534	547	38.25	-1.912	0.927
502	36.80	-2.041	0.683	548	38.34	-1.638	0.877
503	36.91	-1.889	0.738	549	38.43	-1.765	0.633
504	37.02	-2.076	0.842	550	38.52	-1.822	1.065
505	37.13	-2.072	0.789	551	38.61	-1.808	0.714

	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]	(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		((%)	(%)		(,.)	(%)	(%)
552 38.70 -1.986 0.836 598 41.36 -1.675 0.716 553 38.79 -2.146 0.706 599 41.42 -2.259 0.964 554 38.80 -1.887 0.898 601 41.54 -2.075 0.888 556 38.90 -1.887 0.898 601 41.59 -2.146 0.914 557 39.02 -1.842 0.900 603 41.65 -2.024 0.843 558 39.08 -2.062 0.853 604 41.71 -2.028 0.685 560 39.19 -2.086 0.831 606 41.82 -2.229 0.902 561 39.25 -1.826 0.861 607 41.88 -1.916 0.879 562 39.30 -1.896 0.822 609 42.00 -2.035 0.859 563 39.42 -1.896 0.822 609 42.00 -2.035 0.859 566 39.42 -1.897 0.780 611 42.11 -2.060 0.963 566 39.53 -1.863 0.709 612 42.17 -2.077 0.930 567 39.65 -1.924 0.978 614 42.28 -2.301 0.847 569 39.70 -1.981 0.878 615 42.34 -2.079 0.930 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572			(////	(100)			(////	(////
553 38.79 -2.146 0.706 599 41.42 -2.259 0.964 554 38.85 -1.908 0.721 600 41.48 -1.947 0.946 555 38.96 -2.017 0.870 602 41.59 -2.146 0.914 557 39.02 -1.842 0.900 603 41.65 -2.024 0.843 558 39.02 -1.842 0.900 603 41.65 -2.024 0.843 559 39.13 -1.978 0.894 605 41.77 -2.028 0.685 560 39.19 -2.066 0.831 606 41.82 -2.229 0.902 561 39.25 -1.826 0.861 607 41.88 -1.985 0.689 563 39.36 -1.896 0.822 609 42.00 -2.035 0.859 564 39.42 -1.922 0.752 610 42.05 -1.940 0.863 566 39.48 -1.897 0.789 614 42.17 -2.077 0.797 567 39.59 -1.864 0.876 613 42.23 -2.166 0.797 568 39.65 -1.924 0.978 614 42.28 -2.001 0.963 571 39.89 -1.864 0.876 615 42.34 -2.061 0.966 571 39.93 -1.924 0.976 614 42.28 -2.079 0.930 574	552	38.70	-1.986	0.836	598	41.36	-1.675	0.716
554 38.85 -1.908 0.721 600 41.48 -1.947 0.946 555 38.90 -1.867 0.898 601 41.59 -2.146 0.914 557 39.02 -1.842 0.900 603 41.65 -2.024 0.843 558 39.02 -1.842 0.900 603 41.65 -2.024 0.843 558 39.08 -2.062 0.853 604 41.77 -2.028 0.685 560 39.19 -2.066 0.831 606 41.82 -2.229 0.902 561 39.25 -1.826 0.861 607 41.88 -1.916 0.579 562 39.30 -1.960 0.753 608 41.04 -1.895 0.689 563 39.36 -1.897 0.780 611 42.05 -1.940 0.880 565 39.44 -1.927 0.772 610 42.05 -1.940 0.880 566 39.53 -1.863 0.709 612 42.17 -2.077 0.797 567 39.59 -1.864 0.876 613 42.23 -2.166 0.797 568 39.66 -1.924 0.978 614 42.28 -2.301 0.863 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 574	553	38.79	-2.146	0.706	599	41.42	-2.259	0.964
555 38.90 -1.887 0.898 601 41.54 -2.075 0.888 556 38.96 -2.017 0.870 602 41.55 -2.024 0.843 557 39.02 -2.062 0.853 604 41.71 -2.024 0.843 558 39.08 -2.062 0.853 604 41.71 -2.024 0.843 559 39.13 -1.978 0.894 605 41.77 -2.028 0.885 560 39.19 -2.066 0.831 606 41.82 -2.229 0.902 561 39.25 -1.826 0.861 607 41.88 -1.916 0.579 562 39.30 -1.966 0.822 609 42.00 -2.035 0.889 563 39.42 -1.922 0.752 610 42.05 -1.940 0.880 566 39.53 -1.866 0.870 611 42.11 -2.066 0.963 566 39.53 -1.863 0.709 612 42.17 -2.077 0.797 567 39.95 -1.864 0.876 614 42.23 -2.301 0.847 569 39.70 -1.981 0.878 615 42.34 -2.061 0.906 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.898 0.811 618 42.51 -2.055 0.813 574	554	38.85	-1.908	0.721	600	41.48	-1.947	0.946
556 38.96 -2.017 0.870 602 41.59 -2.146 0.914 557 39.02 -1.842 0.900 603 41.65 -2.024 0.843 558 39.13 -1.978 0.894 605 41.71 -2.001 0.789 559 39.13 -1.978 0.894 605 41.77 -2.028 0.685 560 39.19 -2.086 0.831 606 41.82 -2.229 0.902 561 39.25 -1.826 0.861 607 41.88 -1.916 0.579 562 39.30 -1.960 0.753 608 41.94 -1.895 0.689 564 39.42 -1.922 0.752 610 42.05 -1.940 0.880 565 39.48 -1.897 0.780 611 42.11 -2.060 0.963 566 39.53 -1.864 0.870 6112 42.17 -2.077 0.797 567 39.59 -1.864 0.870 6114 42.28 -2.301 0.847 569 39.70 -1.924 0.978 614 42.28 -2.061 0.906 571 39.82 -1.900 0.830 617 42.40 -2.079 0.930 571 39.82 -1.980 0.811 618 42.51 -2.055 0.813 573 39.93 -1.983 0.999 619 42.57 -1.980 0.799 5	555	38.90	-1.887	0.898	601	41.54	-2.075	0.888
557 39.02 -1.842 0.900 603 41.65 -2.024 0.843 558 39.08 -2.062 0.853 604 41.77 -2.001 0.789 559 39.13 -1.978 0.894 605 41.77 -2.028 0.865 560 39.19 -2.086 0.831 606 41.82 -2.229 0.902 561 39.25 -1.826 0.861 607 41.88 -1.916 0.579 562 39.30 -1.960 0.753 608 41.94 -1.895 0.689 563 39.42 -1.822 0.752 610 42.05 -1.940 0.880 565 39.48 -1.897 0.780 611 42.11 -2.060 0.963 566 39.53 -1.863 0.709 612 42.17 -2.077 0.797 567 39.59 -1.864 0.870 613 42.23 -2.166 0.797 568 39.65 -1.924 0.978 614 42.28 -2.301 0.847 569 37.0 -1.981 0.878 615 42.34 -2.061 0.906 570 39.76 -2.197 0.926 616 42.40 -2.079 0.930 571 39.83 -1.998 0.811 618 42.51 -2.055 0.813 574 39.93 -1.983 0.999 619 42.57 -1.980 1.006 574	556	38.96	-2.017	0.870	602	41.59	-2.146	0.914
558 39.08 -2.062 0.853 604 41.71 -2.001 0.789 559 39.13 -1.978 0.894 605 41.77 -2.028 0.685 560 39.13 -1.978 0.881 606 41.82 -2.229 0.902 561 39.25 -1.826 0.861 607 41.88 -1.916 0.579 562 39.30 -1.960 0.753 608 41.94 -1.895 0.689 563 39.46 -1.922 0.752 610 42.05 -1.940 0.880 565 39.48 -1.897 0.780 611 42.11 -2.060 0.963 566 39.53 -1.863 0.709 613 42.23 -2.166 0.797 567 39.59 -1.864 0.870 613 42.23 -2.061 0.906 570 39.76 -2.197 0.926 616 42.40 -2.079 0.930 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.898 0.811 618 42.57 -1.980 1.006 574 39.99 -1.975 0.844 620 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.793 0.603 577 40.16 -1.957 0.873 622 42.74 -1.932 0.843 576	557	39.02	-1.842	0.900	603	41.65	-2.024	0.843
559 39.13 -1.978 0.894 605 41.77 -2.028 0.685 560 39.19 -2.086 0.831 606 41.82 -2.229 0.902 561 39.25 -1.826 0.861 607 41.88 -1.916 0.579 562 39.30 -1.960 0.753 608 41.94 -1.895 0.689 563 39.36 -1.896 0.822 609 42.00 -2.035 0.859 564 39.42 -1.922 0.752 610 42.05 -1.940 0.880 565 39.48 -1.897 0.780 611 42.11 -2.060 0.963 566 39.53 -1.864 0.870 613 42.23 -2.166 0.797 567 39.59 -1.864 0.876 615 42.34 -2.061 0.906 570 39.70 -1.981 0.878 615 42.34 -2.061 0.906 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.898 0.811 618 42.57 -1.980 1.006 574 39.99 -1.755 0.844 620 42.69 -1.932 0.833 576 40.05 -1.945 0.914 621 42.69 -1.932 0.833 577 40.26 -1.957 1.140 623 42.86 -2.025 0.814 579	558	39.08	-2.062	0.853	604	41.71	-2.001	0.789
560 39.19 -2.086 0.831 606 41.82 -2.229 0.902 561 39.25 -1.826 0.861 607 41.88 -1.916 0.579 562 39.36 -1.896 0.822 609 42.00 -2.035 0.859 564 39.42 -1.922 0.752 610 42.05 -1.940 0.880 565 39.48 -1.897 0.780 611 42.17 -2.060 0.963 566 39.53 -1.863 0.709 612 42.17 -2.077 0.797 567 39.59 -1.864 0.870 613 42.23 -2.166 0.797 568 39.65 -1.924 0.978 614 42.28 -2.301 0.847 569 39.70 -1.981 0.878 615 42.34 -2.061 0.906 570 39.76 -2.197 0.926 616 42.40 -2.079 0.930 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.83 -1.988 0.811 618 42.51 -2.055 0.813 573 39.93 -1.945 0.914 621 42.69 -1.793 0.603 576 40.10 -1.977 0.873 622 42.74 -1.932 0.843 577 40.16 -1.957 1.140 623 42.86 -2.025 0.814 576	559	39.13	-1.978	0.894	605	41.77	-2.028	0.685
561 39.25 -1.826 0.861 607 41.88 -1.916 0.579 562 39.30 -1.960 0.753 608 41.94 -1.895 0.689 563 39.36 -1.896 0.822 609 42.00 -2.035 0.889 564 39.42 -1.922 0.752 610 42.05 -1.940 0.880 566 39.53 -1.863 0.709 611 42.11 -2.060 0.963 566 39.59 -1.864 0.870 613 42.23 -2.166 0.797 567 39.59 -1.864 0.878 614 42.28 -2.301 0.847 569 39.76 -2.197 0.978 614 42.24 -2.061 0.906 570 39.76 -2.197 0.926 616 42.40 -2.079 0.303 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.898 0.811 618 42.51 -2.055 0.813 573 39.93 -1.993 0.999 619 42.57 -1.980 1.006 574 39.99 -1.755 0.844 620 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.733 0.603 577 40.16 -1.957 1.140 623 42.86 -2.025 0.814 579	560	39.19	-2.086	0.831	606	41.82	-2.229	0.902
562 39.30 -1.960 0.753 608 41.94 -1.895 0.689 563 39.36 -1.896 0.822 609 42.00 -2.035 0.859 564 39.42 -1.922 0.752 610 42.05 -1.940 0.880 565 39.48 -1.897 0.760 611 42.11 -2.060 0.963 566 39.53 -1.863 0.709 612 42.17 -2.077 0.797 567 39.59 -1.864 0.870 613 42.23 -2.166 0.906 570 39.76 -1.924 0.978 614 42.28 -2.301 0.847 569 39.70 -1.981 0.878 615 42.34 -2.061 0.906 570 39.76 -2.197 0.926 616 42.40 -2.079 0.930 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.888 0.811 618 42.57 -1.980 1.006 574 39.99 -1.755 0.844 620 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.793 0.603 576 40.10 -1.977 0.873 622 42.74 -1.932 0.843 577 40.22 -2.100 0.937 624 42.69 -1.995 0.880 580	561	39.25	-1.826	0.861	607	41.88	-1.916	0.579
563 39.36 -1.896 0.822 609 42.00 -2.035 0.859 564 39.42 -1.922 0.752 610 42.05 -1.940 0.880 565 39.48 -1.897 0.780 611 42.05 -1.940 0.880 566 39.53 -1.863 0.709 612 42.17 -2.077 0.797 567 39.59 -1.864 0.870 613 42.23 -2.166 0.797 568 39.65 -1.924 0.978 614 42.28 -2.301 0.847 569 39.70 -1.981 0.878 615 42.40 -2.079 0.930 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.898 0.811 618 42.51 -2.055 0.813 573 39.93 -1.983 0.999 619 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.793 0.603 576 40.10 -1.977 0.873 622 42.74 -1.932 0.843 577 40.16 -1.957 1.140 623 42.86 -2.025 0.814 579 40.22 -2.100 0.937 626 42.97 -1.886 0.867 581 40.33 -1.986 0.795 626 42.97 -1.886 0.867 584	562	39.30	-1.960	0.753	608	41.94	-1.895	0.689
564 39.42 -1.922 0.752 610 42.05 -1.940 0.880 565 39.48 -1.897 0.780 611 42.11 -2.060 0.963 566 39.53 -1.863 0.709 612 42.17 -2.077 0.797 567 39.59 -1.864 0.870 613 42.23 -2.166 0.997 568 39.65 -1.924 0.978 614 42.28 -2.301 0.847 569 39.70 -1.981 0.878 615 42.34 -2.061 0.906 570 39.76 -2.197 0.926 616 42.40 -2.079 0.930 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.898 0.811 618 42.51 -2.055 0.813 573 39.93 -1.755 0.844 620 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.932 0.843 577 40.05 -1.945 0.914 622 42.74 -1.932 0.843 576 40.10 -1.957 1.140 623 42.80 -1.903 0.833 578 40.22 -2.100 0.337 624 42.86 -2.025 0.844 590 40.33 -1.986 0.795 626 42.97 -1.866 0.867 581	563	39.36	-1.896	0.822	609	42.00	-2.035	0.859
565 39.48 -1.897 0.780 611 42.11 -2.060 0.963 566 39.53 -1.863 0.709 612 42.17 -2.077 0.797 567 39.59 -1.864 0.870 613 42.23 -2.166 0.797 568 39.65 -1.924 0.978 614 42.28 -2.301 0.847 569 39.70 -1.981 0.878 615 42.34 -2.061 0.906 570 39.76 -2.197 0.926 616 42.40 -2.079 0.930 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.898 0.811 618 42.57 -1.980 1.006 574 39.99 -1.755 0.844 620 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.793 0.603 576 40.10 -1.979 0.873 622 42.74 -1.932 0.843 577 40.16 -1.957 1.140 623 42.80 -2.025 0.814 577 40.05 -1.945 0.770 625 42.97 -1.886 0.867 580 40.33 -1.986 0.795 626 42.97 -1.886 0.867 581 40.39 -1.878 0.8917 627 43.03 -1.777 0.586 58	564	39.42	-1.922	0.752	610	42.05	-1.940	0.880
566 39.53 -1.863 0.709 612 42.17 -2.077 0.797 567 39.59 -1.864 0.870 613 42.23 -2.166 0.797 568 39.65 -1.924 0.978 614 42.28 -2.301 0.847 569 39.70 -1.981 0.878 615 42.34 -2.079 0.930 570 39.76 -2.197 0.926 616 42.40 -2.079 0.930 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.988 0.811 618 42.57 -1.980 1.006 574 39.99 -1.755 0.844 620 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.793 0.603 576 40.10 -1.957 1.140 623 42.80 -1.903 0.833 578 40.22 -2.100 0.937 624 42.86 -2.025 0.814 579 40.28 -2.150 0.770 625 42.97 -1.886 0.867 581 40.33 -1.986 0.992 628 43.09 -1.727 0.586 582 40.45 -1.986 0.892 628 43.09 -1.727 0.586 583 40.51 -1.814 0.921 629 43.15 -1.757 0.855 584	565	39.48	-1.897	0.780	611	42.11	-2.060	0.963
567 39.59 -1.864 0.870 613 42.23 -2.166 0.797 568 39.65 -1.924 0.978 614 42.28 -2.301 0.847 569 39.70 -1.981 0.878 615 42.34 -2.061 0.906 570 39.76 -2.197 0.926 616 42.40 -2.079 0.930 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.898 0.811 618 42.51 -2.055 0.813 573 39.93 -1.983 0.999 619 42.57 -1.980 1.006 574 39.99 -1.755 0.844 620 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.793 0.603 576 40.10 -1.977 0.873 622 42.74 -1.932 0.843 577 40.16 -1.957 1.140 623 42.80 -1.903 0.833 578 40.22 -2.100 0.937 624 42.86 -2.025 0.814 579 40.28 -2.150 0.770 625 42.92 -1.995 0.880 580 40.33 -1.986 0.892 626 43.09 -1.727 0.586 581 40.39 -1.878 0.917 627 43.03 -1.791 0.885 584	566	39.53	-1.863	0.709	612	42.17	-2.077	0.797
568 39.65 -1.924 0.978 614 42.28 -2.301 0.847 569 39.70 -1.981 0.878 615 42.34 -2.061 0.906 570 39.76 -2.197 0.926 616 42.40 -2.079 0.930 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.888 0.811 618 42.51 -2.055 0.813 573 39.93 -1.983 0.999 619 42.57 -1.980 1.006 574 39.99 -1.755 0.844 620 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.793 0.603 576 40.10 -1.977 0.873 622 42.74 -1.932 0.843 577 40.16 -1.957 1.140 623 42.80 -1.903 0.833 578 40.22 -2.150 0.770 625 42.92 -1.995 0.880 580 40.33 -1.878 0.917 627 43.03 -1.771 0.885 582 40.45 -1.986 0.892 628 43.09 -1.727 0.586 583 40.51 -1.814 0.921 629 43.15 -1.757 0.855 584 40.56 -1.939 0.871 630 43.20 -1.812 0.775 585	567	39.59	-1.864	0.870	613	42.23	-2.166	0.797
569 39.70 -1.981 0.878 615 42.34 -2.061 0.906 570 39.76 -2.197 0.926 616 42.40 -2.079 0.930 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.898 0.811 618 42.51 -2.055 0.813 573 39.93 -1.988 0.999 619 42.57 -1.980 1.006 574 39.99 -1.755 0.844 620 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.793 0.603 576 40.10 -1.979 0.873 622 42.74 -1.932 0.843 577 40.16 -1.957 1.140 623 42.80 -1.903 0.833 578 40.22 -2.100 0.937 624 42.86 -2.025 0.814 579 40.28 -2.150 0.770 625 42.92 -1.995 0.880 580 40.33 -1.986 0.795 626 42.97 -1.886 0.867 581 40.39 -1.878 0.917 627 43.03 -1.727 0.586 583 40.56 -1.939 0.871 630 43.20 -1.812 0.775 585 40.62 -1.924 0.861 631 43.26 -1.991 0.750 586	568	39.65	-1.924	0.978	614	42.28	-2.301	0.847
570 39.76 -2.197 0.926 616 42.40 -2.079 0.930 571 39.82 -1.900 0.830 617 42.46 -1.855 0.663 572 39.88 -1.898 0.811 618 42.51 -2.055 0.813 573 39.93 -1.983 0.999 619 42.57 -1.980 1.006 574 39.99 -1.755 0.844 620 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.793 0.603 576 40.10 -1.979 0.873 622 42.74 -1.932 0.843 577 40.16 -1.957 1.140 623 42.80 -1.903 0.833 578 40.22 -2.100 0.937 624 42.86 -2.025 0.814 579 40.28 -2.150 0.770 625 42.92 -1.995 0.880 580 40.33 -1.986 0.795 626 42.97 -1.886 0.867 581 40.39 -1.878 0.917 627 43.03 -1.727 0.586 582 40.45 -1.939 0.871 630 43.20 -1.812 0.775 585 40.62 -1.924 0.861 631 43.26 -1.991 0.750 586 40.68 -1.900 0.762 632 43.32 -1.801 0.677 586	569	39.70	-1.981	0.878	615	42.34	-2.061	0.906
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	570	39.76	-2.197	0.926	616	42.40	-2.079	0.930
572 39.88 1.898 0.811 618 42.51 -2.055 0.813 573 39.93 -1.983 0.999 619 42.57 -1.980 1.006 574 39.99 -1.755 0.844 620 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.793 0.603 576 40.10 -1.979 0.873 622 42.74 -1.932 0.843 577 40.16 -1.957 1.140 623 42.80 -1.903 0.833 578 40.22 -2.100 0.937 624 42.86 -2.025 0.814 579 40.28 -2.150 0.770 625 42.92 -1.995 0.880 580 40.33 -1.986 0.795 626 42.97 -1.886 0.867 581 40.39 -1.878 0.917 627 43.03 -1.727 0.586 582 40.45 -1.986 0.892 628 43.09 -1.727 0.586 583 40.51 -1.814 0.921 629 43.15 -1.757 0.855 584 40.66 -1.939 0.871 630 43.20 -1.991 0.750 586 40.68 -1.900 0.762 632 43.32 -1.801 0.677 587 40.73 -2.085 0.704 633 43.37 -1.938 0.759 588	571	39.82	-1.900	0.830	617	42.46	-1.855	0.663
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	572	39.88	-1.898	0.811	618	42.51	-2.055	0.813
574 39.99 -1.755 0.844 620 42.63 -1.990 0.779 575 40.05 -1.945 0.914 621 42.69 -1.793 0.603 576 40.10 -1.979 0.873 622 42.74 -1.932 0.843 577 40.16 -1.957 1.140 623 42.80 -1.903 0.833 578 40.22 -2.100 0.937 624 42.86 -2.025 0.814 579 40.28 -2.150 0.770 625 42.92 -1.995 0.880 580 40.33 -1.986 0.795 626 42.97 -1.886 0.867 581 40.39 -1.878 0.917 627 43.03 -1.791 0.885 582 40.45 -1.986 0.892 628 43.09 -1.727 0.586 583 40.56 -1.939 0.871 630 43.20 -1.812 0.775 584 40.56 -1.924 0.861 631 43.26 -1.991 0.750 586 40.68 -1.900 0.762 632 43.37 -1.938 0.759 586 40.68 -1.900 0.762 632 43.37 -1.938 0.759 586 40.68 -1.900 0.762 632 43.37 -1.938 0.759 586 40.68 -1.899 0.506 635 43.43 -1.888 0.838 589	573	39.93	-1.983	0.999	619	42.57	-1.980	1.006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	574	39.99	-1 755	0.844	620	42.63	-1 990	0 779
576 40.10 -1.979 0.873 622 42.74 -1.932 0.843 577 40.16 -1.957 1.140 623 42.80 -1.903 0.833 578 40.22 -2.100 0.937 624 42.86 -2.025 0.814 579 40.28 -2.150 0.770 625 42.92 -1.995 0.880 580 40.33 -1.986 0.795 626 42.97 -1.886 0.867 581 40.39 -1.878 0.917 627 43.03 -1.791 0.885 582 40.45 -1.986 0.892 628 43.09 -1.727 0.586 583 40.51 -1.814 0.921 629 43.15 -1.757 0.855 584 40.56 -1.939 0.871 630 43.20 -1.812 0.775 585 40.62 -1.924 0.861 631 43.26 -1.991 0.750 586 40.68 -1.900 0.762 632 43.32 -1.801 0.677 587 40.73 -2.085 0.704 633 43.37 -1.938 0.759 588 40.79 -2.033 0.951 634 43.43 -1.888 0.828 590 40.91 -1.871 0.842 636 43.55 -1.940 0.838 591 40.96 -2.029 0.916 637 43.60 -1.990 0.732 592	575	40.05	-1.945	0.914	621	42.69	-1.793	0.603
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	576	40.10	-1.979	0.873	622	42.74	-1.932	0.843
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	577	40.16	-1.957	1,140	623	42.80	-1.903	0.833
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	578	40.22	-2 100	0.937	624	42.86	-2 025	0.814
510 10.120 1.100 0.1705 626 42.97 -1.886 0.867 580 40.33 -1.986 0.795 626 42.97 -1.886 0.867 581 40.39 -1.878 0.917 627 43.03 -1.791 0.885 582 40.45 -1.986 0.892 628 43.09 -1.727 0.586 583 40.51 -1.814 0.921 629 43.15 -1.757 0.855 584 40.56 -1.939 0.871 630 43.20 -1.812 0.775 585 40.62 -1.924 0.861 631 43.26 -1.991 0.750 586 40.68 -1.900 0.762 632 43.32 -1.801 0.677 587 40.73 -2.085 0.704 633 43.37 -1.938 0.759 588 40.79 -2.033 0.951 634 43.43 -1.888 0.858 589 40.85 -1.899 0.506 635 43.49 -2.025 0.796 590 40.91 -1.871 0.842 636 43.55 -1.940 0.838 591 40.96 -2.029 0.916 637 43.66 -1.864 0.894 593 41.08 -1.818 0.928 639 43.72 1.947 0.903	579	40.28	-2 150	0 770	625	42.92	-1 995	0.880
581 40.39 -1.878 0.917 627 43.03 -1.791 0.885 582 40.45 -1.986 0.892 628 43.09 -1.727 0.586 583 40.51 -1.814 0.921 629 43.15 -1.757 0.855 584 40.56 -1.939 0.871 630 43.20 -1.812 0.775 585 40.62 -1.924 0.861 631 43.26 -1.991 0.750 586 40.68 -1.900 0.762 632 43.32 -1.801 0.677 587 40.73 -2.085 0.704 633 43.37 -1.938 0.759 588 40.79 -2.033 0.951 634 43.43 -1.888 0.858 589 40.85 -1.899 0.506 635 43.49 -2.025 0.796 590 40.91 -1.871 0.842 636 43.55 -1.940 0.838 591 40.96 -2.029 0.916 637 43.66 -1.864 0.894 593 41.02 -1.818 0.928 639 43.72 1.947 0.903	580	40.33	-1.986	0.795	626	42.97	-1.886	0.867
582 40.45 -1.986 0.892 628 43.09 -1.727 0.586 583 40.51 -1.814 0.921 629 43.15 -1.757 0.855 584 40.56 -1.939 0.871 630 43.20 -1.812 0.775 585 40.62 -1.924 0.861 631 43.26 -1.991 0.750 586 40.68 -1.900 0.762 632 43.32 -1.801 0.677 587 40.73 -2.085 0.704 633 43.37 -1.938 0.759 588 40.79 -2.033 0.951 634 43.43 -1.888 0.858 589 40.85 -1.899 0.506 635 43.49 -2.025 0.796 590 40.91 -1.871 0.842 636 43.55 -1.940 0.838 591 40.96 -2.029 0.916 637 43.66 -1.864 0.894 593 41.02 -1.818 0.928 639 43.72 1.947 0.903	581	40.39	-1.878	0.917	627	43.03	-1.791	0.885
583 40.51 -1.814 0.921 629 43.15 -1.757 0.855 584 40.56 -1.939 0.871 630 43.20 -1.812 0.775 585 40.62 -1.924 0.861 631 43.26 -1.991 0.750 586 40.68 -1.900 0.762 632 43.32 -1.801 0.677 587 40.73 -2.085 0.704 633 43.37 -1.938 0.759 588 40.79 -2.033 0.951 634 43.43 -1.888 0.858 589 40.85 -1.899 0.506 635 43.49 -2.025 0.796 590 40.91 -1.871 0.842 636 43.55 -1.940 0.838 591 40.96 -2.029 0.916 637 43.60 -1.990 0.732 592 41.02 -1.899 0.865 638 43.66 -1.864 0.894 593 41.08 -1.818 0.928 639 43.72 1.947 0.903	582	40.45	-1.986	0.892	628	43.09	-1.727	0.586
584 40.56 -1.939 0.871 630 43.20 -1.812 0.775 585 40.62 -1.924 0.861 631 43.26 -1.991 0.750 586 40.68 -1.900 0.762 632 43.32 -1.801 0.677 587 40.73 -2.085 0.704 633 43.37 -1.938 0.759 588 40.79 -2.033 0.951 634 43.43 -1.888 0.858 589 40.85 -1.899 0.506 635 43.49 -2.025 0.796 590 40.91 -1.871 0.842 636 43.55 -1.940 0.838 591 40.96 -2.029 0.916 637 43.60 -1.990 0.732 592 41.02 -1.899 0.865 638 43.66 -1.864 0.894 593 41.08 -1.818 0.928 639 43.72 1.947 0.903	583	40.51	-1 814	0.921	629	43 15	-1 757	0.855
585 40.62 -1.924 0.861 631 43.26 -1.991 0.750 586 40.68 -1.900 0.762 632 43.32 -1.801 0.677 587 40.73 -2.085 0.704 633 43.37 -1.938 0.759 588 40.79 -2.033 0.951 634 43.43 -1.888 0.858 589 40.85 -1.899 0.506 635 43.49 -2.025 0.796 590 40.91 -1.871 0.842 636 43.55 -1.940 0.838 591 40.96 -2.029 0.916 637 43.60 -1.990 0.732 592 41.02 -1.899 0.865 638 43.66 -1.864 0.894 593 41.08 -1.818 0.928 639 43.72 1.947 0.903	584	40.56	-1 939	0.871	630	43 20	-1 812	0.775
586 40.68 -1.900 0.762 632 43.32 -1.801 0.677 587 40.73 -2.085 0.704 633 43.37 -1.938 0.759 588 40.79 -2.033 0.951 634 43.43 -1.888 0.858 589 40.85 -1.899 0.506 635 43.49 -2.025 0.796 590 40.91 -1.871 0.842 636 43.55 -1.940 0.838 591 40.96 -2.029 0.916 637 43.60 -1.990 0.732 592 41.02 -1.899 0.865 638 43.66 -1.864 0.894 593 41.08 -1.818 0.928 639 43.72 1.947 0.803	585	40.62	-1 924	0.861	631	43 26	-1 991	0 750
587 40.73 -2.085 0.704 633 43.37 -1.938 0.759 588 40.79 -2.033 0.951 634 43.43 -1.888 0.858 589 40.85 -1.899 0.506 635 43.49 -2.025 0.796 590 40.91 -1.871 0.842 636 43.55 -1.940 0.838 591 40.96 -2.029 0.916 637 43.60 -1.990 0.732 592 41.02 -1.899 0.865 638 43.66 -1.864 0.894 593 41.08 -1.818 0.928 639 43.72 1.947 0.803	586	40.68	-1 900	0 762	632	43.32	-1 801	0.677
588 40.79 -2.033 0.951 634 43.43 -1.888 0.858 589 40.85 -1.899 0.506 635 43.49 -2.025 0.796 590 40.91 -1.871 0.842 636 43.55 -1.940 0.838 591 40.96 -2.029 0.916 637 43.60 -1.990 0.732 592 41.02 -1.899 0.865 638 43.66 -1.864 0.894 593 41.08 -1.818 0.928 639 43.72 1.947 0.803	587	40.73	-2.085	0.704	633	43.37	-1.938	0.759
589 40.85 -1.899 0.506 635 43.49 -2.025 0.796 590 40.91 -1.871 0.842 636 43.55 -1.940 0.838 591 40.96 -2.029 0.916 637 43.60 -1.990 0.732 592 41.02 -1.899 0.865 638 43.66 -1.864 0.894 593 41.08 -1.818 0.928 639 43.72 1.947 0.803	588	40.79	-2.033	0.951	634	43.43	-1.888	0.858
590 40.91 -1.871 0.842 636 43.55 -1.940 0.838 591 40.96 -2.029 0.916 637 43.60 -1.990 0.732 592 41.02 -1.899 0.865 638 43.66 -1.864 0.894 593 41.08 -1.818 0.928 639 43.72 1.947 0.803	589	40.85	-1 899	0.506	635	43 49	-2 025	0 796
591 40.96 -2.029 0.916 637 43.60 -1.990 0.732 592 41.02 -1.899 0.865 638 43.66 -1.864 0.894 593 41.08 -1.818 0.928 639 43.72 1.947 0.903	590	40.91	-1 871	0.842	636	43 55	-1.940	0.838
592 41.02 -1.899 0.865 638 43.66 -1.864 0.894 593 41.08 -1.818 0.928 639 43.72 1.947 0.903	591	40.96	-2.029	0.916	637	43 60	-1.990	0.732
503 <u>/1 08 _1 818 0 028 630 /3 72 1 0/7 0 902</u>	592	41 02	-1 899	0.865	638	43 66	-1 864	0.894
	593	41 08	-1 818	0.928	639	43 72	-1 947	0.803
594 41 13 -1 715 0 661 640 43 78 -1 933 0 842	594	41 13	_1 715	0.661	640	43 78	-1 033	0.842
595 41 19 -1 883 0 949 641 43 83 -1 937 0 910	595	41 19	-1 883	0.949	641	43 83	-1 937	0.910
596 41 25 -2 038 0 831 642 43 89 -1 995 0 445	596	41 25	-2 038	0.831	642	43.89	-1 995	0 445
597 41.31 -2.034 0.963 643 43.95 -1.945 0.770	597	41.31	-2.034	0.963	643	43.95	-1.945	0.770

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Aae ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(cm)	(kyr)	(Grub) [‡]	(G rub) [‡]	(cm)	(kyr)	(G rub) [‡]	(Grub) [‡]
(0)	((()))	(%)	(%)	(0)	((()))	(%)	(%)
		(700)	(700)			(700)	(700)
644	44.01	-1.963	0.906	701	46.65	-2.077	0.776
645	44.06	-1.924	0.837	702	46.71	-1.757	0.867
646	44.12	-2.258	0.888	703	46.76	-1.866	0.627
647	44.18	-2.029	0.719	704	46.82	-1.865	0.692
648	44.24	-2.062	0.794	705	46.88	-1.845	0.982
649	44.29	-2.054	0.591	706	46.94	-1.919	0.898
650	44.35	-2.137	0.857	707	46.99	-2.018	0.819
651	44.41	-2.148	0.684	708	47.05	-1.849	0.794
652	44.47	-1.927	0.669	709	47.11	-2.023	0.679
653	44.52	-2.166	0.946	710	47.17	-1.677	0.756
654	44.58	-1.973	0.642	711	47.22	-1.838	0.567
655	44.64	-2.186	0.835	712	47.28	-2.048	0.713
656	44.70	-2.355	0.636	713	47.34	-2.012	0.973
657	44.75	-2.336	0.896	714	47.40	-1.896	0.593
658	44.81	-2.167	0.673	715	47.45	-1.995	0.775
659	44.87	-1.970	0.839	716	47.51	-1.997	0.882
660	44.93	-2.135	0.772	717	47.57	-1.783	0.734
661	44.98	-2.210	0.617	718	47.63	-1.726	0.690
673	45.04	-2.272	0.816	719	47.68	-1.940	1.014
674	45.10	-2.278	0.809	720	47.74	-1.992	0.903
675	45.16	-2.041	0.684	721	47.80	-2.146	0.906
676	45.21	-2.284	0.878	722	47.86	-2.062	0.651
677	45.27	-2.310	0.610	723	47.91	-2.118	0.651
678	45.33	-2.286	0.751	724	47.97	-2.189	0.886
679	45.39	-2.092	0.687	725	48.03	-1.958	0.893
680	45.44	-2.193	0.799	726	48.09	-1.963	0.624
681	45.50	-2.303	0.901	727	48.14	-2.005	0.816
682	45.56	-2.030	0.755	728	48.20	-1.933	0.774
683	45.62	-2.166	0.722	729	48.26	-2.158	0.822
684	45.67	-2.251	0.754	730	48.32	-2.016	0.839
685	45.73	-2.273	0.666	731	48.37	-1.984	0.748
686	45.79	-2.346	0.728	732	48.43	-1.862	0.689
687	45.85	-2.241	0.944	733	48.49	-2.077	0.853
688	45.90	-2.100	0.848	734	48.55	-2.291	0.814
689	45.96	-2.069	0.796	735	48.60	-1.899	0.684
690	46.02	-1.963	0.739	736	48.66	-2.153	0.824
691	46.08	-2.107	0.748	737	48.72	-1.969	0.641
692	46.13	-1.913	0.939	738	48.78	-2.329	0.778
693	46.19	-1.934	0.754	739	48.83	-2.177	0.688
694	46.25	-1.778	0.616	740	48.89	-2.143	0.831
695	46.31	-2.276	0.827	741	48.95	-2.097	0.757
696	46.36	-1.957	0.714	742	49.01	-2.172	0.869
697	46.42	-1.997	0.751	743	49.06	-2.237	0.790
698	46.48	-1.821	0.739	744	49.12	-2.284	0.771
699	46.54	-2.060	0.690	745	49.18	-2.223	0.631
700	46.59	-2.107	0.706	746	49.24	-2.268	0.827

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]	(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]
(0)	((()))	(%)	(%)	(0)	((()))	(%)	(%)
		(700)	(700)			(700)	(700)
747	49.29	-2.275	0.827	793	51.94	-2.303	0.652
748	49.35	-2.289	0.834	794	51.99	-2.185	0.490
749	49.41	-2.036	0.773	795	52.05	-1.870	0.572
750	49.47	-2.029	0.765	796	52.11	-2.269	0.583
751	49.52	-2.152	0.682	797	52.17	-2.352	0.652
752	49.58	-2.041	0.743	798	52.22	-2.092	0.612
753	49.64	-2.334	0.566	799	52.28	-2.196	0.613
754	49.70	-2.057	0.808	800	52.34	-2.050	0.566
755	49.75	-2.462	0.715	801	52.40	-1.893	0.440
756	49.81	-2.476	0.800	802	52.45	-2.316	0.437
757	49.87	-2.250	0.714	803	52.51	-2.347	0.638
758	49.93	-2.241	0.718	804	52.57	-2.372	0.578
759	49.98	-2.394	0.708	805	52.63	-1.907	0.478
760	50.04	-2.110	0.696	806	52.68	-1.912	0.378
761	50.10	-2.153	0.729	807	52.74	-2.217	0.547
762	50.15	-2.205	0.766	808	52.80	-2.332	0.314
763	50.21	-2.238	0.677	809	52.86	-1.947	0.440
764	50.27	-2.412	0.718	810	52.91	-1.884	0.423
765	50.33	-2.274	0.830	811	52.97	-1.843	0.501
766	50.38	-2.143	0.700	812	53.03	-1.968	0.464
767	50.44	-2.217	0.690	813	53.09	-1.795	0.343
768	50.50	-2.067	0.649	814	53.14	-1.795	0.389
769	50.56	-2.209	0.858	815	53.20	-1.638	0.194
770	50.61	-2.172	0.481	816	53.26	-1.533	0.439
771	50.67	-2.429	0.533	817	53.32	-2.147	0.482
772	50.73	-2.223	0.697	818	53.37	-1.999	0.565
773	50.79	-2.307	0.832	819	53.43	-1.666	0.339
774	50.84	-2.400	0.868	820	53.49	-1.978	0.312
775	50.90	-2.059	0.822	821	53.55	-1.981	0.463
776	50.96	-2.279	0.764	822	53.60	-1.807	0.592
777	51.02	-2.440	0.766	823	53.66	-1.796	0.381
778	51.07	-2.304	0.800	824	53.72	-1.659	0.306
779	51.13	-2.348	0.755	825	53.77	-1.689	0.478
780	51.19	-2.311	0.575	826	53.83	-1.797	0.195
781	51.25	-2.234	0.704	827	53.89	-1.653	0.371
782	51.30	-2.251	0.743	828	53.95	-1.846	0.299
783	51.36	-2.405	0.578	829	54.00	-1.980	0.553
784	51.42	-1.948	0.584	830	54.06	-1.710	0.406
785	51.48	-2.114	0.702	831	54.12	-1.769	0.290
786	51.53	-2.009	0.560	832	54.18	-1.861	0.446
787	51.59	-2.092	0.415	833	54.23	-1.721	0.321
788	51.65	-2.088	0.815	834	54.29	-1.897	0.524
789	51.71	-2.217	0.686	835	54.35	-1.757	0.367
790	51.76	-2.118	0.560	836	54.41	-1.815	0.431
791	51.82	-2.081	0.561	837	54.46	-1.877	0.530
792	51.88	-2.213	0.419	838	54.52	-1.741	0.482

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]	(cm)	(kvr)	(G.rub) [‡]	(G.rub) [‡]
()	((%)	(%0)	()	((%)	(%)
		(700)	(,00)			(700)	(700)
839	54.58	-2.229	0.728	885	57.22	-2.179	0.428
840	54.64	-2.131	0.374	886	57.28	-2.042	0.658
841	54.69	-2.185	0.415	887	57.34	-2.080	0.161
842	54.75	-2.541	0.760	888	57.39	-2.143	0.553
843	54.81	-2.402	0.637	889	57.45	-2.160	0.490
844	54.87	-2.389	0.618	890	57.51	-1.991	0.516
845	54.92	-2.182	0.541	891	57.57	-2.244	0.646
846	54.98	-2.437	0.650	892	57.62	-2.456	0.394
847	55.04	-2.400	0.637	893	57.68	-2.409	0.482
848	55.10	-2.550	0.470	894	57.74	-2.221	0.337
849	55.15	-2.472	0.569	895	57.80	-2.215	0.604
850	55.21	-2.201	0.606	896	57.85	-2.028	0.481
851	55.27	-2.402	0.624	897	57.91	-2.195	0.520
852	55.33	-2.298	0.443	898	57.97	-2.381	0.527
853	55.38	-2.242	0.497	899	58.03	-2.306	0.532
854	55.44	-2.455	0.577	900	58.08	-2.227	0.500
855	55.50	-2.551	0.743	901	58.14	-2.468	0.476
856	55.56	-2.273	0.566	902	58.20	-2.209	0.388
857	55.61	-2.337	0.802	903	58.26	-2.277	0.361
858	55.67	-2.295	0.472	904	58.31	-2.205	0.571
859	55.73	-2.082	0.662	905	58.37	-2.315	0.516
860	55.79	-1.941	0.679	906	58.43	-2.402	0.350
861	55.84	-2.432	0.456	907	58.49	-2.165	0.310
862	55.90	-2.251	0.928	908	58.54	-2.099	0.594
863	55.96	-2.167	0.650	909	58.60	-2.223	0.335
864	56.02	-2.392	0.720	910	58.66	-2.253	0.473
865	56.07	-2.159	0.445	911	58.72	-2.367	0.495
866	56.13	-2.141	0.560	912	58.77	-2.313	0.556
867	56.19	-2.202	0.482	913	58.83	-2.054	0.561
868	56.25	-1.973	0.742	914	58.89	-2.249	0.564
869	56.30	-1.959	0.752	915	58.95	-2.201	0.432
870	56.36	-1.980	0.693	916	59.00	-2.028	0.490
871	56.42	-2.257	0.512	917	59.06	-2.129	0.365
872	56.48	-1.982	0.606	918	59.12	-2.104	0.489
873	56.53	-2.179	0.258	919	59.18	-1.816	0.425
874	56.59	-2.179	0.589	920	59.23	-1.922	0.392
875	56.65	-2.112	0.649	921	59.29	-2.291	0.555
876	56.71	-2.031	0.645	922	59.35	-2.113	0.510
877	56.76	-2.044	0.545	923	59.41	-2.011	0.427
878	56.82	-1.913	0.476	924	59.46	-2.268	0.451
879	56.88	-2.008	0.664	925	59.52	-2.347	0.389
880	56.94	-2.032	0.585	926	59.58	-2.439	0.453
881	56.99	-1.868	0.699	927	59.64	-2.184	0.425
882	57.05	-1.955	0.404	928	59.69	-2.061	0.510
883	57.11	-2.055	0.451	929	59.75	-2.225	0.513
884	57.16	-2.151	0.510	930	59.81	-2.053	0.391

Depth	Age ^{\$}	δ ¹⁸ Ο	δ¹³C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(cm)	(kvr)	(G.rub) [‡]	(G.rub) [‡]	(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]
()	((%)	(%0)	()	((%)	(%)
		(700)	(,00)			(700)	(700)
931	59.87	-2.037	0.656	983	67.00	-1.777	0.640
932	59.92	-2.180	0.540	984	67.20	-1.784	0.609
936	60.15	-1.940	0.435	985	67.40	-1.600	0.656
940	60.38	-1.818	0.271	986	67.60	-1.760	0.441
941	60.44	-1.909	0.387	987	67.80	-1.816	0.472
942	60.58	-1.882	0.336	988	68.00	-1.782	0.664
943	60.73	-1.986	0.618	989	68.20	-1.788	0.649
944	60.87	-1.885	0.468	990	68.40	-1.987	0.621
945	61.01	-1.536	0.360	991	68.60	-1.805	0.627
946	61.15	-1.627	0.457	992	68.80	-1.789	0.671
947	61.30	-1.540	0.345	993	69.00	-1.708	0.479
948	61.44	-1.495	0.334	994	69.20	-1.612	0.760
949	61.58	-1.644	0.447	995	69.40	-1.762	0.632
950	61.72	-1.686	0.388	996	69.60	-1.571	0.676
951	61.87	-1.495	0.382	997	69.80	-1.599	0.760
952	62.01	-1.593	0.451	998	70.00	-1.831	0.459
953	62.15	-1.429	0.305	999	70.20	-1.830	0.545
954	62.29	-1.558	0.513	1000	70.40	-1.769	0.685
955	62.44	-1.790	0.087	1001	70.60	-1.757	0.639
956	62.58	-1.758	0.409	1002	70.80	-1.560	0.650
957	62.72	-1.926	0.442	1003	71.00	-1.654	0.631
958	62.86	-1.651	0.363	1004	71.20	-1.469	0.851
959	63.01	-1.850	0.526	1005	71.40	-1.701	0.375
960	63.15	-1.772	0.374	1006	71.60	-2.053	0.643
961	63.29	-1.825	0.558	1007	71.80	-1.776	0.797
962	63.43	-1.659	0.369	1008	72.00	-1.977	0.493
963	63.58	-1.672	0.691	1009	72.20	-1.864	0.691
964	63.72	-1.683	0.355	1010	72.40	-1.851	0.452
965	63.86	-1.754	0.436	1011	72.60	-1.830	0.609
966	64.00	-1.621	0.739	1012	72.80	-1.669	0.801
967	64.15	-1.834	0.545	1013	73.00	-1.942	0.642
968	64.29	-1.535	0.613	1014	73.20	-1.741	0.583
969	64.43	-1.588	0.438	1015	73.40	-1.710	0.446
970	64.57	-1.692	0.516	1016	73.60	-1.815	0.460
971	64.72	-1.604	0.405	1017	73.80	-1.888	0.687
972	64.86	-1.864	0.558	1018	74.00	-1.914	0.741
973	65.00	-1.675	0.518	1019	74.20	-2.194	0.576
974	65.20	-1.738	0.563	1020	74.40	-1.930	0.512
975	65.40	-1.712	0.519	1021	74.60	-1.807	0.648
976	65.60	-1.698	0.314	1022	74.80	-2.147	0.865
977	65.80	-1.520	0.646	1023	75.00	-1.999	1.016
978	66.00	-1.810	0.654	1024	75.20	-2.142	0.651
979	66.20	-1.659	0.388	1025	75.40	-2.273	0.906
980	66.40	-1.818	0.563	1026	75.60	-2.153	0.956
981	66.60	-1.863	0.533	1027	75.80	-2.206	0.790
982	66.80	-1.904	0.641	1028	76.00	-2.192	0.832

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]	(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]
(011)	((()))	(%)	(%)	(011)	((()))	(%)	(%)
		(700)	(700)			(700)	(700)
1029	76.20	-1.899	0.661	1075	81.85	-2.019	0.777
1030	76.40	-1.920	0.699	1076	81.95	-1.970	0.630
1031	76.60	-2.220	0.937	1077	82.05	-2.118	0.995
1032	76.80	-2.022	1,156	1078	82.16	-1.838	0.787
1033	77.00	-2 111	1 067	1079	82.26	-2 249	0.885
1034	77.20	-2.052	0.869	1080	82.37	-2.149	0.904
1035	77.40	-2.715	0.841	1081	82.47	-2.318	0.495
1036	77.60	-2.545	0.662	1082	82.57	-1.952	0.795
1037	77.80	-2.338	1.180	1083	82.68	-2.009	0.883
1038	78.00	-2.443	0.775	1084	82.78	-2.113	0.733
1039	78.10	-1.989	0.785	1085	82.89	-2.250	0.781
1040	78.21	-1.990	0.672	1086	82.99	-1.939	0.903
1041	78.31	-1.975	0.814	1087	83.09	-2.116	0.647
1042	78.42	-2.329	0.715	1088	83.20	-1.819	0.670
1043	78.52	-2.165	0.828	1089	83.30	-1.948	0.768
1044	78.62	-2.338	0.850	1090	83.41	-1.792	0.579
1045	78.73	-2.400	0.987	1091	83.51	-1.862	0.802
1046	78.83	-2.087	0.677	1092	83.61	-2.084	0.710
1047	78.94	-2.524	0.798	1093	83.72	-2.193	0.857
1048	79.04	-2.374	0.907	1094	83.82	-2.128	0.724
1049	79.14	-2.254	0.698	1095	83.93	-2.031	0.768
1050	79.25	-2.231	0.813	1096	84.03	-1.954	0.922
1051	79.35	-2.234	0.681	1097	84.13	-2.019	0.798
1052	79.46	-2.268	0.920	1098	84.24	-2.219	0.838
1053	79.56	-2.279	0.762	1099	84.34	-2.132	0.696
1054	79.66	-2.203	1.073	1100	84.45	-2.073	0.705
1055	79.77	-2.107	0.805	1101	84.55	-2.037	0.761
1056	79.87	-2.240	0.953	1102	84.65	-2.043	0.805
1057	79.98	-2.150	0.732	1103	84.76	-2.058	0.829
1058	80.08	-2.171	1.036	1104	84.86	-1.893	0.538
1059	80.18	-2.112	1.036	1105	84.97	-2.078	0.696
1060	80.29	-2.293	0.776	1106	85.07	-1.937	0.641
1061	80.39	-2.010	0.855	1107	85.17	-1.968	0.730
1062	80.50	-2.415	0.869	1108	85.28	-1.927	0.741
1063	80.60	-2.169	0.840	1109	85.38	-2.233	0.836
1064	80.70	-2.377	0.809	1110	85.49	-2.041	0.856
1065	80.81	-2.302	1.011	1111	85.59	-1.882	1.143
1066	80.91	-2.235	0.957	1112	85.69	-2.000	0.738
1067	81.01	-2.326	0.790	1113	85.80	-2.064	0.810
1068	81.12	-2.425	0.855	1114	85.90	-1.953	0.941
1069	81.22	-2.217	0.813	1115	86.00	-1.937	0.428
1070	81.33	-2.123	0.825	1116	86.11	-2.027	0.757
1071	81.43	-2.041	0.644	1117	86.21	-1.959	0.837
1072	81.53	-2.102	0.767	1118	86.32	-1.808	0.885
1073	81.64	-2.118	0.893	1119	86.42	-2.155	0.929
1074	81.74	-2.198	0.608	1120	86.52	-1.878	0.553

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]	(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]
()	((%)	(%0)	()	((%)	(%)
		(700)	(,00)			(,00)	(700)
1121	86.63	-2.128	0.737	1167	91.41	-1.914	0.767
1122	86.73	-1.782	0.758	1168	91.51	-2.046	0.714
1123	86.84	-1.996	0.834	1169	91.62	-1.925	0.737
1124	86.94	-1.943	0.717	1170	91.72	-2.150	0.687
1125	87.04	-1.913	0.870	1171	91.83	-2.140	0.921
1126	87.15	-2.015	0.663	1172	91.93	-2.125	0.862
1127	87.25	-1.952	0.895	1173	92.03	-1.734	0.909
1128	87.36	-1.913	0.842	1174	92.14	-1.827	0.878
1129	87.46	-1.970	0.726	1175	92.24	-1.945	0.865
1130	87.56	-2.127	0.858	1176	92.35	-1.918	0.896
1131	87.67	-2.094	0.843	1177	92.45	-2.178	0.814
1132	87.77	-2.064	0.773	1178	92.55	-2.001	0.685
1133	87.88	-2.168	0.927	1179	92.66	-1.876	0.618
1134	87.98	-1.891	0.799	1180	92.76	-2.314	0.809
1135	88.08	-2.134	0.872	1181	92.87	-2.060	0.758
1136	88.19	-1.950	0.814	1182	92.97	-2.131	0.857
1137	88.29	-2.025	0.873	1183	93.07	-2.404	0.903
1138	88.40	-1.980	0.942	1184	93.18	-2.441	0.706
1139	88.50	-2.321	1.000	1185	93.28	-2.134	0.782
1140	88.60	-2.055	0.795	1186	93.39	-2.031	0.716
1141	88.71	-2.130	0.787	1187	93.49	-2.065	0.570
1142	88.81	-2.149	0.899	1188	93.59	-2.512	0.772
1143	88.92	-1.867	0.782	1189	93.70	-2.239	0.679
1144	89.02	-1.834	0.906	1190	93.80	-2.648	0.916
1145	89.12	-1.953	0.742	1191	93.91	-2.443	0.514
1146	89.23	-2.065	0.798	1192	94.01	-2.317	0.853
1147	89.33	-2.112	0.667	1193	94.11	-2.270	0.803
1148	89.44	-2.256	0.634	1194	94.22	-2.262	0.822
1149	89.54	-2.098	0.662	1195	94.32	-2.178	0.811
1150	89.64	-2.119	0.726	1196	94.43	-1.991	0.644
1151	89.75	-1.895	0.711	1197	94.53	-2.027	0.800
1152	89.85	-2.022	0.761	1198	94.63	-1.908	0.809
1153	89.96	-1.872	0.745	1199	94.74	-2.032	0.774
1154	90.06	-1.975	0.819	1200	94.84	-1.619	0.750
1155	90.16	-2.081	0.693	1201	94.95	-1.680	0.549
1156	90.27	-2.360	0.785	1202	95.05	-1.672	0.676
1157	90.37	-1.811	0.596	1203	95.15	-1.637	0.739
1158	90.48	-2.172	0.823	1204	95.26	-1.415	1.016
1159	90.58	-2.442	0.705	1205	95.36	-1.980	0.849
1160	90.68	-2.336	0.735	1206	95.47	-1.346	0.959
1161	90.79	-2.256	0.591	1207	95.57	-1.195	1.204
1162	90.89	-1.969	0.918	1208	95.67	-1.702	0.581
1163	91.00	-2.219	0.889	1209	95.78	-1.917	0.773
1164	91.10	-2.321	0.784	1210	95.88	-2.189	0.987
1165	91.20	-2.038	0.259	1211	95.99	-2.130	0.907
1166	91.31	-2.134	0.950	1212	96.09	-2.178	1.036

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]	(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]
(em)	((()))	(%)	(%)	(011)	((()))	(%)	(%)
		(700)	(700)			(700)	(700)
1213	96.19	-2.313	1.291	1287	100.57	-2.369	0.743
1214	96.30	-2.245	1.065	1288	100.65	-2.092	0.799
1215	96.40	-1 854	1 092	1289	100.74	-2 552	0.583
1216	96.50	-2 099	0.824	1290	100.82	-2 278	0 761
1217	96.61	-2 188	0.900	1291	100.90	-2 228	0.862
1218	96.71	-2.318	1.063	1292	100.98	-2.318	0.670
1219	96.82	-1.918	1.070	1293	101.07	-2.043	0.669
1220	96.92	-2.270	1.071	1294	101.15	-2.166	0.812
1221	97.02	-2.380	1.080	1295	101.23	-2.136	0.708
1222	97.13	-2.259	0.865	1296	101.31	-2.257	0.908
1223	97.23	-2.004	1.030	1297	101.40	-2.419	0.718
1224	97.34	-2.104	1.013	1298	101.48	-2.375	1.033
1225	97 44	-2 188	0.896	1299	101.56	-2 063	0.953
1254	97.54	-2.245	1.048	1300	101.64	-1.910	0.949
1255	97.65	-1.785	1.016	1301	101.73	-2.012	0.878
1256	97.75	-1.893	0.676	1302	101.81	-2.176	1.094
1257	97.86	-1.895	0.755	1303	101.89	-2.494	1.122
1258	97.96	-2 041	0.832	1304	101.97	-1 801	1 014
1259	98.06	-1 884	0.767	1305	102.06	-2 128	0.951
1260	98.17	-2 178	0.946	1306	102.00	-2 035	0.838
1261	98.27	-2 240	0.763	1307	102.11	-2 225	0.952
1262	98.38	-2 006	1 021	1308	102.30	-2 113	0.840
1263	98.48	-2 059	0.757	1309	102.39	-2 248	0.970
1264	98.58	-2 242	0.988	1310	102.00	-2 326	0.953
1265	98.69	-2 198	0.866	1311	102.55	-2 074	0.954
1266	98.79	-2.310	0.989	1312	102.64	-1.970	1.069
1267	98.90	-2 456	1 045	1313	102.72	-2 179	1 157
1268	99.00	-2 341	0.992	1314	102 80	-2 191	1 079
1269	99.08	-2.448	1.078	1315	102.88	-2.032	0.968
1270	99.17	-2.433	0.830	1316	102.97	-1.843	0.854
1271	99.25	-2.435	1.110	1317	103.05	-1.895	0.803
1272	99.33	-2.661	0.923	1318	103.13	-1.598	0.954
1273	99.41	-2.646	1.070	1319	103.21	-1.979	0.984
1274	99.50	-2.254	0.782	1320	103.30	-1.853	0.850
1275	99.58	-2.297	0.878	1321	103.38	-1.960	1.085
1276	99.66	-2.331	0.983	1322	103.46	-1.924	0.972
1277	99.74	-2.280	0.868	1323	103.54	-2.157	0.895
1278	99.83	-2.576	0.871	1324	103.63	-2.156	1.031
1279	99.91	-2.343	1.010	1325	103.71	-2.326	1.347
1280	99.99	-2.326	0.829	1326	103.79	-1.878	0.916
1281	100.07	-2.488	0.700	1327	103.87	-2.101	0.721
1282	100.16	-2.370	0.761	1328	103.96	-2.186	1.005
1283	100.24	-2.495	0.958	1329	104.04	-1.986	0.966
1284	100.32	-2.352	0.623	1330	104.12	-2.173	0.975
1285	100.40	-2.357	0.510	1331	104.21	-1.929	0.937
1286	100.49	-2.241	0.998	1332	104.29	-2.056	1.059

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]	(cm)	(kyr)	(G rub) [‡]	(Grub) [‡]
(0)	((()))	(%)	(%)	(0)	((()))	(%)	(%)
		(700)	(700)			(700)	(700)
1333	104.37	-2.063	0.822	1379	108.17	-2.243	0.608
1334	104.45	-1.986	0.997	1380	108.25	-2.349	1.023
1335	104.54	-2.038	0.752	1393	108.34	-2.115	0.744
1336	104.62	-2.068	0.975	1394	108.42	-2.143	0.735
1337	104.70	-1.940	1.077	1395	108.50	-2.392	0.933
1338	104.78	-2.229	1.078	1396	108.58	-2.353	0.746
1339	104.87	-2.331	0.905	1397	108.67	-2.188	0.847
1340	104.95	-2.152	0.834	1398	108.75	-1.928	0.863
1341	105.03	-2.248	0.998	1399	108.83	-2.352	0.995
1342	105.11	-2.299	1.015	1400	108.91	-2.392	0.710
1343	105.20	-2.396	0.845	1401	109.00	-2.448	0.816
1344	105.28	-2.045	0.725	1402	109.08	-2.160	0.992
1345	105.36	-2.402	1.084	1403	109.16	-2.124	0.849
1346	105.44	-2.429	0.931	1404	109.25	-2.340	0.672
1347	105.53	-2.503	0.955	1405	109.33	-2.258	0.985
1348	105.61	-2.525	1.107	1406	109.41	-2.280	0.823
1349	105.69	-2.108	0.885	1407	109.49	-2.336	0.805
1350	105.77	-2.263	0.807	1408	109.58	-2.165	0.886
1351	105.86	-1.936	1.013	1409	109.66	-2.266	1.083
1352	105.94	-2.376	0.946	1410	109.74	-2.340	0.805
1353	106.02	-2.290	0.865	1411	109.82	-2.329	0.725
1354	106.11	-2.184	1.011	1412	109.91	-2.195	0.839
1355	106.19	-2.071	0.776	1413	109.99	-2.298	0.793
1356	106.27	-2.022	0.644	1414	110.07	-2.264	0.960
1357	106.35	-2.055	0.622	1415	110.15	-2.075	0.866
1358	106.44	-1.974	0.783	1416	110.24	-2.335	0.886
1359	106.52	-2.242	0.856	1417	110.32	-2.122	1.143
1360	106.60	-2.227	0.845	1418	110.40	-2.329	0.992
1361	106.68	-2.014	0.767	1419	110.48	-2.161	1.040
1362	106.77	-2.088	0.648	1420	110.57	-1.964	0.919
1363	106.85	-1.931	0.858	1421	110.65	-2.060	0.885
1364	106.93	-2.205	0.733	1422	110.73	-2.149	0.951
1365	107.01	-1.980	1.026	1423	110.81	-2.212	0.997
1366	107.10	-2.164	0.697	1424	110.90	-2.190	1.208
1367	107.18	-2.200	0.777	1425	110.98	-2.240	0.787
1368	107.26	-2.173	0.860	1426	111.06	-2.322	0.849
1369	107.34	-2.254	0.865	1427	111.15	-2.229	0.823
1370	107.43	-2.325	0.783	1428	111.23	-2.117	0.818
1371	107.51	-1.963	0.732	1429	111.31	-1.945	0.820
1372	107.59	-2.095	0.878	1430	111.39	-2.287	0.632
1373	107.68	-2.177	0.792	1431	111.48	-1.972	0.821
1374	107.76	-2.253	0.950	1432	111.56	-2.387	0.638
1375	107.84	-2.215	0.900	1433	111.64	-2.315	0.739
1376	107.92	-2.345	0.863	1434	111.72	-2.184	0.661
1377	108.01	-2.122	0.763	1435	111.81	-1.950	0.670
1378	108.09	-2.254	0.999	1436	111.89	-2.108	0.925

Depth	Age ^{\$}	δ ¹⁸ Ο	δ¹³C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ¹³C
(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]	(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]
		(‰)	(‰)			(‰)	(‰)
1437	111.97	-2.244	0.859	1483	115.77	-2.474	1.031
1438	112.05	-2.191	0.611	1484	115.85	-2.377	0.845
1439	112.14	-2.222	0.572	1485	115.94	-2.647	1.129
1440	112.22	-2.159	0.684	1486	116.02	-2.383	0.712
1441	112.30	-2.543	0.724	1487	116.10	-2.323	0.705
1442	112.38	-2.226	0.708	1488	116.19	-2.382	0.750
1443	112.47	-2.300	0.904	1489	116.27	-2.054	0.669
1444	112.55	-2.583	0.742	1490	116.35	-2.185	0.889
1445	112.63	-2.286	0.814	1491	116.43	-2.242	0.676
1446	112.72	-2.295	0.854	1492	116.52	-1.844	0.801
1447	112.80	-2.253	0.849	1493	116.60	-1.996	0.596
1448	112.88	-2.367	0.838	1494	116.68	-2.073	0.788
1449	112.96	-2.030	0.650	1495	116.76	-2.755	0.667
1450	113.05	-1 776	0 763	1498	117 01	-1 880	0.659
1451	113 13	-2 200	1 034	1499	117 09	-2 027	0 793
1452	113 21	-2.379	0 728	1500	117.00	-2 246	0.655
1453	113 20	_2 108	0.720	1501	117.10	-2 370	0.000
1454	113 38	-2 108	0.701	1501	117.20	-2 414	0.700
1455	113.00	2.100	0.705	1502	117.04	2.414	0.700
1455	112.40	-2.001	0.795	1503	117.42	-2.032	0.780
1400	113.04	-2.100	0.040	1504	117.51	-2.200	0.519
1407	113.02	-2.221	0.952	1505	117.59	-2.470	1.030
1458	113.71	-2.128	0.874	1506	117.07	-2.531	0.820
1459	113.79	-2.205	0.819	1507	117.75	-2.383	0.652
1460	113.87	-1.914	0.818	1508	117.84	-2.357	0.795
1461	113.95	-2.051	0.825	1510	118.00	-2.170	0.554
1462	114.04	-1.775	0.775	1511	118.09	-2.370	0.635
1463	114.12	-2.083	0.564	1516	118.50	-2.818	0.699
1464	114.20	-1.906	0.852	1519	118.75	-2.575	0.836
1465	114.28	-2.237	1.018	1520	118.83	-2.283	0.935
1466	114.37	-2.052	0.845	1521	118.91	-1.886	0.661
1467	114.45	-2.010	0.765	1522	118.99	-2.526	0.682
1468	114.53	-2.338	0.902	1523	119.08	-2.380	0.903
1469	114.62	-2.225	0.752	1524	119.16	-2.327	0.738
1470	114.70	-2.142	0.800	1525	119.24	-2.666	0.831
1471	114.78	-2.146	0.884	1526	119.32	-2.040	0.720
1472	114.86	-2.054	0.820	1527	119.41	-1.966	0.612
1473	114.95	-2.041	0.960	1528	119.49	-2.163	0.972
1474	115.03	-2.133	0.684	1529		not enough G	. ruber
1475	115.11	-1.894	0.750	1530	119.66	-2.215	0.870
1476	115.19	-1.972	0.778	1531	119.74	-2.042	0.710
1477	115.28	-1.938	0.663	1532	119.82	-2.157	0.818
1478	115.36	-2.435	0.726	1533	119.90	-2.560	0.724
1479	115.44	-2.045	0.684	1534	119.99	-2.273	0.675
1480	115.52	-2.310	0.756	1535		not enough G	. ruber
1481	115.61	-2.077	0.559	1536		-1.579	0.861
1482	115 69	-1 897	1 014	1537	120 23	-2 181	0.539

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(cm)	(kvr)	(G.rub) [‡]	(G.rub) [‡]	(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]
()	((%)	(%)	()	((%)	(%)
		(100)	(700)			(,00)	(700)
1538	120.32	-1.965	0.473	1584	124.12	-2.765	0.785
1539	120.40	-2.127	0.684	1585	124.20	-3.019	0.877
1540	120.48	-2.475	0.635	1586	124.28	-2.865	0.707
1541	120.56	-2.169	0.696	1587	124.36	-2.646	0.579
1542	120.65	-2.439	0.840	1588	124.45	-2.650	0.691
1543	120.73	-2.553	0.730	1589	124.53	-2.416	0.676
1544	120.81	-2.459	0.969	1590	124.61	-2.734	0.693
1545	120.89	-2.469	0.628	1591	124.70	-2.734	0.690
1546	120.98	-2.311	0.790	1592	124.78	-2.695	0.828
1547	121.06	-2.304	0.698	1593	124.86	-2.916	0.783
1548	121.14	-2.294	0.991	1594	124.94	-2.678	0.773
1549	121.23	-2.168	1.094	1595	125.03	-2.789	0.548
1550	121.31	-2.605	0.842	1596	125.11	-2.776	0.689
1551	121.39	-2.234	0.761	1597	125.19	-2.773	0.561
1552	121.47	-2.361	1.020	1598	125.27	-2.785	0.620
1553	121.56	-2.667	0.891	1599	125.36	-2.807	0.487
1554	121.64	-2.741	0.728	1600	125.44	-2.630	0.545
1555	121.72	-2.794	0.869	1601	125.52	-2.782	0.662
1556	121.80	-2.721	0.802	1602	125.60	-2.386	0.422
1557	121.89	-2.660	0.991	1603	125.69	-2.647	0.586
1558	121.97	-2.654	0.999	1604	125.77	-2.663	0.724
1559	122.05	-2.819	0.888	1605	125.85	-2.587	0.725
1560	122.13	-2.622	0.837	1606	125.93	-2.607	0.608
1561	122.22	-2.641	0.865	1607	126.02	-2.480	0.140
1562	122.30	-2.596	1.022	1608	126.10	-2.467	0.426
1563	122.38	-2.637	0.698	1609	126.18	-2.436	0.479
1564	122.46	-2.743	0.983	1610	126.26	-2.586	0.432
1565	122.55	-2.740	0.925	1611	126.35	-2.480	0.513
1566	122.63	-2.698	0.937	1612	126.43	-2.319	0.495
1567	122.71	-2.727	0.765	1613	126.51	-2.123	0.423
1568	122.79	-2.735	0.888	1614	126.60	-2.252	0.252
1569	122.88	-2.754	0.876	1615	126.68	-2.129	0.478
1570	122.96	-2.696	0.597	1616	126.76	-2.276	0.335
1571	123.04	-2.704	0.985	1617	126.84	-2.182	0.400
1572	123.13	-2.679	0.919	1618	126.93	-2.203	0.461
1573	123.21	-2.752	1.004	1619	127.01	-2.204	0.298
1574	123.29	-2.700	0.883	1620	127.09	-2.227	0.334
1575	123.37	-2.546	0.984	1621	127.17	-2.204	0.248
1576	123.46	-2.789	0.944	1622	127.26	-2.129	0.294
1577	123.54	-2.625	1.037	1623	127.34	-2.127	0.245
1578	123.62	-2.665	0.556	1624	127.42	-2.298	0.094
1579	123.70	-2.716	0.621	1625	127.50	-2.338	0.554
1580	123.79	-2.633	0.582	1626	127.59	-2.474	0.115
1581	123.87	-2.517	0.780	1627	127.67	-2.341	0.224
1582	123.95	-2.729	0.772	1628	127.75	-2.373	0.368
1583	124.03	-2.752	0.752	1629	127.83	-2.269	0.265

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]	(cm)	(kyr)	(G rub) [‡]	(G rub) [‡]
(0)	((()))	(%)	(%)	(0)	((()))	(%)	(%)
		(700)	(700)			(700)	(700)
1630	127.92	-2.425	0.407	1677	133.04	-1.579	0.296
1631	128.00	-2.370	0.354	1678	133.15	-1.417	0.150
1632	128.11	-2.292	0.278	1679	133.26	-1.537	0.496
1633	128.22	-2.315	0.290	1680	133.37	-1.538	0.385
1634	128.33	-2.415	0.280	1681	133.48	-1.401	0.243
1635	128.44	-2.663	0.513	1682	133.59	-1.532	0.447
1636	128.55	-2.459	0.536	1683	133.70	-1.519	0.390
1637	128.66	-2.338	0.319	1684	133.81	-1.367	0.264
1638	128.77	-2.167	0.304	1685	133.92	-1.637	0.478
1639	128.88	-2.101	0.352	1686	134.03	-1.622	0.403
1640	128.99	-1.812	0.222	1687	134.14	-1.627	0.511
1642	129.21	-1.646	0.080	1688	134.25	-1.562	0.309
1643	129.32	-1.541	0.330	1689	134.36	-1.420	0.366
1644	129.42	-1.546	0.300	1690	134.47	-1.321	0.332
1645	129.53	-1.637	0.199	1691	134.58	-1.471	0.077
1646	129.64	-1.996	0.547	1692	134.68	-1.457	0.280
1647	129.75	-1.572	0.282	1693	134.79	-1.491	0.299
1648	129.86	-1.661	0.334	1694	134.90	-1.628	0.504
1649	129.97	-1.709	0.357	1695	135.01	-1.507	0.166
1650	130.08	-1.747	0.300	1696	135.12	-1.670	0.350
1651	130.19	-1.705	0.191	1697	135.23	-1.376	0.149
1652	130.30	-1.700	0.327	1698	135.34	-1.460	0.384
1653	130.41	-1.483	0.421	1699	135.45	-1.462	0.365
1654	130.52	-1.551	0.359	1700	135.56	-1.627	0.543
1655	130.63	-1.569	0.160	1701	135.67	-1.470	0.129
1656	130.74	-1.587	0.190	1702	135.78	-1.379	0.581
1657	130.85	-1.662	0.186	1703	135.89	-1.764	0.301
1658	130.96	-1.586	0.171	1704	136.00	-1.577	0.380
1659	131.07	-1.297	0.093	1705	136.11	-1.466	0.464
1660	131.18	-1.532	0.236	1706	136.22	-1.654	0.484
1661	131.29	-1.308	0.413	1707	136.33	-1.311	0.269
1662	131.40	-1.629	0.016	1708	136.44	-1.321	0.251
1663	131.51	-1.412	0.236	1709	136.55	-1.677	0.357
1664	131.62	-1.623	0.234	1710	136.66	-1.512	0.406
1665	131.73	-1.745	0.373	1711	136.77	-1.653	0.527
1666	131.84	-1.629	0.453	1712	136.88	-1.688	0.428
1667	131.95	-1.573	0.251	1713	136.99	-1.547	0.526
1668	132.05	-1.584	0.327	1714	137.10	-1.732	0.478
1669	132.16	-1.590	0.588	1715	137.21	-1.557	0.514
1670	132.27	-1.505	0.167	1716	137.32	-1.745	0.378
1671	132.38	-1.678	0.411	1717	137.42	-1.954	0.490
1672	132.49	-1.528	0.433	1718	137.53	-1.930	0.447
1673	132.60	-1.650	0.125	1719	137.64	-1.731	0.526
1674	132.71	-1.403	0.277	1720	137.75	-1.647	0.412
1675	132.82	-1.464	0.295	1721	137.86	-1.721	0.446
1676	132.93	-1.654	0.292	1722	137.97	-1.537	0.354

Depth	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Depth	Age ^{\$}	δ ¹⁸ Ο	δ¹³C			
(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]	(cm)	(kyr)	(G.rub) [‡]	(G.rub) [‡]			
		(‰)	(‰)	x ,		(‰)	`(‰)			
1723	138.08	-1.739	361.000	1768	143.01	-1.861	0.605			
1724	138.19	-1.722	0.267	1769	143.12	-1.697	0.456			
1725	138.30	-1.686	0.362	1770	143.23	-1.614	0.369			
1726	138.41	-1.634	0.331	1771	143.34	-1.381	0.365			
1727	138.52	-1.792	0.403	1772	143.45	-1.575	0.400			
1728	138.63	-1.520	0.463	1773	143.56	-1.641	0.455			
1729	138.74	-1.767	0.466	1774	143.67	-1.683	0.371			
1730	138.85	-1.630	0.411	1775	143.78	-1.492	0.440			
1731	138.96	-1.440	0.273	1776	143.89	-1.608	0.536			
1732	139.07	-1.459	0.345	1777	144.00	-1.761	0.559			
1733	139.18	-1.312	0.277	1778	144.11	-1.753	0.486			
1734	139.29	-1.584	0.397	1779	144.21	-1.841	0.705			
1735	139.40	-1.661	0.439	1780	144.32	-1.660	0.338			
1736	139.51	-1.490	0.360	1781	144.42	-1.427	0.555			
1737	139.62	-1.670	0.206	1782	144.53	-1.681	0.579			
1738	139.73	-1.525	0.238	1783	144.64	-1.757	0.368			
1739	139.84	-1.445	0.222	1784	144.74	-1.245	0.482			
1740	139.95	-1.273	0.286	1785	144.85	-1.680	0.407			
1741	140.05	-1.251	0.115	1786	144.95	-1.824	0.802			
1742	140.16	-1.426	0.438	1787	145.06	-1.650	0.438			
1743	140.27	-1.397	0.353	1788	145.17	-1.809	0.529			
1744	140.38	-1.156	0.454	1789	145.27	-1.741	0.427			
1745	140.49	-1.461	0.387	1790	145.38	-1.962	0.493			
1746	140.60	-1.534	0.674	1791	145.48	-2.062	0.560			
1747	140.71	-1.706	0.459	1792	145.59	-1.510	0.292			
1748	140.82	-1.558	0.486	1793	145.70	-1.599	0.379			
1749	140.93	-1.619	0.483	1794	145.80	-1.413	0.409			
1750	141.04	-1.714	0.440	1795	145.91	-1.585	0.778			
1751	141.15	-1.672	0.456	1796	146.01	-1.637	0.386			
1752	141.26	-1 520	0 425	1797	146 12	-1 685	0 429			
1753	141.37	-1 235	0.549	1798	146.23	-1 892	0.390			
1754	141 48	-1 517	0.363	1700	146 33	-1 743	0.000			
1755	141.40	-1 387	0.378	1800	146.00	-1 784	0.410			
1756	141.33	-1 514	0.609	Note:	140.44	-1.704	0.147			
1750	141.70	1 165	0.631	^{\$} coo Tablo 1	for ano model					
1757	141.01	-1.105	0.031			hor				
1750	141.92	-1.311	0.531	G. Tub = Glob		bei				
1759	142.03	-1.090	0.437		(215-250 µm)					
1760	142.14	-1.293	0.457		000 070 4000	4050				
1/61	142.25	-1.285	0.438	samples	002-0/2,1226	-1253,				
1/62	142.36	-1.095	0.280		1381-1392 an	e voids				
1763	142.47	-1.276	0.489		in original cor	е				
1764	142.58	-1.267	0.445	-						
1765	142.68	-1.469	0.279	samples:	: 370, 933-935),				
1766	142.79	-1.328	0.317		937-939,1509	,				
1767	142.90	-1.611	0.394		and 1641 are	and 1641 are lost in mail				

APPENDIX II

IMAGES core MD97-2141: Mg/Ca and Sr/Ca data from *Globigerinoides ruber*

Sample		average	Mg/Ca	Sr/Ca	SST	δ180 ^a
(denth_cm)	$\Delta q e^{\$} (k v r)$	shell mass	(mmol/mol)	(mmol/mol)	(°C)	(%)
(deptil, cill)	Аде (куг)				(\mathbf{U})	(700)
		(µg)				
421	27.23	7.10	3,656	1,437	28.09	0.64
423	27.74	6.60	3.694	1.430	28.21	0.26
427	28 77	6.30	3 559	1 430	27 79	0.63
430	29.54	6.60	3 806	1 425	28.55	0.64
433	30.31	6.90	3 780	1 440	28.00	0.45
436	31.08	6.00	3 698	1 431	28.22	0.67
439	31.84	6.40	3 663	1 429	28.12	0.46
441	32 16	6 40	3 653	1 423	28.08	0.53
443	32.70	7 30	3 691	1 433	28.20	0.74
445	32.20	6.40	3 669	1 435	28.13	0.74
450	32.75	6.40 6.60	3 471	1 438	27 51	0.36
453	32.94	6.80	3 557	1 431	27 79	0.14
455	33.07	6 70	3 685	1 446	28.18	0.30
459	33 33	6 60	3 561	1 432	27.80	0.49
462	33 53	6.30	3 834	1 444	28.63	0.31
464	33.66	6.80	3 733	1 434	28.33	0.01
469	33.08	6.40	3 813	1 438	28.57	0.14
405	34 11	6 30	3 563	1.435	27.80	0.47
474	34.31	7 20	3 600	1.433	28.20	0.17
477	34.50	7.20	3 700	1.40	20.20	0.59
470	34.63	7.00	3,838	1.442	20.20	0.33
473	34.76	7.00	3.608	1.442	20.04	0.60
401	34.70	7.10	3 728	1.442	20.22	0.00
404	35.00	7.30	3.650	1.430	20.01	0.04
400	35.09	7.30	3.845	1.445	20.00	0.49
409	35.20	7.40	3 565	1.437	20.00	0.32
492	35.54	7.40	3 700	1.420	28.52	0.21
406	35.65	6.80	3,632	1.425	20.02	0.49
490	35.76	7 10	3 821	1.425	28.50	0.13
490 500	35.87	7.10	3 704	1.444	20.09	0.05
505	36.14	7.10	3.848	1.431	20.24	0.04
505	36 21	7.00	3.0 4 0 3.271	1 / 22	20.07	0.47
510	36.42	7.30	3 810	1.400	20.74	0.30
510	30.42	7.30	3 871	1.441	20.00	0.04
512	30.47	7.00	3 710	1. 44 0 1./01	20.74	0.00
512	30.33	7.00	3 813	1 / 2/	20.20	0.20
515	36 60	7.00	3 611	1 / 22	20.00	0.00
519	30.09	6.00	3 744	1/122	21.90	0.30
520	36.07	7 20	3.7 77	1 443	28.50	0.58
520	37 08	7.00	3 808	1 435	28.55	0.81
525	37.25	7.00	3 634	1 433	20.00	0.56
525	37 36	7.10	3 682	1 420	20.00	0.00
520	27 17	7.00	3.002 3.601	1 / 22	20.17	0.00
523	37 52	7 30	3 632	1 / 16	21.99	0.91
533	37 60	7.50	3 2002	1/22	20.02	0.09
535	37.08	7.30	3.009	1 / 26	20.00	0.70
535	32.00	7.30	3.0 4 0 3.806	1.420	20.04 20.04	0.77
340	30.07	7.40	3.090	1.420	∠0.0 I	0.94

Sample		average	Mg/Ca	Sr/Ca	SST [†]	δ18O _{seawater} ^a
(depth. cm)	Aae ^{\$} (kvr)	shell mass	(mmol/mol)	(mmol/mol)	(°C)	(‰)
((ug)	(((-)	
		(49)				
541	38.13	7.70	3.446	1.426	27.43	0.57
544	38.29	7.40	3.599	1.419	27.92	0.89
545	38.35	7.10	3.600	1.410	27.92	0.77
546	38.40	7.10	3.607	1.433	27.94	0.71
547	38.46	7.60	3.876	1.430	28.75	0.65
550	38.62	7.30	3.673	1.428	28.15	0.61
552	38.73	7.10	3.648	1.440	28.07	0.43
555	38.90	7.30	3.643	1.420	28.05	0.52
556	38.96	6.60	3.574	1.422	27.84	0.35
557	39.02	7.10	3.734	1.420	28.33	0.63
560	39.19	6.70	3.868	1.419	28.73	0.47
563	39.36	7.20	3.599	1.429	27.92	0.48
566	39.53	8.50	3.547	1.411	27.75	0.48
568	39.65	6.60	3.435	1.414	27.39	0.34
570	39.76	8.50	3,702	1.421	28.23	0.25
575	40.05	7.60	3 577	1 413	27.85	0.42
579	40.27	7.00	3 847	1 4 2 3	28.67	0.39
581	40.27	7.50	3 605	1.425	20.07	0.55
586	40.67	7.30	3.556	1.425	27.34	0.51
500	40.07	7.10 8.00	3.550	1.444	27.70	0.45
500	40.79	8.00 7.20	2,540	1.430	21.10	0.51
590	40.90	7.30	3.732	1.430	20.30	0.01
591	40.96	7.00	3.749	1.440	20.30	0.45
593	41.07	7.10	3.526	1.439	27.69	0.51
597	41.24	7.40	3.876	1.428	28.75	0.52
600	41.47	7.70	3.943	1.438	28.94	0.66
602	41.59	7.00	3.929	1.434	28.90	0.45
604	41.70	7.10	3.992	1.431	29.08	0.63
610	42.05	7.80	3.903	1.425	28.83	0.64
614	42.28	7.90	3.861	1.439	28.71	0.25
616	42.39	8.20	3.760	1.440	28.41	0.41
618	42.51	8.20	3.777	1.428	28.46	0.44
620	42.62	7.70	3.986	1.429	29.06	0.64
622	42.74	8.50	3.692	1.428	28.20	0.51
624	42.85	7.50	3.787	1.418	28.49	0.48
628	43.08	6.90	3.490	1.410	27.57	0.58
636	43.54	6.80	3.480	1.430	27.54	0.36
640	43.77	7.50	3.750	1.420	28.38	0.55
644	44.00	7.60	3.590	1.410	27.89	0.41
650	44.35	6.50	3.820	1.410	28.59	0.39
654	44.58	7.00	3.840	1.410	28.65	0.57
656	44.69	7.00	3.630	1.420	28.01	0.05
658	44.81	7.20	3.750	1.430	28.38	0.31
660	44.92	7.20	3.770	1.430	28.44	0.36
675	45,15	6.80	3.740	1.430	28.35	0.43
677	45.27	7.50	3.860	1.420	28.70	0.24
681	45.50	6.80	3,890	1.440	28 79	0.27
694	45.67	7.40	3.840	1 / 21	28.65	0.20

Sample		average	Mg/Ca	Sr/Ca	SST [†]	δ18O _{seawater} ^a
(depth, cm)	Aae ^{\$} (kvr)	shell mass	(mmol/mol)	(mmol/mol)	(°C)	(‰)
	5° () /	(ug)	()	(/	(-)	~ /
		(#3)				
688	45.90	7.10	4.090	1.414	29.35	0.59
689	45.96	7.50	3.750	1.440	28.38	0.41
690	46.01	7.30	4.098	1.421	29.38	0.74
694	46.24	7.90	4.070	1.420	29.30	0.90
697	46.42	7.00	3.810	1.430	28.56	0.52
700	46.59	7.50	3.740	1.420	28.35	0.37
703	46.76	7.80	3.660	1.440	28.11	0.56
709	47.11	8.20	3.770	1.440	28.44	0.47
710	47.16	7.30	4.049	1.435	29.24	0.99
713	47.34	7.60	3 809	1 420	28.55	0.51
716	47 51	7 40	4 049	1 423	29.24	0.67
718	47.62	8.00	3,899	1.416	28.82	0.85
721	47.80	7.30	3,709	1.421	28.26	0.31
724	47 97	7.10	3,991	1.405	29.08	0.44
729	48 26	7 30	3 990	1 405	29.08	0.48
732	48 43	7.00	4 040	1 417	29.22	0.80
734	48 54	7.60	3 732	1 407	28.32	0.18
738	48.77	8 20	3 673	1 414	28.02	0.10
760	48.95	7 90	3 695	1 417	28.10	0.35
743	49.06	7.00	3 695	1 4 2 3	28.21	0.00
745	49.00	7.00	3.845	1.423	28.66	0.21
740	49.25	7.50	3 653	1.412	28.00	0.13
740	49.00	7.00	3 783	1.412	20.00	0.13
753	49.40	7.30	3.940	1.415	20.40	0.47
756	49.04 /0.81	7.20	3.684	1.420	20.95	-0.04
758	49.01	7.30	3 610	1 404	27.95	-0.04
761	4 9.92 50.10	8.00	3.586	1.404	27.88	0.13
764	50.10	8 10	3 704	1.400	27.00	0.22
768	50.27	8 10	3 562	1.420	20.24	0.04
700	50.50	7.50	3.634	1 300	28.03	0.29
775	50.07	7.00	<u></u> ⊿ 100	1.555	20.00	-0.02 0.64
777	50.80	2.00 8.00	7.100 2.727	1 / 17	20.00	0.04
781	51.01	6.00 6.30	3 026	1 / 1 / 1 / 5	20.43 28 80	0.00
782	51.24	7 10	J.320 1 221	1.415	20.09 30.01	0.00
784	51.00	7.10	+.004 1 101	1 / 22	20.01	0.43
787	51.42	7.10	3.016	1.402	29.00	0.75
701	51.09	7.10	3.310	1.401	20.07	0.50
702	51.02	7.10	4.000 3.850	1.422 1.401	29.33 28.67	0.01
795	52.05	7.00 8.40	J.000 1 150	1. 4 ∠1 1.⁄122	20.07	0.24
795	52.00	0.40 7 /0	4.100 2 201	1.420	29.04 28 52	0.00
700	52.10	7.40	3.001	1.410	20.00	0.10
199 901	52.20	7.90	J.920 1 200	1.442 1.496	20.90	0.40
90 <i>1</i>	52.58	1.4U 0.40	4.300	1.420 1.404	29.94 20.20	0.80
00 4 906	52.07	0.40	4.071	1.424 1.420	29.30 20.22	0.31
000	52.00	0.00 7 00	4.070	1.412 1 // 12	29.32	0.77
000	02.0U	1.0U 7.40	4.100	1.440 1.400	29.40	0.30
009	52.85	7.10	4.011	1.420	29.13	0.70
011	52.97	0.90	3.771	1.429	Z0.44	0.00

Sample		average	Mg/Ca	Sr/Ca	SST [†]	δ180 _{seawater} ^a
(depth. cm)	Age ^{\$} (kyr)	shell mass	(mmol/mol)	(mmol/mol)	(°C)	(‰)
(dopui, only	/ go ((()))	(110)		(11110#1101)	(0)	(700)
		(µg)				
813	53.08	6.30	3.962	1.418	29.00	0.82
816	53.26	7.90	3.904	1.419	28.83	1.05
817	53.31	7.50	4.056	1.429	29.26	0.53
818	53.37	8.00	3.805	1.440	28.54	0.52
821	53.54	8.20	3.956	1.434	28.98	0.63
825	53.77	7.00	3.840	1.426	28.65	0.85
829	54.00	7.80	4.031	1.426	29.19	0.68
831	54.12	6.40	3.770	1.421	28.44	0.72
836	54.41	5.90	3.870	1.427	28.73	0.74
838	54.52	5.90	3.827	1.422	28.61	0.79
840	54 64	7 10	4 064	1 422	29.28	0.55
842	54.75	7.20	4,178	1.434	29.59	0.20
844	54.87	6.50	3.667	1.423	28.13	0.04
847	55.04	6.60	3.610	1.426	27.95	-0.01
848	55.10	7.50	3,908	1.446	28.84	0.03
850	55 21	8 00	4 170	1 431	29.57	0.54
853	55.38	7.30	3 886	1 4 1 6	28.78	0.33
855	55 50	6.30	3 394	1 405	27.26	-0.31
857	55 61	8.80	3 757	1.400	28.40	0.01
859	55.73	8 20	3 586	1 4 1 8	20.40	0.10
860	55 78	6.60	3 905	1 4 2 7	28.83	0.23
861	55.84	8.80	3.673	1.427	20.00	0.04
863	55.04	7 70	3,812	1.430	28.56	0.00
866	56.13	6.40	3.885	1.420	20.00	0.33
860	56.30	7 90	3.666	1.443	20.70	0.43
871	56.42	6 10	3.647	1.449	20.12	0.47
874	56 50	7 00	3.687	1.450	20.07	0.10
876	56.70	7.90	3 788	1.439	20.19	0.20
880	56.03	8 10	3.700	1.430	20.49	0.47
881	56 00	7 70	3.323 3.801	1. 4 11 1 //07	21.00	0.50
001	50.99	1.10 2.20	3 705	1.420	20.00	0.05
000 884	57.11	6.20	3.130	1.400	20.01	0.40
20 4 227	57.10	0.90 Q 20	3.374	1.420	21.04 22 15	0.21
800	57.54	0.30 8 00	3.113	1.421 1 /00	20.40 28 12	0.42
090 801	57.51	0.00 g 10	3,679	1. 4 20 1.416	20.12	0.40
000	57.57	0.10	3.070	1.410	20.10	0.19
092	57.02	0.30	3.900	1.400 1 /20	20.02	0.12
094 906	57.14	1.30	J.042	1.400	20.00 20 70	0.52
000	07.00 57.07	0. IU 7 00	J.000 2.676	1.424	20.10	0.04
000	50.00	1.90	3.070	1.400	20.10	0.00
902 006	50.2U	0.2U 7 70	3.994 3.705	1.400	29.09	0.40
900	00.40 E0 70	1.10	J.100 1110	1.400	20.40	0.10
911	00.12	0.40	4.113	1.42/	29.42	0.34
913	50.03 50.05	8.9U	3.930	1.427	20.91	0.54
915	50.95	7.20	3.883	1.438	20.//	0.30
917	59.06	7.00	4.025	1.435	29.17	0.52
919	59.18	7.60	3.895	1.434	20.01	0.76
920	59.23	7.40	3./18	1.431	28.28	0.54

Sample		average	Mg/Ca	Sr/Ca	SST [†]	δ180 _{seawater} ^a
(depth, cm)	Age ^{\$} (kyr)	shell mass	(mmol/mol)	(mmol/mol)	(°C)	(‰)
		(µg)				
921	59.29	7.60	3.862	1.435	28.71	0.26
923	59.41	7.30	3.923	1.421	28.89	0.58
925	59.52	7.60	4.031	1.436	29.19	0.31
926	59.58	8.20	3.767	1.427	28.43	0.05
928	59.69	7.40	3.925	1.436	28.89	0.53
931	59.87	8.00	4.021	1.426	29.16	0.61
936	60.15	9.10	4.195	1.430	29.64	0.82
941	60.44	7.70	4.171	1.421	29.57	0.83
945	60.81	7.10	3.868	1.435	28.73	1.02
948	61.10	10.31	3.889	1.414	28.79	1.08

Note:

^s see Table 1 for age model [†] SST = sea surface temperature based on equation by Lea et al., [2000] ^a δ 18O_{seawater} = based on Erez and Luz [1983]

APPENDIX III

IMAGES core MD97-2141: δ^{18} O and δ^{13} C data from Globigerinoides sacculifer

Sample	Aae ^s	δ ¹⁸ Ο	δ¹³C	Sample	Aae ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(depth. cm)	(kvr)	(G.sacc [‡])	(G.sacc [‡])	(depth. cm)	(kvr)	(G.sacc [‡])	(G.sacc [‡])
((‰)	(%)	((%)	(%)
		(/00)	(100)			(/00)	(/00)
0	4.29	-2.234	1.993	470	34.05	-1.546	1.467
10	4.77	-2.204	1.743	480	34.70		1.497
20	5.16	-2.149	1.813	490	35.48	-1.573	1.498
30	5.48	-2.366	1.947	500	36.58	-1.577	1.504
40	5.80	-2.276	1.865	510	37.35	-1.519	1.335
50	6.13	-2.374	1.810	520	37.51	-1.415	1.525
60	6.48	-2.327	1.663	530	37.68	-1.212	1.367
70	7.09	-2.290	1.931	540	37.84	-1.311	1.431
80	7.68	-2.504	1.949	550	38.52	-1.567	1.419
90	8.26	-2.018	1.700	560	39.19	-1.439	1.534
100	8.84	-2.177	1.694	570	39.76	-1.435	1.421
110	9.42	-2.162	1.449	580	40.33	-1.577	1.557
120	10.00	-2.264	1.418	590	40.91	-1.603	1.470
130	10.35	-2.251	1.419	600	41.48	-1.573	1.330
140	10.70	-1.933	1.334	610	42.05	-1.492	1.301
150	11.05	-2.306	1.162	620	42.63	-1.466	1.480
160	11.24	-1.473	1.226	630	43.20	-1.492	1.570
170	11.68	-1.685	1.260	640	43.78	-1.709	1.481
180	12.13	-1.467	1.246	650	44.35	-1.678	1.434
190	12.57	-1.317	1.023	660	44.93	-1.752	1.257
200	13.01	-1.290	0.905	673	45.04	-1.926	1.261
210	13.72	-1.422	1.094	680	45.44	-1.793	1.408
220	14.41	-1.017	1.081	690	46.02	-1.642	1.280
230	15.12	-0.923	1.370	700	46.59	-1.329	1.219
240	16.05	-0.941	1.155	710	47.17	-1.800	1.256
250	16.61	-1.004	1.142	720	47.74	-1.672	1.386
260	16.92	-1.001	1.176	730	48.32	-1.600	1.247
270	17.23	-1.077	1.260	740	48.89	-1.729	1.380
280	17.53	-0.755	1.192	750	49.47	-1.733	1.419
290	17.89	-0.980	1.130	760	50.04	-1.499	1.312
300	18.27	-1.320	1.398	770	50.61	-1.797	1.298
310	18.65	-1.117	1.241	780	51.19	-1.598	1.215
320	19.03	-1.097	1.367	790	51.76	-1.768	1.212
330	19.41	-1.234	1.281	800	52.34	-1.593	1.161
340	19.77	-1.317	1.241	810	52.91	-1.596	1.065
350	20.01	-1.036	1.262	820	53.49	-1.354	1.129
360	20.24	-1.136	1.126	830	54.06	-1.481	1.039
371	20.56	-1.280	1.309	840	54.64	-1.948	1.305
380	20.96	-1.071	1.472	850	55.21	-1.616	1.192
390	21.41	-1.086	1.383	860	55.79	-1.724	1.474
400	21.85	-1.195	1.416	870	56.36	-1.659	1.320
410	hiatus	-1.519	1.422	880	56.94	-1.635	1.301
420	hiatus	-1.684	1.512	890	57.51	-1.652	1.168
430	29.54	-1.592	1.487	900	58.08	-1.225	1.109
440	32.10	-1.676	1.496	910	58.66	-1.652	0.814
450	32.75	-1.690	1.532	920	59.23	-1.707	1.230
460	33.40	-1.508	1.464	930	59.81	-1.558	0.896

Sample	Aae ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Sample	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(depth_cm)	(kyr)	(G sacc [‡])	(G sacc [‡])	(depth_cm)	(kyr)	(G sacc [‡])	(G sacc [‡])
(doptil, off)	((()))	(%)	(%)	(doptil, only	((()))	(%)	(0.0000)
		(700)	(700)			(700)	(700)
940	60.38	-1.287	0.880	1450	113.05	-2.036	1.415
950	61.72	-1.288	1.101	1460	113.87	-1.907	1.823
960	63.15	-1.172	0.946	1470	114.70	-1.764	1.709
970	64.57	-1.154	0.895	1480	115.52	-2.100	1.600
980	66.40	-1.129	0.932	1490	116.35	-2.110	1.507
990	68.40	-1.259	1.274	1500	117.18	-2.214	1.725
1000	70.40	-0.971	1.246	1510	118.00	-2.111	1.421
1010	72.40	-1.515	1.300	1520	118.83	-1.664	1.570
1020	74.40	-1.424	1.235	1530	119.66	-1.897	1.428
1030	76.40	-2.034	1.808	1540	120.48	-2.155	1.601
1040	78.21	-1.612	1.590	1550	121.31	-2.269	1.481
1050	79.25	-2.058	1.661	1560	122.13	-2.344	1.253
1060	80.29	-1.850	1.559	1570	122.96	-2.282	1.507
1070	81.33	-1.648	1.632	1580	123.79	-2.392	1.455
1080	82.37	-1.798	1.535	1590	124.61	-2.336	1.422
1090	83.41	-1.261	1.389	1600	125.44	-2.161	1.202
1100	84.45	-1.407	1.362	1610	126.26	-2.202	0.992
1110	85.49	-1.614	1.325	1620	127.09	-1.884	0.907
1120	86.52	-1.377	1.453	1630	127.92	-2.088	0.762
1130	87.56	-1.628	1.254	1640	128.99	-1.549	0.787
1140	88.60	-1.861	1.638	1650	130.08	-1.234	0.720
1150	89.64	-1.796	1.662	1660	131.18	-1.078	0.743
1160	90.68	-1.823	1.406	1670	132.27	-0.984	0.803
1170	91.72	-1.735	1.523	1680	133.37	-0.984	0.803
1180	92.76	-1.843	1.852	1690	134.47	-1.007	0.980
1190	93.80	-2.056	1.781	1700	135.56	-1.114	0.907
1200	94.84	-1.919	1.703	1710	136.66	-1.002	0.754
1210	95.88	-1.906	1.900	1720	137.75	-1.082	0.945
1220	96.92	-1.721	2.118	1730	138.85	-1.265	0.971
1260	98.17	-1.850	1.848	1740	139.95	-1.236	0.982
1270	99.17	-2.099	1.553	1750	141.04	-1.083	0.943
1280	99.99	-1.809	1.531	1760	142.14	-1.384	1.088
1290	100.82	-1.884	1.551	1770	143.23	-1.036	0.950
1300	101.64	-1.794	1.784	1780	144.32	-1.167	0.989
1310	102.47	-1.713	1.801	1790	145.38	-1.312	1.052
1320	103.30	-1.931	1.770	1800	146.44	-1.170	0.985
1330	104.12	-1.939	1.789				
1340	104.95	-2.055	1.857	Note:			
1350	105.77	-1.946	1.763	* see Table 1 fo	r age model		
1360	106.60	-1.962	1.676	[‡] G. sacc = Glo	bigerinoides	sacculifer	
1370	107.43	-1.820	1.455	(300-355 µm)	
1380	108.25	-1.731	1.565				
1400	108.91	-2.098	1.299				
1410	109.74	-1.803	1.659				
1420	110.57	-1.763	1.714				
1430	111.39	-2.102	1.580				
1440	112.22	-2.157	1.695				

APPENDIX IV

IMAGES core MD97-2141: δ^{18} O and δ^{13} C data from Neogloboquadrina dutertrei

Sample	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Sample	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(depth_cm)	(kvr)	(N dut [‡])	(N dut [‡])	(depth_cm)	(kyr)	(N dut [‡])	(N dut [‡])
	((()))	(%)	(%)	(doptil, off)	((())))	(%a)	(%a)
		(700)	(700)			(700)	(700)
508	36.31	-0.529	0.600	650	44.35	-0.388	0.655
510	36.42	-0.451	0.491	653	44.52	-0.402	0.815
511	36 47	-0.346	0.600	654	44 58	-0 534	0.663
512	36 53	-0.580	0.827	656	44 70	-0.956	0 474
514	36.64	-0.277	0.791	657	44.75	-0.748	0.698
515	36 69	-0.567	0.669	658	44 81	-0 723	0.610
518	36.86	-0.401	0.626	659	44.87	-0.558	0.626
520	36.97	-0.283	0.683	661	44.98	-0.793	0.675
522	37.08	-0.250	0.673	673	45.04	-0.480	0.535
525	37.25	-0.258	0.668	674	45.10	-0.665	0.591
527	37.36	-0.273	0.807	675	45.16	-0.545	0.978
529	37.47	-0.271	0.833	677	45.27	-0.659	0.844
531	37.58	-0.339	0.665	679	45.39	-0.647	0.620
533	37.69	-0.209	0.788	681	45.50	-0.561	0.758
535	37.80	-0.241	0.731	683	45.62	-0.453	0.610
538	37.96	-0.497	0.986	686	45.79	-0.717	0.655
540	38.07	-0.538	0.648	689	45.96	-0.469	0.629
541	38.13	-0.205	0.693	691	46.08	-0.658	0.692
544	38.29	-0.211	0.772	694	46.25	-0.443	0.761
545	38.35	-0.448	0.779	700	46.59	-0.516	0.734
546	38.40	-0.187	0.623	703	46.76	-0.294	0.900
547	38.46	-0.521	0.669	709	47.11	-0.333	0.826
549	38.57	-0.281	0.652	710	47.17	-0.456	0.660
550	38.62	-0.308	0.790	713	47.34	-0.339	0.753
552	38.73	-0.400	0.804	716	47.51	-0.363	0.859
556	38.96	-0.382	0.829	718	47.63	-0.393	0.693
557	39.02	-0.262	0.930	721	47.80	-0.376	0.731
560	39.19	-0.248	0.612	724	47.97	-0.820	0.688
563	39.36	-0.312	1.020	729	48.26	-0.643	0.835
566	39.53	-0.324	0.827	734	48.55	-0.545	0.956
568	39.65	-0.313	0.832	738	48.78	-0.643	0.879
570	39.76	-0.228	0.687	741	48.95	-0.538	0.874
575	40.05	-0.549	0.812	746	49.24	-0.474	0.714
581	40.39	-0.441	0.748	748	49.35	-0.680	0.676
590	40.91	-0.219	0.795	753	49.64	-0.630	0.699
593	41.08	-0.165	0.666	756	49.81	-0.840	0.609
600	41.48	-0.540	0.792	758	49.93	-0.732	0.751
608	41.94	-0.493	0.549	761	50.10	-0.525	0.609
610	42.05	-0.515	0.670	764	50.27	-0.565	0.753
614	42.28	-0.418	0.770	768	50.50	-0.831	0.658
618	42.51	-0.328	0.823	771	50.67	-0.582	0.454
624	42.86	-0.702	0.920	774	50.84	-0.739	0.395
626	42.97	-0.263	0.838	775	50.90	-0.591	0.646
628	43.09	-0.259	0.758	777	51.02	-0.742	0.627
636	43.55	-0.399	0.618	783	51.36	-0.716	0.520
640	43.78	-0.646	0.950	787	51.59	-0.484	0.582
644	44.01	-0.507	0.508	793	51.94	-0.612	0.564

Sample	Age ^{\$}	δ ¹⁸ Ο	δ¹³C
(depth, cm)	(kyr)	(N.dut [‡])	(N.dut [‡])
		(‰)	(‰)
799	52.28	-0.593	0.515
804	52.57	-0.701	0.491
809	52.86	-0.630	0.710
813	53.09	-0.619	0.374
818	53.37	-0.351	0.406
825	53.77	-0.548	0.333
829	54.00	-0.156	0.422
831	54.12	-0.310	0.209
836	54.41	-0.239	0.597
838	54.52	-0.482	0.301
839	54.58	-0.662	0.588
840	54.64	-0.940	0.584
842	54.75	-0.330	0.371
844	54.87	-0.787	0.633
847	55.04	-0.775	0.571

^s see Table 1 for age model [‡] N. dut = Neogloboquadrina dutertrei (250-300 μm)

APPENDIX V

IMAGES core MD97-2141: δ^{18} O and δ^{13} C data from Globorotalia crassaformis

Sample	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C	Sample	Age ^{\$}	δ ¹⁸ Ο	δ ¹³ C
(depth, cm)	(kvr)	(G.cras [‡])	(G.cras [‡])	(depth, cm)	(kvr)	(G.cras [‡])	(G.cras [‡])
(,	((%)	(%)	(00000., 000)	((%)	(%)
		(700)	(700)			(700)	(700)
510	36.42	0.648	0.750	650	44.35	0.165	0.395
511	36.47	0.659	0.654	653	44.52	0.661	0.439
512	36.53	0.490	0.484	654	44.58	0.391	0.493
514	36.64	0.670	0.698	655	44.64	0.464	0.664
515	36.69	0.859	0.545	657	44.75	0.724	0.465
518	36.86	0.571	0.737	658	44.81	0.475	0.365
520	36.97	0.967	0.816	659	44.87	0.930	0.759
522	37.08	0.737	0.673	660	44.93	0.350	0.488
525	37.25	0.659	0.684	661	44.98	0.783	0.568
527	37.36	0.898	0.775	673	45.04	0.642	0.513
529	37.47	0.681	0.762	674	45.10	1.090	0.720
531	37.58	0.819	0.712	677	45.27	0.670	0.545
533	37.69	0.800	0.737	681	45.50	0.349	0.370
535	37.80	0.699	0.753	686	45.79	0.016	0.536
538	37.96	0.652	0.703	689	45.96	0.114	0.485
540	38.07	0.741	0.895	691	46.08	0.456	0.543
541	38.13	0.892	0.903	697	46.42	0.682	0.599
544	38.29	0.936	0.833	700	46.59	0.647	0.537
545	38.35	0.784	0.733	703	46.76	0.696	0.578
546	38.40	0.757	0.726	709	47.11	0.682	0.526
547	38.46	0.864	0.844	710	47.17	0.848	0.645
549	38.57	0.424	0.589	713	47.34	0.759	0.589
550	38.62	0.919	0.871	716	47.51	0.931	0.714
552	38.73	0.776	0.763	718	47.63	0.607	0.828
556	38.96	0.799	0.848	721	47.80	0.632	0.598
557	39.02	0.917	0.909	724	47.97	0.539	0.599
560	39.19	0.725	0.763	729	48.26	0.634	0.567
563	39.36	0.813	0.754	734	48.55	0.754	0.699
566	39.53	0.716	0.743	738	48.78	0.641	0.646
568	39.65	0.629	0.783	741	48.95	0.692	0.641
570	39.76	0.833	0.715	746	49.24	0.755	0.652
575	40.05	0.519	0.576	748	49.35	0.866	0.580
579	40.28	0.818	0.643	753	49.64	0.531	0.558
581	40.39	0.768	0.610	756	49.81	0.877	0.678
590	40.91	0.829	0.745	758	49.93	0.810	0.698
593	41.08	0.047	0.620	761	50.10	0.518	0.620
600	41.48	0.578	0.535	764	50.27	0.656	0.608
608	41.94	0.318	0.596	768	50.50	0.806	0.543
610	42.05	0.469	0.426	771	50.67	0.752	0.615
614	42.28	0.449	0.579	774	50.84	0.563	0.509
618	42.51	0.539	0.599	775	50.90	0.369	0.543
624	42.86	0.816	0.758	777	51.02	0.738	0.594
626	42.97	0.291	0.533	783	51.36	0.923	0.520
628	43.09	0.387	0.388	787	51.59	0.704	0.589
636	43.55	0.634	0.670	793	51.94	0.496	0.547
640	43.78	0.652	0.707	799	52.28	0.861	0.491
644	44.01	0.327	0.483	804	52.57	0.619	0.446

Sample	Age ^{\$}	δ¹ ⁸ O	δ¹³C
(depth, cm)	(kyr)	(G.cras [‡])	(G.cras [‡])
		(‰)	(‰)
809	52.86	0.246	0.630
813	53.09	0.775	0.586
818	53.37	0.842	0.491
825	53.77	0.731	0.543
829	54.00	0.659	0.462
831	54.12	0.836	0.469
836	54.41	0.687	0.556
838	54.52	0.741	0.570
839	54.58	0.574	0.438
840	54.64	0.440	0.606
842	54.75	0.506	0.468
844	54.87	0.309	0.482
847	55.04	0.561	0.562

^{\$} see Table 1 for age model
^{\$} G. cras = Globorotalia crassaformis (300-355 µm)

APPENDIX VI

IMAGES core MD97-2141: Relative abundance of planktonic foraminifera between 35-60 kyr

total	366 364 538 538 538 538 538 538 538 538 538 538	
other	00-0000-000-60000-00-0500000000000000	
G. uvula	00000-0-000-002-2-2-200-000000000000000	
G. glut	88 88 7 7 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
G. turn	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
G. men	ФО-ИИ-ОИО4ИИ-РИИСФОСССОБ-ССИОИФИ Ф-	
G. scit	ы и о о о е ё е и и и е е е е е е е е е е е е е е	
G. crass	22%300~%%02400~2~~2~230040240~000	
G. trunc (right)		
G. inflat		
P. oblig	ちこ 4 こ -	
N. duter	88 8 9 8 4 8 7 7 7 8 8 8 8 8 8 8 7 7 7 8 8 8 8	
N. pachy (right)	いしゅののひょねなねねのじけひのこのらってゅうひょうてひつののぬしなな	
G. rubes	8 ~ だ や 亡 そ め ら そ か ら で か ら め 亡 な 2 2 2 2 3 4 9 1 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
G. digit	0->-0,00+0000000000000000000000000000000	
G. falc	のトナーンの8-242200%27700%20~2000~2000~	
G. bull	24 8 8 8 9 8 9 8 4 7 8 8 4 7 8 8 4 7 8 8 4 7 8 8 4 8 4 8 8 8 4 8 8 8 4 8 8 8 4 8 8 8 4 8 8 8 4 8 8 8 8	
G. calid	22 税 税 税 税 党 中 万 中 第 എ 元 祝 作 波 税 十 22 税 元 22 税 元 22 税 約 約 約 約 8 約 9 約 9 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	
G. aequi	た 0 성 는 8 일 같 는 8 일 6 8 일 8 일 8 일 8 일 8 일 8 일 8 일 8 일 8	
G. sac total	> したはだはは気にするのでのの気気気をなながにだがなたののですののである	
G. sac w/sac	и๛-ииъвави-ииыи ⁵ ๛и> ๛иваеииеиоо вее	
G. sac w/out sac	らてけれだいませいです。 おおおお ロボイ アタガ はなのけた のてるのの	
G. tene	# ↓ ♡ ↓ ↓ = = = = = = = 0 = 0 = 0 = 0 = 0 = 0	
G. rub (white)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
G. congl	000000000000000000000000000000000000000	
0. uni		
Sample (depth, cm)	500 510 512 512 512 513 512 513 515 515 515 515 515 515 515 515 515	

APPENDIX VII

IMAGES core MD97-2141: Sample weight and occurrence of pteropods and ash layers

Sample	Sample	weight	weight	weight	Dteropode	Ach	Comments
(depth_em)	Juniant	weight > 60 um	xeight	× 1EQuin	i teropous	ASII	Commenta
(deptil, cill)	weight	>03µm	>03<150µm	>150µm			
0	4 000	0.004	0.005	0.405		.1	an a chile of fearman a chil
0	1.300	0.201	0.095	0.105		N	speckled forams: ash?
1	0.796	0.134	0.040	0.000		N	speckied forants. ash?
2	2.182	0.342	0.106	0.232		N	speckled forams: ash?
3	1.624	0.260	0.086	0.170		N	
4	3.582	0.592	0.220	0.372		N	
5	1.182	0.274	0.122	0.152		N	
6	2.442	0.688	0.492	0.192		N	ash
7	2.584	0.646	0.420	0.226		N	
8	2.122	0.480	0.214	0.266		V	
9	2.828	0.690	0.438	0.250		V	? ash
10	0.811	0.177	0.058	0.111		V	
11	1.750	0.298	0.176	0.122			
12	1.048	0.202	0.120	0.086			
13	1.628	0.340	0.210	0.130			? ash
14	2.224	0.338	0.150	0.186		\checkmark	
15	1.124	0.196	0.062	0.134		\checkmark	
16	1.456	0.254	0.070	0.182		\checkmark	
17	1.592	0.276	0.070	0.202		\checkmark	
18	2.054	0.310	0.090	0.220		\checkmark	
19	1.412	0.228	0.082	0.144		\checkmark	
20	1.115	0.218	0.062	0.149		\checkmark	
21	2.144	0.370	0.102	0.262			
22	1.810	0.336	0.070	0.262			
23	2.538	0.292	0.070	0.218			
24	3.012	0.292	0.070	0.222			glass shards
25	2.986	0.270	0.076	0 198			9.000 0.10.00
26	2 098	0.208	0.052	0 156			
27	2 784	0.264	0.066	0 198			
28	2 148	0.138	0.036	0.100			
20	3 182	0.150	0.000	0.100			
20	2 201	0.200	0.000	0.130			
31	1 550	0.305	0.002	0.270			
22	1.000	0.240	0.000	0.132			
32	1.092	0.300	0.060	0.220			
33	2.922	0.272	0.000	0.204			
34	3.220	0.354	0.062	0.272			
35	1.752	0.290	0.072	0.210			
30	1.614	0.285	0.074	0.210			
37	1.686	0.290	0.070	0.220			
38	2.632	0.466	0.110	0.356			
39	1.806	0.508	0.100	0.408			
40	1.551	0.374	0.071	0.300			glass shards
41	2.556	0.538	0.114	0.420			
42	1.718	0.372	0.076	0.296			glass shards
43	2.128	0.410	0.080	0.330			
44	3.066	0.556	0.104	0.450			
45	2.674	0.468	0.098	0.370			
46	2.498	0.434	0.084	0.350			
47	2.180	0.452	0.104	0.348			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
. ,	-	•	•	·			
48	2.172	0.382	0.086	0.296			
49	2.190	0.472	0.090	0.380			
50	1.366	0.317	0.059	0.251			
51	1.696	0.360	0.286	0.068		\checkmark	? ash
52	2.178	0.474	0.096	0.372			
53	1.824	0.390	0.084	0.300			
54	1.642	0.376	0.070	0.298			
55	1.446	0.264	0.060	0.204			
56	1.392	0.350	0.070	0.280			
57	1.348	0.292	0.052	0.238			
58	1.304	0.326	0.060	0.252			
59	1.710	0.426	0.078	0.344			
60	1.079	0.267	0.066	0.196			
61	1.420	0.352	0.066	0.280			
62	1.440	0.380	0.074	0.300			
63	1.640	0.488	0.090	0.396			
64	2.052	0.522	0.104	0.410			
65	2.242	0.422	0.098	0.320			
66	1.592	0.316	0.068	0.246			
67	1.424	0.204	0.046	0.156			
68	1.764	0.424	0.098	0.322			
69	1.436	0.322	0.074	0.246			
70	1.439	0.397	0.087	0.300			
71	1.550	0.380	0.060	0.316			3 mm thick black/brown
							long pieces: glassy at
							some parts: ash?
72	1.502	0.238	0.040	0.196			
73	2.194	0.396	0.052	0.336			
74	1.652	0.400	0.052	0.340			3 mm thick black/brown
							flat elongated 1-2 cm
							long pieces: glassy at
							some parts: ash?
75	1.316	0.328	0.036	0.288			3 mm thick black/brown
							flat elongated 1-2 cm
							long pieces: glassy at
							some parts: ash?
76	1.416	0.258	0.040	0.212			
77	1,716	0.338	0.058	0.274			
78	1.776	0.294	0.054	0.240			
79	1.946	0.388	0.066	0.322			
80	1.410	0.453	0.104	0.344			
81	1.412	0.320	0.056	0.268			3 mm thick black/brown
							flat elongated 1-2 cm
							long pieces: glassy at

long pieces; glassy a some parts: ash?
Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
	_		· · ·				
82	1.794	0.364	0.070	0.296			3 mm thick black/brown
							flat elongated 1-2 cm
							long pieces; glassy at
	0.040	0 500	0.440	0.400			some parts: ash?
83	2.946	0.580	0.118	0.460			
84 95	1.220	0.218	0.050	0.104			
C0 96	2.060	0.384	0.074	0.308			
00	1.044	0.304	0.000	0.260			glass shards
88	2 308	0.320	0.000	0.238			glass sharus
89	1 502	0.440	0.004	0.340			
90	1.302	0.274	0.030	0.220			
91	1 408	0.312	0.052	0.278			
92	1.400	0.364	0.062	0.294			
93	2 252	0.001	0.090	0.378			
94	2,192	0.454	0.084	0.360			
95	2.098	0.392	0.070	0.314			
96	1.744	0.420	0.068	0.340			
97	2.952	0.718	0.112	0.590			
98	3.082	0.652	0.112	0.532			
99	1.958	0.486	0.072	0.414			
100	0.928	0.377	0.071	0.292			
101	0.638	0.142	0.026	0.110			
102	1.948	0.496	0.080	0.404			glass shards; 3 mm
							thick black/brown flat
							elongated<1 cm long
							pieces; glassy at
							some parts: ash?
103	3.182	0.832	0.132	0.698			
104	1.992	0.478	0.088	0.390			
105	1.380	0.372	0.060	0.314			
106	2.310	0.598	0.096	0.492			glass shards
107	1.246	0.388	0.062	0.326			
108	1.976	0.504	0.080	0.376			
109	0.938	0.242	0.038	0.198			
110	1.169	0.358	0.103	0.250			
111	0.934	0.220	0.046	0.168			
112	1.196	0.302	0.058	0.234			
113	1.746	0.452	0.082	0.360			
114	1.680	0.434	0.096	0.326			
115	1.362	0.360	0.076	0.284			
110	1.224	0.338	0.062	0.200			
110	2.222	0.594	0.102	0.484			
110	2.004	0.000	0.112	0.400			
119	∠.490 1 107	0.020	0.110	0.490			
120	1.127	0.300	0.134	0.221			
121	1 10/	0.203	0.042	0.134			
123	1.488	0.404	0.078	0.320			
		0.101	0.010	0.020			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
	_	•					
124	1.144	0.290	0.056	0.226			
125	1.154	0.260	0.058	0.198			
126	1.422	0.378	0.078	0.300			
127	2.028	0.416	0.084	0.328			
128	2.336	0.580	0.112	0.464			glass shards
129	1.486	0.360	0.062	0.286			
130	1.209	0.360	0.100	0.253			
131	1.516	0.346	0.066	0.276			
132	1.494	0.316	0.060	0.252			
133	1.578	0.322	0.064	0.252			
134	2.406	0.504	0.094	0.400			
135	1.496	0.310	0.082	0.228			
136	2.414	0.458	0.090	0.360			
137	1.946	0.376	0.072	0.296			
138	2.308	0.342	0.080	0.250			
139	1.966	0.376	0.082	0.286			
140	1.412	0.334	0.102	0.223			
141	2.244	0.372	0.074	0.292			
142	2.256	0.346	0.072	0.264			
143	2.116	0.350	0.068	0.276			
144	2.194	0.348	0.074	0.266			
145	0.918	0.126	0.024	0.096			
146	1.382	0.226	0.044	0.176			
147	1.936	0.346	0.060	0.284			
148	2.164	0.320	0.060	0.254			
149	1.926	0.300	0.054	0.236			
150	1.298	0.356	0.118	0.229			
151	2.036	0.396	0.068	0.316			
152	2.228	0.424	0.074	0.344			
153	1.993	0.388	0.060	0.316			
154	2.426	0.314	0.048	0.258			
155	1.686	0.280	0.048	0.222			
156	0.852	0.192	0.030	0.156			
157	1.246	0.240	0.042	0.192			
158	1.558	0.286	0.050	0.226			
159	1.246	0.232	0.044	0.176			
160	0.887	0.231	0.068	0.158			
161	1.646	0.358	0.054	0.298			
162	1.636	0.382	0.056	0.306			
163	1.416	0.266	0.044	0.214			
164	1.242	0.274	0.042	0.222			
165	1.860	0.502	0.084	0.416			
166	1.692	0.414	0.072	0.338			
167	1.264	0.298	0.042	0.246			
168	2.046	0.480	0.074	0.404			
169	1.552	0.364	0.054	0.300			
170	1.209	0.295	0.062	0.229			
171	1.106	0.256	0.046	0.206			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth. cm)	weight	>63um	>63<150um	>150um	. to ope de		
(00000					
172	1.216	0.292	0.050	0.234			
173	1.472	0.288	0.054	0.226			
174	1.914	0.504	0.084	0.420			
175	1.560	0.320	0.054	0.260			
176	1.440	0.302	0.052	0.242			
177	1.442	0.322	0.052	0.268			
178	1.678	0.368	0.066	0.302			
179	1.668	0.394	0.064	0.334			
180	1.361	0.350	0.085	0.264			
181	1.192	0.290	0.046	0.240			
182	2.096	0.570	0.104	0.458			
183	2.026	0.506	0.084	0.416			
184	2.242	0.604	0.110	0.484			
185	1.756	0.448	0.086	0.358			
186	0.762	0.204	0.040	0.160			
187	1.568	0.434	0.102	0.332			
188	1.620	0.386	0.078	0.304			
189	1.544	0.384	0.068	0.312			
190	0.923	0.269	0.059	0.209			
191	1.660	0.360	0.082	0.276			
192	1.218	0.348	0.076	0.268			
193	2.036	0.504	0.096	0.402			
194	2.722	0.724	0.148	0.570			
195	0.820	0.194	0.040	0.148			
196	1.662	0.458	0.112	0.342			
197	1.486	0.348	0.076	0.270			
198	2.280	0.346	0.088	0.252		\checkmark	
199	2.228	0.482	0.136	0.338		\checkmark	
200	1.573	0.419	0.117	0.301		\checkmark	ash
201	0.910	0.200	0.038	0.158	\checkmark		pteropods
202	1.070	0.256	0.060	0.192	\checkmark	\checkmark	pteropods
203	1.038	0.204	0.046	0.152		\checkmark	ash
204	2.284	0.432	0.116	0.308	\checkmark		pteropods
205	1.554	0.304	0.070	0.226		\checkmark	
206	1.690	0.292	0.098	0.192		\checkmark	
207	1.390	0.212	0.048	0.160			
208	2.008	0.348	0.070	0.270	\checkmark		pteropods
209	1.072	0.226	0.044	0.176	\checkmark		pteropods
210	0.869	0.326	0.092	0.233	\checkmark		pteropods
211	1.248	0.256	0.054	0.196	\checkmark		pteropods
212	1.736	0.450	0.088	0.352			
213	1.224	0.318	0.062	0.246	\checkmark		pteropods
214	0.862	0.202	0.044	0.156	\checkmark		pteropods
215	0.516	0.120	0.024	0.088	\checkmark		pteropods
216	0.868	0.230	0.040	0.180	\checkmark		pteropods
217	1.354	0.308	0.056	0.244	\checkmark		pteropods
218	1.362	0.382	0.066	0.312	\checkmark		pteropods
219	1.240	0.294	0.058	0.232	\checkmark	\checkmark	pteropods, ash

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
220	1.493	0.540	0.154	0.386	\checkmark	\checkmark	pteropods
221	1.430	0.304	0.076	0.220	\checkmark	\checkmark	pteropods
222	2.850	0.484	0.264	0.210	\checkmark	\checkmark	pteropods, ash
223	1.786	0.296	0.156	0.138	\checkmark	\checkmark	pteropods, ash
224	1.494	0.240	0.122	0.104	\checkmark	\checkmark	pteropods, ash
225	1.466	0.268	0.122	0.138	\checkmark	\checkmark	pteropods, ash
226	1.522	0.273	0.126	0.134		\checkmark	ash
227	1.256	0.220	0.104	0.106		\checkmark	ash
228	1.172	0.230	0.048	0.164		\checkmark	ash
229	1.390	0.292	0.062	0.214	\checkmark		pteropods
230	1.612	0.532	0.161	0.370			pteropods
231	1.426	0.306	0.076	0.224			pteropods
232	1.586	0.268	0.074	0.178	\checkmark		pteropods
233	1.308	0.240	0.064	0.168			pteropods
234	1.524	0.278	0.076	0.196	\checkmark		pteropods
235	1.382	0.174	0.048	0.116			pteropods
236	1.478	0.186	0.046	0.134	\checkmark		pteropods
237	1.306	0.190	0.052	0.130	\checkmark		pteropods
238	1.996	0.386	0.070	0.208	\checkmark		pteropods
239	1.658	0.302	0.074	0.216	\checkmark		pteropods
240	1.831	0.528	0.196	0.324	\checkmark		pteropods
241	1.866	0.312	0.080	0.224	\checkmark		pteropods
242	1.300	0.186	0.054	0.126	\checkmark		pteropods
243	1.960	0.284	0.084	0.190	\checkmark		pteropods
244	1.572	0.266	0.072	0.188			
245	2.124	0.362	0.096	0.252	\checkmark		pteropods
246	1.664	0.246	0.072	0.164	\checkmark		pteropods
247	1.702	0.262	0.074	0.182	\checkmark		pteropods
248	1.828	0.388	0.100	0.278			pteropods
249	0.872	0.038	0.004	0.034	\checkmark		lost most of sample,
							pteropods
250	1.689	0.574	0.205	0.360	\checkmark		pteropods
251	1.862	0.314	0.126	0.180		\checkmark	pteropods, ash
252	1.539	0.318	0.122	0.194			pteropods
253	2.368	0.496	0.186	0.294			pteropods
254	2.210	0.394	0.156	0.238	\checkmark		pteropods
255	2.556	0.458	0.162	0.292	\checkmark	\checkmark	pteropods, ash
256	3.018	0.510	0.184	0.324			pteropods
257	1.866	0.332	0.122	0.198	\checkmark	\checkmark	pteropods, ash
258	2.734	0.468	0.174	0.288	\checkmark		pteropods
259	3.382	0.614	0.250	0.358	\checkmark	\checkmark	pteropods, ash
260	1.353	0.361	0.133	0.210	\checkmark		pteropods
261	2.796	0.496	0.184	0.300	\checkmark		pteropods
262	2.666	0.584	0.206	0.372	\checkmark		pteropods
263	2.814	0.546	0.190	0.346	\checkmark		pteropods
264	2.466	0.548	0.166	0.360	\checkmark		pteropods
265	2.030	0.464	0.146	0.308	\checkmark		pteropods
266	2.706	0.568	0.180	0.382	\checkmark		pteropods

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
267	2.172	0.496	0.142	0.352			pteropods
268	1.644	0.446	0.142	0.300	\checkmark		pteropods
269	1.756	0.392	0.150	0.236	\checkmark		pteropods
270	1.320	0.412	0.143	0.257	\checkmark		pteropods
271	1.708	0.340	0.116	0.216	\checkmark		pteropods
272	1.710	0.296	0.120	0.176	\checkmark		pteropods
273	1.714	0.426	0.190	0.230	\checkmark		pteropods
274	3.106	0.784	0.344	0.432			pteropods
275	1.592	0.388	0.174	0.208	\checkmark		pteropods
276	2.090	0.506	0.232	0.260	\checkmark	\checkmark	pteropods, ash
277	1.938	0.548	0.236	0.306	\checkmark	\checkmark	pteropods, ash
278	2.924	0.794	0.450	0.334	\checkmark	\checkmark	pteropods, ash
279	3.888	1.180	0.728	0.442	\checkmark		pteropods
280	1.791	0.654	0.440	0.200	\checkmark	\checkmark	pteropods, ash
281	3.224	1.546	1.076	0.430	\checkmark	\checkmark	magnetite layer, pteropods
282	2.224	0.928	0.666	0.248	\checkmark	\checkmark	magnetite layer, pteropods
283	1.494	0.450	0.290	0.154	\checkmark	\checkmark	magnetite layer, pteropods
284	2.204	0.580	0.240	0.330	\checkmark	\checkmark	magnetite layer, pteropods
285	1.952	0.590	0.350	0.230	\checkmark		pteropods
286	1.402	0.364	0.140	0.214	\checkmark		pteropods
287	1.704	0.378	0.126	0.240	\checkmark		pteropods
288	3.230	0.738	0.272	0.458	\checkmark		pteropods
289	2.310	0.506	0.166	0.330	\checkmark		pteropods
290	1.561	0.448	0.164	0.272	\checkmark		pteropods
291	1.702	0.376	0.118	0.256	\checkmark		pteropods
292	2.076	0.376	0.108	0.266	\checkmark		pteropods
293	3.100	0.544	0.154	0.384	\checkmark		pteropods
294	2.526	0.386	0.106	0.270	\checkmark		pteropods
295	2.010	0.344	0.098	0.236	\checkmark		pteropods
296	2.192	0.376	0.102	0.264	\checkmark		pteropods
297	2.010	0.314	0.082	0.220	\checkmark		pteropods
298	1.608	0.254	0.070	0.182	\checkmark		pteropods
299	2.412	0.364	0.104	0.254	\checkmark		pteropods
300	1.803	0.448	0.126	0.318	\checkmark		pteropods
301	2.712	0.510	0.130	0.374	\checkmark		pteropods
302	1.446	0.208	0.066	0.140	\checkmark		pteropods
303	3.042	0.546	0.142	0.398	\checkmark		pteropods
304	2.040	0.376	0.100	0.274	\checkmark		pteropods
305	1.922	0.420	0.118	0.292	\checkmark		pteropods
306	1.300	0.268	0.070	0.192	\checkmark		pteropods
307	2.338	0.438	0.122	0.306	\checkmark		pteropods
308	2.626	0.558	0.158	0.394	\checkmark		pteropods
309	2.756	0.548	0.144	0.398	\checkmark		pteropods
310	1.312	0.381	0.123	0.233	\checkmark		pteropods
311	2.518	0.500	0.146	0.348	\checkmark		pteropods
312	2.076	0.454	0.120	0.324	\checkmark		pteropods
313	2.458	0.522	0.136	0.380	\checkmark		pteropods
314	2.262	0.442	0.128	0.308	\checkmark		pteropods

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm	-		
				-			
315	1.932	0.338	0.102	0.234	\checkmark		pteropods
316	1.022	0.184	0.058	0.118	\checkmark		pteropods
317	1.304	0.264	0.060	0.176	\checkmark		pteropods
318	1.708	0.364	0.104	0.256	\checkmark		pteropods
319	3.740	0.692	0.200	0.486	\checkmark		pteropods
320	1.542	0.306	0.097	0.199	\checkmark		pteropods
321	1.716	0.266	0.076	0.186	\checkmark		pteropods
322	1.048	0.178	0.048	0.124	\checkmark		pteropods
323	1.920	0.280	0.074	0.196	\checkmark		pteropods
324	2.746	0.716	0.118	0.310	\checkmark		pteropods
325	1.910	0.316	0.108	0.206	\checkmark		pteropods
326	2.018	0.294	0.090	0.198	\checkmark		pteropods
327	2.188	0.370	0.096	0.262	\checkmark		pteropods
328	2.504	0.488	0.132	0.344	\checkmark		pteropods
329	1.520	0.256	0.074	0.174	\checkmark		pteropods
330	1.951	0.310	0.102	0.202	\checkmark		pteropods
331	1.436	0.210	0.068	0.136	\checkmark		pteropods
332	1.490	0.164	0.054	0.108	\checkmark		pteropods
333	2.068	0.284	0.092	0.184	\checkmark		pteropods
334	3.490	0.462	0.152	0.302	\checkmark		pteropods
335	2.128	0.316	0.096	0.216	\checkmark		pteropods
336	1.600	0.276	0.084	0.186	\checkmark		pteropods
337	1.584	0.230	0.078	0.150	\checkmark		pteropods
338	3.350	0.358	0.150	0.202			pteropods
339	1.304	0.214	0.060	0.142	\checkmark		pteropods
340	1.329	0.238	0.082	0.146			pteropods
341	1.864	0.332	0.088	0.222	\checkmark		pteropods
342	0.930	0.330	0.092	0.228			pteropods
343	1.402	0.226	0.066	0.154			pteropods
344	1.874	0.340	0.098	0.230	V		pteropods
345	1.846	0.328	0.096	0.222	V		pteropods
346	2,260	0.422	0.136	0.278	Ń		pteropods
347	1.482	0.240	0.066	0.162	V		pteropods
348	1.564	0.246	0.076	0.158	V		pteropods
349	2.914	0.434	0.138	0.282	Ń		pteropods
350	1.820	0.329	0.105	0.210	Ń		pteropods
351	1 406	0.236	0.064	0.162	Ń		pteropods
352	1 756	0.200	0.082	0.182	Ń		pteropods
353	1 744	0.298	0.084	0.200	Ń		nteropods
354	1.744	0.268	0.076	0.200	N		nteropods
355	1 724	0.200	0.076	0 158	Ň		nteropods
356	1 180	0.240	0.070	0.100	N		nteronods
357	0.982	0.200	0.060	0.106	J		nteronods
358	1 658	0.268	0.000	0.174	J		nteronods
350	2.066	0.200	0.00-	0.17-	Ň		nteronode
360	2.000	0.340	0.110	0.220	N		nteronode
361	1 792	0.139	0.000	0.095	N		nteronode
301	1.102	0.300	0.100	0.194	N		pteropode
30Z	∠.494	0.390	U. 144	0.252	N		pleiopous

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63um	>63<150um	>150um	·		
(- 3 -						
363	1.872	0.328	0.106	0.220	\checkmark		pteropods
364	1.672	0.254	0.084	0.170	\checkmark		pteropods
365	1.676	0.256	0.086	0.170	\checkmark		pteropods
366	2.226	0.278	0.088	0.186	\checkmark		pteropods
367	2.018	0.272	0.094	0.176	\checkmark		pteropods
368	2.669	0.416	0.132	0.286	\checkmark		pteropods
369	2.704	0.392	0.126	0.264	\checkmark		pteropods
370							missing
371	1.793	0.251	0.086	0.169	\checkmark		pteropods
372	1.568	0.176	0.058	0.116	\checkmark		pteropods
373	1.616	0.242	0.074	0.162	\checkmark		pteropods
374	2.856	0.494	0.148	0.344	\checkmark		pteropods
375	1.228	0.174	0.054	0.114	\checkmark		pteropocis
376	3.362	0.442	0.280	0.152	\checkmark	\checkmark	pteropods
377	1.964	0.328	0.220	0.096			pteropods, ash
378	2.424	0.400	0.124	0.264			pteropods
379	1.992	0.374	0.110	0.252			pteropods
380	1.515	0.269	0.065	0.185			Pteropods
381	1.658	0.290	0.082	0.198			pteropods
382	1.332	0.212	0.066	0.138	V		pteropods
383	1.426	0.240	0.070	0.164			pteropods
384	1.614	0.220	0.070	0.148	V		pteropods, ash
385	1.724	0.268	0.106	0.154			Pteropods
386	1.596	0.234	0.078	0.138	V		pteropods
387	0.738	0.126	0.042	0.076			pteropods
388	1.268	0.198	0.068	0.128	V		pteropods
389	1.082	0.174	0.060	0.106			pteropods
390	1.697	0.257	0.074	0.169	Ń		pteropods
391	1.084	0.156	0.054	0.096	V		pteropods
392	1.316	0.206	0.058	0.130	Ń		pteropods
393	1.082	0.176	0.050	0.120	Ń		pteropods
394	1.390	01110	0.000	0.166	Ń		pteropods
395	1.278			0.124	V		pteropods, ash
396	1.302			0.146	Ń	,	pteropods
397	1.638			0.140	Ń		pteropods
398	2.010			0.214	Ń		pteropods
399	1.576			0.190	V		pteropods
400	2.315	0.407	0.103	0.294	Ń		pteropods
401	1.870			0.236			pteropods
402	2 574			0.280	Ń		pteropods
403	2.162			0.202	V		pteropods
404	3.056			0.356	V		pteropods
405	2.298			0.262	Ń		pteropods
406	2.398			0.304	Ń		pteropods
407	3.352			0.420	Ń		pteropods
408	3.576			0.396	Ň		pteropods
409	3 070			0.328	, V		pteropods
410	1 806	0 428	0 127	0.288	J.		pteropods
10	1.000	0.720	0.121	0.200	Y		proropous

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
411	2.540			0.348	\checkmark		pteropods
412	2.466			0.304	\checkmark		pteropods
413	2.370			0.246	\checkmark		pteropods, ash(?)
414	2.116			0.232	\checkmark		pteropods, ash
415	1.946			0.256	\checkmark		pteropods, ash
416	2.386			0.208	\checkmark		pteropods, ash
417	2.150			0.238	\checkmark		pteropods, ash
418	2.334			0.234		\checkmark	ash
419	2.586			0.224	\checkmark		pteropods
420	1.402	0.262	0.047	0.210	\checkmark		pteropods
421	1.818			0.238	\checkmark	\checkmark	pteropods. ash
422	2.096			0.292			pteropods, ash
423	2,194			0.162			pteropods
424	1.038			0.024			F F
425	2.186			0.208			
426	1.548			0.152	\checkmark		pteropods
427	2 462			0.300	Ń		pteropods
428	1 554	0 178	0.048	0.130	Ń		pteropods
429	2 296	0.314	0.072	0.236	Ń		nteropods
430	2.200	0.328	0.066	0.250	N		nteropods
430	2.000	0.352	0.000	0.262	N		nteropods
432	2.002	0.002	0.000	0.202	N		nteropods
433	2.450	0.200	0.040	0.248	2		nteropods
430	1.750	0.220	0.002	0.240	N		nteropods
434	1.400	0.220	0.050	0.104			pteropods
433	2 160	0.230	0.050	0.100	N		pteropods
430	2.100	0.000	0.070	0.300	v		pteropous
437	1.492	0.202	0.000	0.210	al		ntoronodo
430	1.210	0.300	0.000	0.290	N		pteropods
439	1.590	0.222	0.052	0.100	N		pteropoda
440	1.002	0.231	0.041	0.100	N		pteropods
441	1.000	0.240	0.050	0.178	N		pteropods
442	1.970	0.274	0.070	0.194	N		
443	1.176	0.200	0.054	0.138	N		pteropods
444	2.204	0.290	0.082	0.202	N		
445	2.158	0.352	0.110	0.236	N		pteropods
446	1.572	0.218	0.050	0.162	Ň		pteropods
447	1.280	0.206	0.058	0.144	N		pteropods
448	1.716	0.270	0.078	0.184	N		pteropods
449	2.208	0.506	0.114	0.374	N		pteropods
450	2.798	0.467	0.078	0.383			pteropods
451	2.116	0.298	0.086	0.208	I		
452	2.712	0.412	0.108	0.304			pteropods
453	2.640	0.322	0.088	0.224			pteropods
454	2.186	0.326	0.082	0.240	V		pteropods
455	1.726	0.366	0.086	0.280			pteropods
456	1.424	0.262	0.066	0.194			pteropods
457	1.154	0.168	0.036	0.128			pteropods
458	1.736	0.274	0.070	0.202	\checkmark		pteropods

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm	·		
459	1.986	0.328	0.074	0.244			pteropods
460	1.613	0.279	0.048	0.223			F F
461	1.768	0.576	0.140	0.432			pteropods
462	1.740	0.286	0.062	0.218			pteropods
463	1.948	0.344	0.080	0.254			pteropods
464	2.032	0.186	0.040	0.146	Ń		pteropods
465	1 866	0 228	0.042	0 182	Ń		pteropods
466	1 974	0.282	0.042	0.232	Ň		pteropods
467	2 042	0 180	0.038	0.144	Ń		nteropods
468	2.042	0.338	0.060	0.270	Ń		nteropods
469	2.000	0.000	0.000	0.150	N		nteropods
400	2 382	0.100	0.050	0.269	N		nteropods
470	1 708	0.027	0.030	0.200	N		nteropods
472	1.790	0.232	0.040	0.100	N		nteropods
472	2 542	0.220	0.054	0.100	N		pteropods
473	1 080	0.202	0.034	0.214	N		pteropods
474	1.900	0.202	0.054	0.102	N		pteropods
475	2 409	0.202	0.034	0.224	N		pteropods
470	2.400	0.220	0.040	0.170	N		pteropous
477	1.988	0.228	0.042	0.184	N		pteropods
478	1.844	0.200	0.038	0.158	N		
479	1.458	0.252	0.048	0.198	N		pteropods
480	1.341	0.178	0.042	0.133	N		pteropods
481	1.976	0.168	0.036	0.130	N		pteropods
482	2.860	0.250	0.052	0.192	N		pteropods
483	2.400	0.180	0.042	0.130	N		pteropods
484	3.042	0.152	0.036	0.118	1		
485	2.226	0.160	0.038	0.118	N		pteropods
486	2.792	0.166	0.038	0.124	N		pteropods
487	2.600	0.284	0.062	0.214			pteropods
488	2.468	0.218	0.050	0.162			
489	1.740	0.294	0.080	0.214			
490	1.496	0.208	0.062	0.139			
491	3.002	0.300	0.078	0.220			
492	2.402	0.264	0.072	0.188			
493	1.990	0.346	0.084	0.260			
494	1.876	0.236	0.052	0.180			
495	2.942	0.266	0.058	0.202			
496	2.684	0.122	0.024	0.088			
497	3.608	0.210	0.050	0.160			
498	2.422	0.188	0.044	0.134			
499	2.684	0.356	0.072	0.278			
500	1.809	0.475	0.171	0.285			
501	2.498	0.368	0.070	0.288			
502	3.014	0.308	0.066	0.234			
503	1.826	0.294	0.060	0.224			
504	2.244	0.234	0.048	0.182			
505	2.648	0.302	0.062	0.232			
506	2.770	0.254	0.050	0.188			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm	·		
		•	•	•			
507	2.842	0.236	0.050	0.174			
508	2.960	0.222	0.040	0.170			
509	1.984	0.266	0.056	0.196			
510	1.156	0.205	0.056	0.133			
511	2.474	0.376	0.072	0.292			
512	2.604	0.238	0.044	0.176			
513	2.012	0.300	0.052	0.240			
514	2.590	0.272	0.066	0.192			
515	1.968	0.250	0.046	0.192			
516	1.874	0.262	0.050	0.204			
517	2.422	0.254	0.048	0.196			
518	2.860	0.190	0.038	0.144			
519	2.634	0.264	0.062	0.190			
520	1.907	0.287	0.084	0.200			
521	3.456	0.224	0.056	0.158			
522	2.880	0.164	0.040	0.122			
523	2.604	0.338	0.082	0.250			
524	1.884	0.232	0.054	0.176			
525	2.476	0.382	0.094	0.278			
526	2.688	0.188	0.046	0.132			
527	3.026	0.384	0.080	0.296			
528	1.974	0.228	0.056	0.162			
529	2.228	0.422	0.110	0.302			
530	2.396	0.339	0.089	0.249			
531	2.846	0.398	0.104	0.282			
532	2.704	0.256	0.064	0.182			
533	3.610	0.558	0.134	0.418			
534	2.384	0.374	0.100	0.268			
535	3.274	0.456	0.122	0.336			
536	2.328	0.356	0.088	0.264			
537	1.752	0.256	0.062	0.188			
538	2.690	0.426	0.106	0.312			
539	2.072	0.330	0.074	0.244			
540	2.905	0.417	0.114	0.298			
541	2.642	0.380	0.096	0.274			
542	1.628	0.282	0.076	0.202			
543	2.308	0.406	0.094	0.310			
544	2.818	0.470	0.116	0.344			
545	2.330	0.400	0.088	0.306			
546	1.896	0.290	0.060	0.222			
547 540	2.430	0.430	0.090	0.326			
548	1.782	0.296	0.058	0.222			
549 550	1.010	0.230	0.048	0.1/8			
55U	2.4/5	0.405		0.311			
551	2.330 1.004	0.448	0.092	0.340			
00Z	1.994	0.390	0.000	0.202			
555	1.900	0.340	0.070	0.200	2		ntoronodo?
554	2.070	0.400	0.088	0.308	'N		preiopous

Sample	Sample	weight	weight	weiaht	Pteropods	Ash	Comments
(depth, cm)	weight	>63um	>63<150um	>150um			
(,,							
555	1.982	0.290	0.056	0.222			
556	1.784	0.224	0.056	0.164	\checkmark		pteropods?
557	3.384	0.514	0.118	0.368			
558	2.382	0.338	0.084	0.214			
559	2.460	0.308	0.078	0.226			
560	2.153	0.404	0.094	0.209	\checkmark		pteropods
561	1.494	0.218	0.054	0.162	\checkmark		pteropods
562	2.872	0.450	0.104	0.340	\checkmark		pteropods
563	2.692	0.348	0.090	0.254	\checkmark		pteropods
564	3.434	0.478	0.118	0.350			
565	2.726	0.442	0.116	0.322			
566	3.346	0.544	0.118	0.416			
567	1.798	0.286	0.064	0.216			
568	2.170	0.346	0.078	0.260			
569	2.654	0.302	0.084	0.210			
570	2.097	0.298	0.073	0.223			
571	2.078	0.334	0.086	0.240			
572	2.232	0.370	0.084	0.274			
573	2.946	0.470	0.122	0.338			
574	3.728	0.540	0.138	0.394			
575	2.826	0.376	0.102	0.264			
576	2.808	0.422	0.112	0.298			ash (?)
577	2.118	0.296	0.074	0.210			
578	2.844	0.482	0.126	0.348			
579	2.450	0.354	0.100	0.246			
580	2.264	0.315	0.087	0.227			
581	2.152	0.292	0.080	0.208			
582	2.242	0.392	0.150	0.208			
583	2.196	0.294	0.070	0.212			
584	2.228	0.326	0.018	0.230			
585	2.258	0.346	0.084	0.254			
586	2.224	0.360	0.076	0.282			
587	2.212	0.324	0.078	0.240			
588	2.518	0.386	0.100	0.282			
589	2.194	0.290	0.082	0.194			
590	2.561	0.327	0.090	0.234			
591	2.022	0.302	0.070	0.220			
592	2.048	0.298	0.070	0.222			
593	2.770	0.454	0.130	0.312			
594	2.902	0.552	0.146	0.394			
595	2.288	0.488	0.146	0.326			
596	2.880	0.576	0.184	0.390			
597	2.076	0.404	0.128	0.264			ash (?)
598	2.918	0.590	0.204	0.380			ash (?)
599	1.528	0.296	0.120	0.166			
600	2.057	0.339	0.109	0.227			
601	2.120	0.332	0.112	0.212			
602	2.332	0.348	0.128	0.216		\checkmark	ash

Correla	Consists		ا جاج: جرین		Dianarada	A a b	Commerciate
Sample	Sample	weight	weight	weight	Pteropoas	ASN	Comments
(depin, cm)	weight	>63µm	>63<150µm	>150µm			
602	0 700	0.420	0 11 1	0.204			
603	2.702	0.438	0.114	0.304			
604 605	2.990	0.522	0.142	0.368			
605	2.188	0.368	0.102	0.204			
606	2.074	0.330	0.098	0.230			
607	1.970	0.322	0.086	0.230			
800	2.200	0.300	0.100	0.260			
609	1.810	0.324	0.076	0.240			
610	2.027	0.454	0.125	0.329			
610	2.200	0.426	0.100	0.306			
612	2.106	0.330	0.102	0.224			
013	1.976	0.302	0.054	0.240			
614	3.006	0.362	0.096	0.256			
616	1.752	0.268	0.068	0.196			
617	1.870	0.266	0.076	0.184			
017	1.572	0.248	0.066	0.176			
610	2.270	0.420	0.094	0.306			
619	1.930	0.290	0.072	0.214			
620	1.820	0.281	0.005	0.213			
622	2.520	0.502	0.118	0.382			
622	1.310	0.250	0.056	0.192			
623	2.804	0.444	0.094	0.340			
624	2.850	0.4.44	0.110	0.328			
625	1.788	0.324	0.074	0.240			
020	2.580	0.376	0.094	0.278			
627	2.104	0.292	0.078	0.210			
628	1.458	0.248	0.058	0.184			
629	2.008	0.294	0.080	0.208			
630	1.747	0.231	0.064	0.100			
631	3.182	0.424	0.110	0.310			
632	1.762	0.228	0.062	0.160			
033	1.774	0.270	0.026	0.234			
034	2.054	0.322	0.084	0.230			
035	1.770	0.274	0.042	0.228			
030	1.050	0.100	0.000	0.122			
037 629	1.010	0.200	0.060	0.194			
030	2.002	0.374	0.098	0.200			
640	1.200	0.214	0.000	0.140			
040	2.232	0.323	0.083	0.237			
041	2.004	0.300	0.090	0.208			
042	1.030	0.260	0.072	0.180			
043	2.254	0.304	0.088	0.210			
044 645	2.468	0.392	0.104	0.282			
045	2.082	0.320	0.082	0.232			
040	1.570	0.258	0.064	0.184			
640	2.300	0.396	0.112	0.270			
040	2.102	0.302	0.070	0.220			
049	1.010	0.266	0.076	0.184			
050	1.889	0.259	0.080	0.1/6			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63um	>63<150um	>150um			
651	1.812	0.294	0.074	0.206			
652	2.364	0.452	0.108	0.336			
653	2.250	0.398	0.100	0.292			
654	3.290	0.496	0.126	0.366			
655	1.236	0.218	0.054	0.162			
656	1.260	0.184	0.046	0.134			
657	1.146	0.168	0.044	0.122			
658	1.894	0.336	0.084	0.240			
659	1.164	0.204	0.058	0.141			
660	1.224	0.215	0.051	0.163			
661	1.744	0.292	0.076	0.210			
673	1.233	0.224	0.052	0.170			
674	1.404	0.296	0.076	0.214			
675	2.044	0.458	0.110	0.338			
676	1.424	0.300	0.076	0.218			
677	1.972	0.304	0.080	0.202			
678	2.316	0.414	0.144	0.262		\checkmark	ash
679	1.966	0.348	0.114	0.226		\checkmark	ash
680	2.076	0.308	0.119	0.187		\checkmark	ash
681	2.232	0.376	0.130	0.234		\checkmark	ash
682	1.686	0.374	0.142	0.222		\checkmark	ash
683	2.714	0.516	0.128	0.334		\checkmark	ash
684	2.096	0.356	0.102	0.252		\checkmark	ash
685	1.880	0.314	0.094	0.218		\checkmark	ash
686	2.094	0.250	0.126	0.122		\checkmark	ash
687	2.020	0.270	0.086	0.182		\checkmark	ash
688	3.898	0.592	0.170	0.416		\checkmark	ash
689	1.950	0.312	0.100	0.204		\checkmark	ash
690	1.995	0.298	0.073	0.201			
691	3.062	0.492	0.144	0.342			
692	2.420	0.458	0.118	0.334			
693	2.720	0.468	0.134	0.326			
694	1.966	0.348	0.094	0.244			
695	3.122	0.380	0.102	0.272			
696	2.174	0.400	0.106	0.290			
697	1.802	0.330	0.080	0.244			
698	2.508	0.400	0.114	0.284			
699	3.776	0.235	0.030	0.204			
700	1.798	0.212	0.064	0.149			
701	1.928	0.208	0.064	0.140			
702	1.746	0.490	0.156	0.324			
703	3.086	0.488	0.170	0.306			
704	3.022	0.352	0.110	0.232			
705	1.582	0.208	0.074	0.128			
706	1.410	0.210	0.066	0.142			
707	2.130	0.280	0.082	0.194			
708	2.922	0.410	0.108	0.292			
709	3.720	0.544	0.144	0.396			

Sample	Sample	weiaht	weiaht	weiaht	Pteropods	Ash	Comments
(depth, cm)	weight	>63um	>63<150um	>150um			
,		- F	P	- r			
710	2.058	0.261	0.072	0.187			
711	2.520	0.346	0.106	0.228			
712	2.128	0.342	0.122	0.212			
713	1.980	0.202	0.064	0.136			
714	3.228	0.412	0.130	0.276			
715	1.696	0.234	0.068	0.160			
716	1.696	0.258	0.064	0.188			
717	2.900	0.440	0.124	0.310			
718	3.168	0.452	0.120	0.322			
719	5.044	0.808	0.228	0.572			
720	2.203	0.322	0.088	0.229			
721	1.924	0.346	0.092	0.246			
722	2.178	0.334	0.092	0.236			
723	2.652	0.428	0.122	0.300			
724	2.576	0.392	0.104	0.282			
725	2.704	0.410	0.122	0.284			
726	2.290	0.452	0.124	0.324			
727	1.960	0.334	0.096	0.232			
728	2.882	0.542	0.148	0.386			
729	4.032	0.654	0.196	0.450			
730	2.312	0.369	0.085	0.243			
731	2.524	0.430	0.104	0.322			
732	2.548	0.510	0.124	0.384			
733	3.016	0.494	0.126	0.362			
734	4.042	0.490	0.144	0.336			
735	1.774	0.287	0.068	0.208			
736	2.500	0.378	0.120	0.254			
737	3.566	0.492	0.134	0.352			
738	2.904	0.380	0.118	0.260			
739	3.074	0.458	0.122	0.332			
740	2.632	0.395	0.088	0.302			
741	2.690	0.370	0.098	0.266			
742	2.666	0.334	0.074	0.246			
743	2.128	0.338	0.108	0.228			
744	3.082	0.480	0.124	0.348			
745	3.220	0.594	0.136	0.450			
746	1.658	0.246	0.062	0.162			
747	2.344	0.352	0.098	0.244			
748	3.184	0.564	0.110	0.452			
749	2.740	0.348	0.086	0.252			
750	2.187	0.327	0.077	0.250			
751	2.376	0.342	0.082	0.256			
752	1.724	0.208	0.058	0.148			
753	2.204	0.298	0.076	0.216			
754	2.752	0.374	0.096	0.278			
755	1.826	0.238	0.060	0.176			
756	3.048	0.422	0.092	0.324			
757	2.162	0.338	0.074	0.260			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63um	>63<150um	>150um			
(000000,000)		00000					
758	2.118	0.244	0.058	0.184			
759	1.994	0.284	0.066	0.214			
760	2.313	0.271	0.074	0.195			
761	2.678	0.246	0.070	0.178			
762	2.438	0.376	0.088	0.284			
763	2.038	0.286	0.074	0.208			
764	2.066	0.302	0.086	0.214			
765	1.470	0.206	0.052	0.150			
766	0.980	0.172	0.040	0.130			
767	2.520	0.438	0.096	0.334			
768	2.386	0.400	0.088	0.302			
769	3.316	0.580	0.122	0.456			
770	1.757	0.250	0.065	0.179			
771	1.302	0.252	0.066	0.182			
772	1.798	0.320	0.074	0.242			
773	2.116	0.402	0.088	0.308			
774	2.190	0.420	0.092	0.322			
775	1.250	0.226	0.046	0.176			
776	1.648	0.252	0.066	0.184			
777	3.316	0.468	0.106	0.358			
778	1.898	0.318	0.086	0.228			
779	1.758	0.320	0.080	0.236			
780	1.498	0.275	0.058	0.213			
781	1.548	0.306	0.070	0.234			
782	2.288	0.456	0.108	0.346			
783	2.130	0.346	0.082	0.262			
784	3.272	0.550	0.126	0.420			
785	1.586	0.238	0.052	0.178			silica spikes, sponge
786	2.246	0.436	0.084	0.352			silica spikes, sponge
787	1.458	0.298	0.052	0.242			
788	2.136	0.355	0.094	0.250			
789	2.072	0.316	0.084	0.226			
790	1.856	0.231	0.055	0.173			
791	2.566	0.398	0.098	0.296			
792	2.008	0.300	0.074	0.222			
793	2.290	0.286	0.074	0.214			
794	1.512	0.204	0.066	0.138			
795	2.042	0.370	0.090	0.278			
796	2.428	0.496	0.102	0.388			
797	2.800	0.566	0.118	0.436			
798	3.164	0.410	0.094	0.314			
799	2.360	0.816	0.126	0.684			
800	2.213	0.475	0.109	0.364			
801	2.264	0.524	0.096	0.424			
802	1.788	0.338	0.078	0.260			
803	1.868	0.378	0.078	0.302			
804	1.842	0.366	0.080	0.284			
805	2.270	0.392	0.090	0.292			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
806	2.030	0.356	0.084	0.264			
807	1.836	0.284	0.076	0.204			
808	1.804	0.400	0.074	0.316			
809	3.784	0.796	0.154	0.632			
810	1.886	0.417	0.080	0.330			
811	3.102	0.528	0.122	0.400			
812	2.056	0.384	0.084	0.294			
813	3.392	0.600	0.138	0.456			
814	2.904	0.536	0.122	0.356			
815	3.084	0.542	0.124	0.416			
816	3.300	0.584	0.142	0.440			
817	2.388	0.438	0.114	0.320			
818	3.582	0.630	0.144	0.480			
819	2.514	0.422	0.100	0.314			
820	2.016	0.383	0.103	0.278			
821	2.904	0.558	0.124	0.428			
822	2.530	0.522	0.104	0.416			
823	3.392	0.628	0.154	0.468			
824	4.270	0.670	0.160	0.506			
825	3.622	0.620	0.146	0.462			
826	2.690	0.436	0.096	0.338			
827	2.276	0.380	0.096	0.282			
828	2.312	0.368	0.092	0.270			
829	3.402	0.398	0.092	0.300			
830	2,690	0.438	0.106	0.330			
831	3.394	0.444	0.070	0.370			
832	2.842	0.520	0.124	0.394			
833	4 222	0.578	0 144	0 432			
834	3 216	0.472	0 142	0.338			
835	3 232	0.558	0 132	0.420			
836	3 014	0.550	0.146	0.404			
837	3 954	0.000	0.140	0.404			
838	2 2 2 2 4	0.700	0.076	0.216			
839	4 576	1 076	0 154	0.918			
840	2 111	0 489	0.096	0.388			
841	4 250	0 786	0 188	0.594			
842	2 322	0.700	0.100	0 404			
843	2.522	0.010	0.110	0.494			
841	2 754	0.702	0.130	0 474			
845	3 1 10	0.000	0.134	0.456			
8/6	5.440 2.472	0.040	0.100	0.400			
0 4 0 847	2.412 1 216	0.000	0.094	0.200			
04/ 0/0	4.210 3.840	0.002	0.100	0.442			
040 940	3.040	0.000	0.100	0.404			
049 950	3.094	0.000	0.172	0.300			
000	1.009	0.297	0.103	0.191			
001	J.45Z	0.494	0.150	0.338			
852 850	2.000	0.424	0.130	0.294			
853	3.662	0.468	0.136	0.326			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63um	>63<150um	>150um	i toropodo	71011	Commente
(,,		000000		1000			
854	3.188	0.488	0.120	0.352			
855	3.232	0.480	0.144	0.330			
856	2.104	0.310	0.082	0.220			
857	2.710	0.426	0.106	0.308			
858	2.764	0.674	0.122	0.306			
859	4.404	0.827	0.210	0.614			
860	1.717	0.274	0.076	0.196			
861	3.638	0.534	0.152	0.376			
862	1.850	0.310	0.088	0.220			
863	3.502	0.680	0.152	0.524			
864	2.636	0.488	0.114	0.360			
865	2.682	0.382	0.104	0.268			
866	1.946	0.424	0.088	0.336			ash (?)
867	2.112	0.410	0.114	0.294			
868	2.576	0.476	0.105	0.368			
869	1.696	0.320	0.078	0.234			
870	3.149	0.573	0.139	0.431			
871	2.028	0.370	0.082	0.278			
872	2.930	0.524	0.116	0.398			
873	2.442	0.296	0.078	0.212			
874	2.628	0.224	0.056	0.162			
875	2.580	0.258	0.076	0.180			
876	2.346	0.278	0.074	0.202			
877	2.616	0.312	0.084	0.224			
878	3.014	0.470	0.124	0.346			
879	3.266	0.498	0.136	0.358			
880	2.455	0.327	0.101	0.225			
881	2.718	0.386	0.106	0.270			
882	1.806	0.308	0.074	0.228			pteropods
883	2.962	0.422	0.116	0.284			
884	3.604	0.662	0.168	0.494			
885	2.132	0.336	0.086	0.246			pteropods
886	4.376	0.786	0.168	0.606			pteropods
887	3.102	0.698	0.154	0.528			
888	2.310	0.484	0.110	0.370			
889	3.906	0.710	0.166	0.540			
890	2.136	0.460	0.138	0.320			
891	4.030	0.854	0.206	0.640			
892	1.856	0.330	0.094	0.236			
893	3.078	0.582	0.140	0.434			
894	2.932	0.600	0.154	0.436			
895	2.328	0.466	0.116	0.348			
896	2.408	0.530	0.132	0.386			
897	1.828	0.356	0.102	0.242			
898	2.992	0.590	0.176	0.398			
899	1.398	0.356	0.106	0.242			
900	1.883	0.415	0.097	0.318			
901	1.640	0.408	0.096	0.308			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63um	>63<150µm	>150um			
902	1.986	0.378	0.092	0.282			
903	2.440	0.502	0.136	0.360			
904	2.692	0.478	0.166	0.310		\checkmark	ash
905	4.124	0.744	0.258	0.478		\checkmark	ash
906	2.498	0.398	0.240	0.158		\checkmark	ash
907	2.666	0.620	0.200	0.412		\checkmark	ash
908	3.402	0.544	0.134	0.408			
909	1.854	0.646	0.148	0.494			
910	2.000	0.394	0.092	0.301			
911	2.186	0.524	0.138	0.380			
912	1.606	0.300	0.078	0.216			
913	2.418	0.458	0.126	0.326			
914	1.928	0.406	0.144	0.260			
915	1.558	0.292	0.080	0.208			
916	1.804	0.298	0.098	0.198			
917	2.216	0.414	0.116	0.292			
918	2.194	0.364	0.106	0.256			
919	2.772	0.452	0.132	0.314			
920	3.010	0.563	0.150	0.411			
921	2.122	0.288	0.084	0.196			
922	2.932	0.544	0.128	0.414			
923	2.542	0.424	0.108	0.308			
924	2.464	0.400	0.106	0.290			
925	2.302	0.370	0.096	0.264			
926	1.814	0.262	0.070	0.192			
927	1.170	0.206	0.048	0.150			
928	1.706	0.352	0.062	0.280			
929	2.176	0.286	0.078	0.204			
930	1.983	0.331	0.086	0.244			
931	2.234	0.240	0.072	0.166			
932	1.840	0.228	0.052	0.168			
933							missing
934							missing
935							missing
936	1.792	0.278	0.066	0.212			
937							missing
938							missing
939	0.045	0.470	0.400	0.040			missing
940	2.915	0.472	0.123	0.349			
941	2.380	0.404	0.092	0.310			
942	2.058	0.340	0.078	0.256			
943	2.444	0.326	0.084	0.236			
944	2.454	0.330	0.094	0.230			
945	2.768	0.516	0.114	0.400			
946	1.374	0.238	0.056	0.182			
947	1.920	0.354	0.080	0.266			
948	2.1/4	0.446	0.096	0.348			
949	1.992	0.354	0.084	0.264			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
950	2.341	0.417	0.105	0.311			
951	2.142	0.372	0.092	0.278			
952	2.810	0.514	0.124	0.388			
953	1.638	0.292	0.070	0.220			
954	3.118	0.416	0.118	0.296			
955	1.894	0.314	0.078	0.230			
956	1.920	0.318	0.076	0.236			
957	1.480	0.268	0.054	0.212			
958	1.610	0.254	0.052	0.198			
959	2.258	0.344	0.078	0.266			
960	1.645	0.326	0.067	0.257			
961	2.742	0.380	0.088	0.284			
962	2.058	0.342	0.080	0.260			
963	2.040	0.236	0.060	0.174			
964	2.242	0.150	0.050	0.098			
965	2.516	0.174	0.066	0.100			
966	2.002	0.214	0.070	0.142			
967	1.396	0.126	0.040	0.082			
968	2.324	0.270	0.072	0.192			
969	2.404	0.288	0.074	0.212			
970	2.500	0.413	0.101	0.308			
971	2.238	0.176	0.052	0.118			
972	1.848	0.242	0.062	0.170			
973	2.600	0.392	0.082	0.308			
974	2.536	0.372	0.084	0.278			
975	2.876	0.430	0.106	0.318			
976	2.112	0.296	0.068	0.222			
977	2.370	0.326	0.076	0.242			
978	1.950	0.242	0.062	0.172			
979	1.790	0.372	0.086	0.284			
980	2.382	0.339	0.084	0.253			
981	1.700	0.242	0.060	0.180			
982	2.378	0.242	0.060	0.178			
983	3.062	0.500	0.110	0.382			
984	2.018	0.310	0.072	0.232			
985	1.706	0.250	0.054	0.190			
986	1.742	0.298	0.060	0.226			
987	2.242	0.378	0.076	0.296			
988	2.834	0.648	0.110	0.530			
989	2.596	0.530	0.096	0.428			
990	2.042	0.423	0.078	0.342			
991	1.640	0.338	0.064	0.266			
992	2.620	0.518	0.092	0.418			
993	1.448	0.236	0.054	0.180			
994	2.682	0.492	0.092	0.392			
995	1.976	0.304	0.062	0.238			
996	2.514	0.224	0.062	0.154			
997	2,292	0.352	0.080	0 272			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
998	2.316	0.332	0.076	0.254			
999	3.194	0.396	0.100	0.290			
1000	2.154	0.282	0.073	0.209			
1001	2.790	0.384	0.090	0.288			silica spikes, mollusk
							shells, sponge
1002	2.694	0.298	0.076	0.218			silica spikes, sponge
1003	3.028	0.268	0.074	0.184			
1004	3.362	0.320	0.092	0.224			silica spikes, sponge
1005	3.034	0.432	0.096	0.326			
1006	2.614	0.368	0.090	0.274			
1007	2.532	0.354	0.080	0.266			
1008	3.580	0.408	0.120	0.286			
1009	4.172	0.524	0.132	0.386			
1010	1.466	0.261	0.057	0.201			
1011	2.234	0.338	0.080	0.256			
1012	2.406	0.332	0.076	0.250			
1013	3.386	0.526	0.110	0.408			
1014	3.512	0.582	0.118	0.450			
1015	2.788	0.414	0.082	0.322			
1016	1.988	0.352	0.072	0.274			
1017	1.636	0.304	0.068	0.234			
1018	3.760	0.564	0.130	0.430			
1019	1.916	0.304	0.064	0.232			
1020	1.759	0.291	0.066	0.224			
1021	2.168	0.394	0.084	0.314			
1022	1.976	0.582	0.108	0.474			
1023	2.690	0.660	0.118	0.540			
1024	3.034	0.788	0.138	0.644			
1025	1.982	0.376	0.078	0.296			
1026	2.260	0.388	0.080	0.300			
1027	1.914	0.336	0.080	0.256			silica spikes
1028	2.296	0.332	0.062	0.268			
1029	2.652	0.336	0.066	0.266			
1030	1.728	0.240	0.046	0.192			
1031	3.342	0.336	0.074	0.260			
1032	1.898	0.270	0.048	0.216			
1033	2.272	0.304	0.060	0.242			
1034	2.476	0.348	0.066	0.282			
1035	1.964	0.306	0.066	0.232			
1036	2.340	0.364	0.058	0.300			
1037	2.460	0.402	0.074	0.322			
1038	2.940	0.444	0.086	0.356			
1039	2.570	0.350	0.064	0.280			
1040	1.020	0.189	0.033	0.155			
1041	3.000	0.400	0.074	0.326			
1042	1.702	0.288	0.052	0.230			
1043	2.592	0.382	0.068	0.312			
1044	2 236	0.312	0.058	0.250			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150um	>150um			
(- 5 -						
1045	2.238	0.328	0.068	0.252			
1046	1.944	0.268	0.056	0.212			
1047	1.552	0.234	0.048	0.184			
1048	2.068	0.288	0.048	0.234			
1049	2.542	0.414	0.074	0.340			
1050	1.389	0.230	0.049	0.181			
1051	2.502	0.464	0.078	0.382			
1052	2.252	0.318	0.062	0.250			
1053	2.696	0.434	0.072	0.360			
1054	2.406	0.342	0.064	0.274			
1055	2.730	0.418	0.080	0.330			
1056	2.180	0.318	0.062	0.250			
1057	1.884	0.274	0.060	0.214			
1058	2.102	0.308	0.062	0.242			
1059	1.910	0.264	0.056	0.206			
1060	1.660	0.356	0.086	0.267			
1061	2.960	0.246	0.044	0.196			
1062	3.348	0.304	0.058	0.246			
1063	2.368	0.272	0.054	0.216			
1064	2.214	0.300	0.060	0.238			
1065	2.826	0.358	0.060	0.290			
1066	3.836	0.516	0.100	0.410			
1067	2.042	0.274	0.060	0.214			
1068	2.754	0.390	0.080	0.306			
1069	2.110	0.316	0.064	0.248			
1070	2.008	0.346	0.061	0.280			
1071	2.292	0.338	0.068	0.264			
1072	3.334	0.548	0.108	0.436			
1073	2.206	0.284	0.062	0.218			
1074	2.446	0.324	0.070	0.260			
1075	2.624	0.384	0.082	0.296			
1076	1.802	0.240	0.058	0.182			
1077	3.778	0.566	0.112	0.452			
1078	1.502	0.220	0.046	0.174			
1079	5.144	0.748	0.156	0.588			
1080	1.564	0.284	0.054	0.230			
1081	2.482	0.342	0.072	0.264			
1082	3.280	0.454	0.108	0.340			
1083	2.520	0.318	0.074	0.238			
1084	2.518	0.360	0.078	0.276			
1085	1.922	0.278	0.054	0.218			
1086	1.588	0.194	0.046	0.146			
1087	2.934	0.358	0.088	0.268			
1088	4.442	0.614	0.128	0.472			
1089	3.756	0.512	0.106	0.396			
1090	1.746	0.298	0.062	0.236			
1091	3.102	0.434	0.094	0.338			
1092	3.580	0.444	0.098	0.338			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm	·		
1093	2.532	0.312	0.074	0.242			
1094	2.478	0.286	0.068	0.214			
1095	2.228	0.216	0.056	0.160			
1096	3.170	0.404	0.086	0.314			
1097	2.340	0.296	0.062	0.224			
1098	4.722	0.524	0.120	0.398			
1099	4.916	0.586	0.128	0.452			
1100	2.359	0.370	0.084	0.286			
1101	4.302	0.500	0.120	0.372			
1102	4.220	0.476	0.114	0.360			
1103	2.500	0.326	0.078	0.240			
1104	4.318	0.594	0.134	0.458			
1105	3.400	0.452	0.106	0.344			
1106	3.798	0.494	0.118	0.372			
1107	2.546	0.304	0.070	0.232			
1108	2.926	0.304	0.074	0.228			
1109	3.278	0.278	0.068	0.202			
1110	1.138	0.112	0.032	0.080			
1111	1.346	0.070	0.024	0.042			
1112	2.290	0.164	0.046	0.116			
1113	3.384	0.286	0.068	0.216			
1114	2.522	0.238	0.062	0.174			
1115	1.476	0.092	0.030	0.058			
1116	2.432	0.176	0.054	0.118			
1117	2.374	0.182	0.050	0.132			
1118	3.650	0.182	0.060	0.118			
1119	2.812	0.382	0.082	0.296			many broken shells, few
							whole forams
1120	0.982	0.190	0.046	0.146		\checkmark	ash
1121	2.290	0.202	0.052	0.148		\checkmark	ash
1122	2.136	0.290	0.066	0.224		\checkmark	ash
1123	6.926	0.600	0.148	0.442		\checkmark	ash
1124	3.430	0.266	0.078	0.188		\checkmark	ash
1125	2.392	0.158	0.046	0.110		\checkmark	ash
1126	2.310	0.210	0.062	0.148		\checkmark	ash
1127	1.438	0.108	0.032	0.072		\checkmark	ash
1128	2.902	0.154	0.046	0.100		\checkmark	ash
1129	2.860	0.144	0.046	0.096		\checkmark	ash
1130	1.041	0.128	0.030	0.094			
1131	1.856	0.094	0.032	0.056			few whole forams
1132	3.518	0.290	0.076	0.212			silica spikes -> sponge
1133	3.384	0.248	0.060	0.184			
1134	2.244	0.084	0.026	0.052			
1135	3.642	0.168	0.060	0.106			
1136	2.548	0.140	0.040	0.100		\checkmark	ash, many broken shells
1137	2.744	0.106	0.040	0.066		\checkmark	ash, many broken shells
1138	2.876	0.084	0.030	0.052		\checkmark	ash, many broken shells
1139	2.672	0.164	0.056	0.108		\checkmark	ash

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
1140	1.724	0.226	0.052	0.164			
1141	3.466	0.328	0.096	0.230			
1142	3.114	0.262	0.084	0.172			silica spikes - ash
1143	4.346	0.372	0.108	0.260			silica spikes - ash
1144	3.744	0.416	0.098	0.310			silica spikes - ash
1145	1.664	0.150	0.046	0.104			silica spikes
1146	2.558	0.210	0.056	0.150			many broken shells,
							silica spikes
1147	2.170	0.140	0.056	0.078			many broken shells,
							silica spikes
1148	3.594	0.184	0.072	0.108			many broken shells,
							silica spikes
1149	2.982	0.148	0.060	0.084			many broken shells,
							silica spikes
1150	2.255	0.366	0.064	0.300			many broken shells
1151	1.974	0.142	0.050	0.086			many broken shells
1152	1.304	0.068	0.026	0.040			many broken shells
1153	3.612	0.252	0.086	0.164			many broken shells
1154	3.024	0.166	0.058	0.106			many broken shells
1155	2.198	0.072	0.036	0.030			many broken shells
1156	1.536	0.054	0.028	0.022			many broken shells
1157	2.288	0.082	0.048	0.032			many broken shells
1158	3.394	0.146	0.066	0.082			many broken shells
1159	3.508	0.196	0.068	0.126			many broken shells
1160	1.859	0.362	0.060	0.298			many broken shells
1161	2.362	0.160	0.056	0.102			many broken shells
1162	3.056	0.202	0.062	0.130		\checkmark	ash, many broken shells
1163	3.850	0.244	0.074	0.160		V	ash. many broken shells
1164	2.314	0.118	0.044	0.068		\checkmark	ash, many broken shells
1165	3.520	0.168	0.062	0.102			ash, many broken shells
1166	1.922	0.110	0.040	0.066			ash, many broken shells
1167	2.254	0.156	0.052	0.100		V	ash
1168	2,478	0.204	0.064	0.132			ash
1169	3.658	0.126	0.046	0.078		V	ash
1170	2,432	0.408	0.086	0.318			
1171	3.026	0.202	0.054	0.142		\checkmark	ash
1172	2.036	0.088	0.026	0.058			ash
1173	2.466	0.104	0.032	0.072		V	ash
1174	1.956	0.090	0.028	0.056			ash
1175	2,718	0.140	0.044	0.092		V	ash
1176	3,198	0.136	0.048	0.088		Ň	ash
1177	4.236	0.192	0.062	0.126		, V	ash
1178	3,706	0.220	0.058	0.160		, V	ash
1179	3.128	0.128	0.048	0.078		, V	ash
1180	1.893	0.220	0.036	0.184			
1181	2.734	0.132	0.034	0.088			
1182	2.016	0.102	0.034	0.066			many broken shells
1183	1.530	0.056	0.026	0.028			many broken shells
1100	1.000	0.000	0.020	0.020			many broken sheis

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm	·		
	-	•	•	•			
1184	3.092	0.130	0.038	0.086		\checkmark	ash
1185	2.170	0.094	0.032	0.058		\checkmark	ash
1186	2.328	0.142	0.046	0.092		\checkmark	ash
1187	2.808	0.148	0.048	0.096		\checkmark	ash
1188	2.792	0.174	0.062	0.108		\checkmark	ash
1189	2.692	0.246	0.062	0.174			
1190	2.232	0.314	0.050	0.264			
1191	2.552	0.142	0.048	0.090		\checkmark	ash
1192	1.364	0.070	0.026	0.040		\checkmark	ash
1193	2.560	0.184	0.054	0.128		\checkmark	ash
1194	2.366	0.140	0.046	0.094		\checkmark	ash
1195	1.980	0.180	0.050	0.128		\checkmark	ash
1196	2.474	0.122	0.048	0.072		\checkmark	ash
1197	2.234	0.154	0.054	0.100			ash
1198	2,536	0.100	0.034	0.064			ash
1199	2.356	0.116	0.040	0.070		V	ash
1200	1.512	0.118	0.018	0.100		V	ash
1201	2.664	0.142	0.050	0.088		Ň	ash
1202	2.278	0.108	0.038	0.066		V	ash
1203	3,760	0.194	0.064	0.128		Ň	ash
1204	2 704	0 200	0.060	0.140		Ń	ash
1205	2 920	0.100	0.040	0.058		, V	ash many broken shells
1206	2 614	0 112	0.038	0.072		J.	ash
1200	2 716	0.136	0.040	0.082		•	
1208	2 992	0 132	0.050	0.082			
1209	2 870	0 172	0.050	0.116		\checkmark	ash many broken shells
1210	2 483	0.330	0.064	0.266		•	ach, many sieken enere
1211	2 304	0.268	0.074	0.190			
1212	3 4 1 2	0.452	0 106	0.344			
1213	3.634	0.458	0.102	0.352			
1214	3 782	0.506	0 108	0.396			
1215	2 674	0 432	0.088	0.342			
1216	3 122	0 404	0.092	0.310			
1210	3 236	0 464	0.002	0.358			
1218	2 4 3 4	0.344	0.080	0.264			
1219	2 672	0.364	0.094	0.266			
1220	1 430	0 230	0.026	0.200			
1221	2 216	0.288	0.076	0.210			
1222	1.568	0 190	0.062	0.128			
1223	2 750	0.344	0.080	0.128			
1220	2 140	0.190	0.058	0.132			
1225	1 734	0 192	0.056	0 132			
1254	1 520	0 102	0.030	0.066			ash many broken shells
1255	2 614	0 172	0.052	0 120		Y	ash, many broken shells
1256	3 800	0 122	0.038	0.078			
1257	4 260	0 170	0.000	0 118			ash many broken shells
1258	5 526	0.458	0.040	0.362		1	ash many broken shelle
1250	4 864	0.400	0 114	0.502		Y	aon, many broken shells
1200	7.007	0.027	0.114	0.002			

Sample	Sample	weiaht	weiaht	weiaht	Pteropods	Ash	Comments
(depth, cm)	weight	>63um	>63<150um	>150um			
	<u> </u>		F				
1260	1.920	0.268	0.038	0.230			
1261	2.728	0.330	0.080	0.250			
1262	2.552	0.244	0.060	0.176			
1263	5.068	0.984	0.156	0.820			
1264	5.064	0.820	0.130	0.684			
1265	2.540	0.608	0.124	0.474			
1266	3.458	0.882	0.140	0.738			
1267	4.412	0.968	0.172	0.786			
1268	5.564	1.106	0.196	0.908			
1269	6.250	1.098	0.230	0.864			
1270	2.240	0.298	0.052	0.246			
1271	2.310	0.350	0.088	0.260			
1272	3.532	0.588	0.160	0.424			
1273	3.344	0.610	0.110	0.494			
1274	3.542	0.696	0.110	0.582			
1275	3.480	0.606	0.116	0.488			
1276	3.232	0.502	0.098	0.404			
1277	4.148	0.866	0.132	0.728			
1278	4.530	0.984	0.160	0.818			
1279	5.434	1.248	0.218	1.024			
1280	2.137	0.448	0.064	0.384			
1281	3.042	0.656	0.124	0.528			
1282	2.898	0.662	0.138	0.516			
1283	4.214	0.974	0.222	0.750			
1284	3.312	0.564	0.124	0.418			
1285	3.490	0.450	0.108	0.338			
1286	2.610	0.390	0.094	0.288			
1287	2.954	0.608	0.118	0.484			
1288	3.142	0.592	0.114	0.478			
1289	3.802	0.748	0.140	0.600			
1290	2.062	0.416	0.050	0.366			
1291	3.390	0.434	0.094	0.330			
1292	2.774	0.338	0.060	0.274			
1293	4.256	0.568	0.114	0.452			
1294	2.382	0.300	0.060	0.230			
1295	2.752	0.284	0.058	0.220			
1296	3.142	0.508	0.092	0.408			
1297	4.288	0.818	0.108	0.694			
1298	4.800	0.782	0.142	0.636			
1299	5.390	0.760	0.162	0.594			
1300	3.081	0.482	0.076	0.408			
1301	3.826	0.536	0.114	0.412			
1302	4.002	0.648	0.136	0.506			
1303	3.648	0.618	0.124	0.488			
1304	3.442	0.466	0.112	0.356			
1305	2.828	0.434	0.096	0.336			
1306	2.344	0.304	0.088	0.214			
1307	3.918	0.422	0.112	0.306			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth. cm)	weight	>63um	>63<150um	>150um			
(,,		000000					
1308	3.302	0.574	0.154	0.412			
1309	4.678	0.582	0.144	0.434			
1310	1.594	0.254	0.078	0.176			
1311	3.654	0.396	0.110	0.284			
1312	2.414	0.260	0.062	0.188			
1313	1.290	0.150	0.034	0.112			
1314	4.864	0.670	0.140	0.526			
1315	3,306	0.372	0.098	0.268			
1316	2.448	0.248	0.060	0.182			
1317	2.342	0.186	0.054	0.132			
1318	3 944	0.384	0.092	0.284			
1319	1.844	0.128	0.036	0.090			
1320	2 716	0.514	0 116	0.398			
1321	2 558	0.268	0.066	0.198			
1322	2 952	0.328	0.086	0.240			
1323	3 346	0.352	0.086	0.240			
1324	3 724	0.240	0.074	0.162			
1325	2 432	0.240	0.048	0.102			
1326	2.402	0.242	0.074	0.120			
1327	3 716	0.356	0.074	0.100			
1328	3 004	0.000	0.002	0.200			
1320	2 510	0.200	0.032	0.130			
1320	1 102	0.782	0.040	0.104			
1330	4.192	0.702	0.170	0.002			
1332	3.056	0.492	0.100	0.308			
1332	5 148	0.200	0.072	0.200			
1334	3.078	0.304	0.000	0.204			
1335	2 632	0.100	0.000	0.100			
1336	2.032	0.102	0.022	0.002			
1337	2 3 2 6	0.100	0.040	0.122			
1338	4 208	0.000	0.014	0.072			many broken shells
1330	4.200	0.092	0.022	0.000			many broken shells
1339	2 765	0.004	0.010	0.000			many broken shells
1340	2.705	0.402	0.092	0.304			many broken shells
1341	3.012	0.150	0.050	0.112			many broken shells
1342	2 866	0.138	0.054	0.104			many broken shells
1343	2.000	0.172	0.056	0.114			many broken shells
1344	4.172	0.100	0.050	0.102			many broken shells
1345	1.000	0.110	0.042	0.004			many broken shells
1340	2.304	0.092	0.030	0.052		al	
1347	2.842	0.142	0.000	0.078		N	ash
1040	3.084	0.130	0.000	0.000		N	aəli
1349	4.592	0.338	0.112	0.222		N	asii
1350	1./3/	0.332	0.080	0.252		N	asii
1351	2.294	0.120	0.000	0.060		N	ash
1352	2.004	0.170	0.080	0.094		N	asn
1353	1.466	0.122	0.038	0.080		N	asn
1354	3.278	0.240	0.108	0.162		N	asn
1355	1.546	0.090	0.042	0.050		\checkmark	ash

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
1356	0.842	0.084	0.024	0.050		\checkmark	ash
1357	2.266	0.216	0.070	0.140		\checkmark	ash
1358	1.888	0.118	0.044	0.074		\checkmark	ash
1359	2.136	0.098	0.040	0.054		\checkmark	ash
1360	1.508	0.228	0.044	0.180			
1361	1.404	0.078	0.028	0.050			
1362	2,430	0.154	0.058	0.092			
1363	2.142	0.326	0.076	0.250			
1364	1.440	0.136	0.038	0.098			
1365	1.846	0.252	0.048	0.204			
1366	2 368	0 222	0.060	0 168			
1367	1.508	0 120	0.032	0.090			
1368	1 692	0.130	0.036	0.096			
1369	1.002	0.174	0.060	0.000			
1370	1 168	0.196	0.000	0 154			
1371	1.100	0.066	0.040	0.104			
1372	2 640	0.000	0.020	0.040			
1372	2.040	0.152	0.056	0.140			
1373	2.100	0.100	0.030	0.100			
1374	2.110	0.190	0.044	0.134			
1375	2.004	0.230	0.050	0.194			
1370	2.004	0.222	0.034	0.100			
1377	2.302	0.200	0.040	0.150			
1370	3.000	0.310	0.000	0.230			
1379	2.340	0.220	0.030	0.100			
1380	1.440	0.230	0.046	0.178			
1393	2.330	0.300	0.064	0.276			
1394	2.414	0.240	0.052	0.190			
1395	1.924	0.206	0.042	0.160			
1390	2.000	0.278	0.050	0.220			
1397	2.062	0.252	0.050	0.206			
1398	3.344	0.420	0.088	0.330			
1399	3.740	0.474	0.086	0.386			
1400	2.118	0.310	0.072	0.236			
1401	2.544	0.170	0.048	0.120			
1402	4.066	0.328	0.060	0.274			
1403	4.000	0.318	0.082	0.240		1	
1404	4.856	0.512	0.204	0.310		N	ash
1405	3.800	0.440	0.140	0.298		N	ash
1406	4.382	0.442	0.172	0.280		N	asn
1407	3.670	0.372	0.104	0.286		N	ash
1408	3.878	0.420	0.110	0.308		\checkmark	ash
1409	4.026	0.402	0.076	0.328			
1410	2.677	0.472	0.096	0.374			
1411	2.998	0.392	0.068	0.322			
1412	2.010	0.264	0.050	0.212			
1413	2.732	0.344	0.054	0.284			
1414	3.388	0.588	0.096	0.490			
1415	2.706	0.380	0.052	0.322			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
1416	3.856	0.456	0.070	0.384			
1417	2.880	0.376	0.062	0.310			
1418	3.178	0.414	0.066	0.346			
1419	2.280	0.314	0.048	0.264			
1420	2.119	0.486	0.076	0.408			
1421	2.584	0.424	0.068	0.350			
1422	3.280	0.532	0.070	0.458			
1423	2.196	0.282	0.042	0.236			
1424	3.414	0.382	0.068	0.312			
1425	2.820	0.326	0.042	0.280			
1426	3.996	0.384	0.064	0.304			
1427	3.514	0.350	0.060	0.288			
1428	3.386	0.414	0.062	0.346			
1429	4.134	0.442	0.082	0.356			
1430	3.656	0.600	0.106	0.492			
1431	3.534	0.496	0.060	0.432			
1432	2.750	0.308	0.042	0.264			
1433	3.690	0.588	0.068	0.512			
1434	2.772	0.340	0.044	0.292			
1435	3.346	0.360	0.030	0.104			many broken shells
1436	3.154	0.226	0.040	0.180			
1437	3.980	0.274	0.048	0.226			
1438	3.390	0.130	0.028	0.100			few whole forams, broken shells
1439	2.770	0.214	0.040	0.170			
1440	1.906	0.402	0.062	0.338			
1441	3.294	0.428	0.070	0.350			
1442	2.814	0.602	0.070	0.528			
1443	3.344	0.690	0.092	0.596			
1444	2.958	0.530	0.072	0.456			
1445	2.978	0.522	0.076	0.444			
1446	2.986	0.288	0.042	0.246			
1447	3.184	0.406	0.056	0.292			
1448	2.096	0.124	0.028	0.094			few whole forams -
	2.000	5. I L I	0.020	0.001			broken shells
1449	2,304	0.292	0.048	0.230			
1450	2.418	0.124	0.022	0.102			
1451	2,730	0.084	0.020	0.062			
1452	1.830	0.156	0.030	0.120			
1453	4.366	0.348	0.064	0.278			
1454	3.224	0.386	0.054	0.324			
1455	3.028	0.328	0.050	0.276			
1456	2 664	0.320	0.050	0.266			
1457	2.004	0 446	0.000	0.374			
1458	2 932	0 242	0.050	0 190			
1459	3 300	0.242	0.058	0 234			
1460	1 908	0.234	0.056	0.186			
1461	2 646	0.244	0.000	0.100			
1401	2.040	0.240	0.044	0.190			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
1462	3.226	0.174	0.030	0.130			
1463	2.632	0.254	0.046	0.204			
1464	2.304	0.254	0.056	0.192			
1465	3.834	0.624	0.110	0.512			
1466	1.638	0.272	0.050	0.218			
1467	3.476	0.600	0.096	0.500			
1468	2.348	0.450	0.066	0.382			
1469	2.186	0.218	0.042	0.170			
1470	2.349	0.378	0.072	0.302			
1471	2.302	0.366	0.052	0.302			
1472	2.364	0.432	0.072	0.356			
1473	3.114	0.472	0.098	0.368			
1474	1.892	0.338	0.076	0.256			
1475	3.124	0.552	0.148	0.394			
1476	4.002	0.462	0.194	0.266			ash; silica spikes,sponge
1477	4.440	0.702	0.396	0.298			ash
1478	2.704	0.430	0.128	0.296		\checkmark	ash
1479	4.090	0.582	0.112	0.468			
1480	1.680	0.346	0.054	0.288			
1481	3.364	0.564	0.080	0.478			
1482	0.688	0.076	0.018	0.054		\checkmark	few whole forams, ash
1483	2.442	0.116	0.020	0.088			few whole forams, broken shells
1484	2.880	0.276	0.050	0.224			
1485	2.338	0.192	0.042	0.150		\checkmark	few whole forams,
							broken shells
1486	3.346	0.196	0.050	0.144		\checkmark	no <i>G. ruber</i>
1487	2.398	0.122	0.030	0.090		\checkmark	no <i>G. ruber</i>
1488	3.820	0.172	0.044	0.126		\checkmark	
1489	2.818	0.118	0.026	0.090		\checkmark	
1490	1.562	0.194	0.040	0.154		\checkmark	
1491	1.504	0.092	0.018	0.070			
1492	1.874	0.140	0.026	0.112			
1493	3.456	0.302	0.052	0.238			
1494	2.174	0.256	0.036	0.220			
1495	2.990	0.206	0.048	0.156			
1496	2.214	0.080	0.024	0.054			
1497	2.954	0.084	0.022	0.056			
1498	3.134	0.142	0.032	0.106			
1499	2.398	0.086	0.026	0.058			
1500	1.404	0.194	0.038	0.156			
1501	2.420	0.148	0.038	0.106			
1502	1.436	0.148	0.036	0.108			
1503	1.400	0.104	0.032	0.068			
1504	2.288	0.106	0.030	0.074			
1505	2.290	0.138	0.040	0.096			
1506	2.044	0.102	0.034	0.068			few whole forams, many broken shells

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm	·		
	-	•	•	•			
1507	2.262	0.136	0.042	0.096			
1508	2.156	0.082	0.022	0.060			
1509							missing
1510	1.962	0.166	0.028	0.138			
1511	1.674	0.052	0.016	0.034		\checkmark	few whole whole forams
1512	1.296	0.044	0.014	0.028		\checkmark	no <i>G. ruber</i> , ash
1513	2.602	0.128	0.046	0.082		\checkmark	no <i>G. ruber</i> , ash
1514	1.664	0.056	0.026	0.028		\checkmark	no <i>G. ruber</i> , ash
1515	1.780	0.068	0.032	0.032		\checkmark	no <i>G. ruber</i> , ash
1516	3.128	0.188	0.126	0.054		\checkmark	ash
1517	3.582	0.456	0.374	0.066		\checkmark	ash, not enough forams
1518	1.590	0.166	0.118	0.046		\checkmark	ash, not enough forams
1519	2.882	0.330	0.206	0.124		\checkmark	ash "frosted"
1520	2.335	0.332	0.164	0.164		\checkmark	ash
1521	1.488	0.144	0.060	0.050		\checkmark	ash
1522	1.880	0.114	0.050	0.062		\checkmark	ash
1523	3.024	0.206	0.078	0.120		\checkmark	ash
1524	3.236	0.184	0.068	0.112		\checkmark	ash
1525	1.762	0.074	0.022	0.046		\checkmark	ash
1526	1.454	0.126	0.038	0.086		\checkmark	ash
1527	0.949	0.152	0.044	0.102		\checkmark	ash
1528	3.344	0.216	0.068	0.142		\checkmark	ash
1529	3.006	0.156	0.042	0.112		\checkmark	ash, not enough forams
1530	1.148	0.100	0.028	0.072		\checkmark	ash
1531	2.116	0.118	0.026	0.088		\checkmark	ash
1532	3.850	0.322	0.066	0.256		\checkmark	ash
1533	2.798	0.204	0.062	0.142		\checkmark	ash
1534	2.044	0.194	0.042	0.150		\checkmark	ash
1535	1.998	0.136	0.040	0.100		\checkmark	ash, not enough forams
1536	1.482	0.176	0.052	0.116		\checkmark	ash, many broken shells
1537	2.102	0.214	0.056	0.152		\checkmark	ash
1538	2.474	0.280	0.060	0.214		\checkmark	ash
1539	2.012	0.210	0.040	0.164			
1540	1.688	0.258	0.048	0.204			
1541	2.358	0.412	0.068	0.338			
1542	2.300	0.426	0.102	0.324			
1543	1.954	0.346	0.076	0.260			
1544	1.832	0.298	0.078	0.212			
1545	2.270	0.372	0.102	0.266			
1546	1.798	0.386	0.072	0.306			
1547	2.276	0.362	0.066	0.288			
1548	2.534	0.356	0.078	0.276			
1549	1.466	0.344	0.068	0.270			
1550	2.556	0.672	0.102	0.562		\checkmark	ash
1551	3.124	0.960	0.154	0.756			
1552	1.490	0.212	0.056	0.150			
1553	2.888	0.484	0.098	0.376			
1554	2.726	0.558	0.112	0.442			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth_cm)	weight	>63um	>63<150um	>150um	. 10100000	, (011	Commonto
(200021, 011)		oopin		i copin			
1555	2,118	0.570	0.102	0.456			
1556	2.196	0.558	0.102	0.448			
1557	3,494	0.868	0.164	0.672			
1558	2.108	0.588	0.112	0.470			
1559	1.670	0.498	0.088	0.396			
1560	2.366	0.888	0.166	0.718			
1561	3.072	0.922	0.170	0.746			
1562	2.340	0.752	0.126	0.510			
1563	2.652	0.580	0.122	0.448			
1564	2.232	0.508	0.092	0.410			
1565	3.098	0.754	0.134	0.614			
1566	1.774	0.422	0.088	0.320			
1567	2.356	0.486	0.072	0.394			
1568	2.714	0.696	0.106	0.576			
1569	2.314	0.606	0.104	0.500			
1570	2.202	0.782	0.134	0.636			
1571	2.044	0.550	0.104	0.436			
1572	2.640	0.694	0.132	0.562			
1573	2.194	0.528	0.116	0.408			
1574	2.486	0.608	0.110	0.494			
1575	2.374	0.586	0.118	0.464			
1576	1.910	0.450	0.094	0.354			
1577	2 459	0.456	0.082	0.368			
1578	2.196	0.404	0.094	0.310			
1579	3.124	0.504	0.106	0.388			
1580	1.870	0.586	0.132	0.444			
1581	1.772	0.296	0.062	0.228			
1582	2.180	0.308	0.058	0.240			
1583	2.676	0.494	0.100	0.386			
1584	3 452	0.726	0.170	0.552			
1585	2.130	0.368	0.108	0.256			
1586	1 940	0.284	0.052	0.226			
1587	3,724	0.536	0.228	0.306			ash
1588	3.510	0.550	0.336	0.204		Ň	ash
1589	3,762	0.436	0.226	0.206		Ň	ash
1590	3,450	0.702	0.296	0.388		Ň	ash
1591	2,380	0.386	0.166	0.214		Ň	ash
1592	3.104	0.522	0.224	0.294		v	ash
1593	2.976	0.466	0.206	0.254		, V	ash, pink ruber datum
1594	3,762	0.536	0.296	0.234		, V	ash
1595	2.226	0.502	0.182	0.314		J.	ash
1596	3 564	0 492	0 166	0.322		J.	ash
1597	1 816	0.314	0.098	0 214		J	ash
1598	2 238	0 496	0.000	0 400		Y	
1599	2 758	0.400	0 102	0.526			
1600	1 782	0.550	0 118	0.390			
1601	2 636	0.600	0.108	0.486			
1602	2.346	0 594	0.098	0 494			
1002	2.070	0.00-	0.000	0.707			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm			
1603	2.306	0.614	0.118	0.492			
1604	3.678	0.786	0.146	0.634			
1605	2.258	0.516	0.110	0.402			
1606	3.542	0.892	0.164	0.724			
1607	1.948	0.586	0.066	0.510			
1608	3.010	0.802	0.132	0.664			
1609	3.116	0.848	0.130	0.716			
1610	1.408	0.384	0.076	0.298			
1611	2.674	0.574	0.114	0.454			
1612	2.560	0.574	0.092	0.490			
1613	2.624	0.610	0.082	0.528			
1614	1.888	0.542	0.086	0.450			
1615	2.004	0.624	0.074	0.550			
1616	1.942	1.312	0.174	1.132			
1617	2.478	1.066	0.158	0.902			
1618	2.058	0.678	0.080	0.592			
1619	1.980	0.984	0.118	0.864			
1620	1.530	1.016	0.170	0.844			
1621	1.682	0.838	0.132	0.700			
1622	1.672	1.106	0.090	0.932			
1623	1.376	0.746	0.066	0.676			
1624	2.192	1.118	0.074	1.040			
1625	3.254	0.818	0.150	0.666			
1626	2.774	0.578	0.091	0.484			
1627	1.730	0.500	0.080	0.412			
1628	1.836	0.478	0.102	0.370			
1629	1.918	0.388	0.094	0.290			
1630	1.404	0.496	0.128	0.364			
1631	2.188	0.392	0.078	0.306			
1632	1.578	0.280	0.070	0.202			
1633	1.254	0.230	0.060	0.170			
1634	2.156	0.350	0.082	0.262			
1635	2.084	0.250	0.062	0.182			
1636	1.472	0.368	0.076	0.284			
1637	2.028	0.322	0.086	0.232			
1638	2.776	0.510	0.124	0.380			
1639	1.894	0.342	0.064	0.272			
1640	2.262	0.336	0.092	0.238			
1641	4 700	0.040	0.000	0.450			missing
1042	1.700	0.240	0.082	0.152			
1043	2.290	0.312	0.084	0.224			
1044	2.400	0.328	0.092	0.232			
1040	1.720	0.244	0.000	0.160			
1040	1.0/0	0.230	0.000	0.102			
1047	1.002	0.200	0.072	0.184			
1040	2.002	0.440	0.200	0.230			
1049	2.094	0.204	0.094	0.100			
1050	3.000	0.052	0.182	0.400			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63um	>63<150um	>150um		, 1011	
(00)000							
1651	3.138	0.468	0.120	0.322			
1652	1.224	0.178	0.034	0.134			
1653	3.030	0.410	0.092	0.316			
1654	2.992	0.446	0.132	0.308			
1655	2.116	0.318	0.080	0.236			
1656	1.500	0.220	0.060	0.154			
1657	3.636	0.482	0.148	0.330			
1658	3.274	0.464	0.106	0.352			
1659	2.306	0.316	0.096	0.214			
1660	2.460	0.322	0.114	0.206			
1661	3.554	0.548	0.136	0.410			
1662	2.180	0.280	0.088	0.188			
1663	3.642	0.352	0.100	0.250			
1664	2.088	0.236	0.078	0.152			
1665	2.232	0.280	0.086	0.192			
1666	2.674	0.234	0.054	0.174			
1667	2.786	0.446	0.126	0.314			
1668	3.500	0.526	0.124	0.396			
1669	3.296	0.446	0.130	0.312			
1670	2.410	0.356	0.118	0.238			
1671	2.754	0.316	0.114	0.200			
1672	2.856	0.372	0.116	0.254			
1673	2.878	0.372	0.132	0.232			
1674	3.714	0.454	0.144	0.306			
1675	3.658	0.316	0.122	0.190			
1676	3.288	0.352	0.112	0.238			
1677	3.930	0.548	0.198	0.344			
1678	3.234	0.328	0.130	0.192			
1679	2.886	0.254	0.084	0.168			
1680	3.286	0.522	0.206	0.314			
1681	3.036	0.380	0.146	0.234			
1682	2.300	0.278	0.074	0.198			
1683	2.992	0.262	0.106	0.156			
1684	2.518	0.238	0.104	0.132			
1685	2.708	0.190	0.070	0.116			
1686	2.212	0.202	0.090	0.110			
1687	2.832	0.266	0.088	0.176			
1688	2.840	0.406	0.146	0.256			
1689	3.818	0.400	0.126	0.272			
1690	2.344	0.420	0.120	0.296			
1691	2.608	0.406	0.126	0.280			
1692	2.588	0.386	0.110	0.270			
1693	2.896	0.336	0.132	0.202			
1694	1.664	0.148	0.062	0.088			
1695	1.732	0.098	0.052	0.042		1	h
1696	2.068	0.130	0.064	0.062		N	asn
1697	2.834	0.292	0.114	0.174		N	ash
1698	1.374	0.152	0.058	0.090		\mathbf{v}	ash

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth. cm)	weight	>63um	>63<150um	>150um	. to ope de		
(*****	- 3 -						
1699	3.208	0.312	0.122	0.184		\checkmark	ash
1700	2.228	0.358	0.128	0.230		\checkmark	ash
1701	2.260	0.286	0.126	0.152		\checkmark	ash
1702	2.662	0.244	0.084	0.156		\checkmark	ash
1703	2.024	0.244	0.100	0.136		\checkmark	ash
1704	2.668	0.308	0.134	0.166		\checkmark	ash
1705	1.672	0.184	0.076	0.110		\checkmark	ash
1706	2.278	0.298	0.132	0.162		\checkmark	ash
1707	2.546	0.252	0.114	0.132		\checkmark	ash
1708	2.470	0.214	0.110	0.100		\checkmark	ash
1709	4.064	0.166	0.090	0.072			
1710	3.880	0.428	0.260	0.166			
1711	4.214	0.378	0.202	0.168			
1712	1.706	0.160	0.074	0.082			
1713	2.698	0.232	0.086	0.138			
1714	2.432	0.380	0.126	0.246			
1715	2.062	0.292	0.110	0.178			
1716	2.336	0.182	0.080	0.106			
1717	1.848	0.072	0.030	0.042			
1718	2.904	0.214	0.096	0.114			
1719	2.074	0.128	0.070	0.056			
1720	2.214	0.310	0.092	0.212			
1721	2.050	0.092	0.048	0.042			
1722	1.810	0.142	0.052	0.084			
1723	2.990	0.170	0.078	0.086			
1724	1.888	0.118	0.052	0.060			
1725	2.104	0.140	0.054	0.086			
1726	3.060	0.166	0.082	0.078			
1727	2.182	0.116	0.062	0.046			
1728	1.804	0.142	0.066	0.072			
1729	1.800	0.104	0.052	0.052			
1730	1.982	0.246	0.084	0.160			
1731	2.288	0.176	0.084	0.086			
1732	2.104	0.098	0.042	0.052			
1733	2.774	0.130	0.054	0.076			
1734	2.370	0.136	0.064	0.065			
1735	2.286	0.134	0.054	0.074			
1736	2.020	0.110	0.052	0.056			
1737	2.668	0.142	0.060	0.072			
1738	1.988	0.122	0.050	0.070			
1739	1.510	0.098	0.042	0.048			
1740	2.280	0.364	0.108	0.254			
1741	2.946	0.098	0.066	0.088			
1742	2.096	0.122	0.064	0.064			
1743	0.960	0.132	0.052	0.078			
1744	2.208	0.142	0.056	0.086			
1745	2.418	0.168	0.048	0.116			
1746	2.720	0.194	0.078	0.110			

Sample	Sample	weight	weight	weight	Pteropods	Ash	Comments
(depth, cm)	weight	>63µm	>63<150µm	>150µm	·		
		•	·	•			
1747	2.364	0.134	0.042	0.088			
1748	2.190	0.102	0.040	0.058			
1749	1.716	0.114	0.016	0.098			
1750	0.962	0.314	0.094	0.212			
1751	1.326	0.092	0.008	0.086			
1752	2.000	0.156	0.024	0.130			
1753	2.374	0.162	0.020	0.140			
1754	1.972	0.156	0.024	0.128			
1755	1.474	0.120	0.022	0.094			
1756	1.332	0.240	0.022	0.102			
1757	2.860	0.070	0.026	0.046			
1758	2.362	0.110	0.026	0.084			
1759	1.080	0.302	0.010	0.040			
1760	2.798	0.326	0.146	0.178			
1761	3.720	0.212	0.054	0.154			
1762	2.578	0.200	0.026	0.168			
1763	2.570	0.172	0.022	0.148			
1764	3.112	0.352	0.064	0.288			
1765	2.286	0.114	0.086	0.026			
1766	1.898	0.160	0.034	0.126			
1767	1.820	0.102	0.058	0.040			
1768	2.706	0.140	0.076	0.058			
1769	2.398	0.110	0.056	0.052			
1770	3.334	0.436	0.260	0.174			ash, pteropods
1771	2.790	0.232	0.174	0.054			
1772	2.708	0.188	0.170	0.016			
1773	2.284	0.074	0.048	0.024			
1774	2.824	0.138	0.086	0.052			
1775	2.572	0.064	0.028	0.028			
1776	1.670	0.094	0.046	0.042			
1777	1.794	0.132	0.060	0.068			
1778	1.758	0.122	0.040	0.082			
1779	2.232	0.136	0.062	0.068	1	,	
1780	1.438	0.240	0.064	0.174	\checkmark		ash, pteropods
1781	2.038	0.120	0.046	0.072			
1782	2.622	0.188	0.068	0.114			
1783	2.462	0.104	0.044	0.066			
1784	1.748	0.050	0.020	0.026			
1785	1.826	0.122	0.018	0.104			
1786	2.220	0.110	0.046	0.056			
1787	2.212	0.106	0.054	0.046			
1788	1.934	0.082	0.034	0.042			
1789	2.842	0.116	0.052	0.060	I	1	
1790	2.956	0.418	0.114	0.304	\checkmark	\checkmark	ash, pteropods
1791	2.238	0.062	0.030	0.030			
1792	2.316	0.094	0.046	0.044			
1793	1.764	0.026	0.010	0.014			
1793	2.478	0.092	0.038	0.044			

Sample (depth, cm)	Sample weight	weight >63µm	weight >63<150µm	weight >150µm	Pteropods	Ash	Comments
1794	1.912	0.082	0.040	0.040			
1795	1.780	0.040	0.018	0.022			
1796	1.632	0.092	0.038	0.050			
1797	2.722	0.078	0.028	0.042			
1798	2.090	0.060	0.024	0.038			
1799	1.934	0.054	0.024	0.034			
1800	1.536	0.204	0.056	0.146			

Note:

samples: 662-672,1226-1253,

1381-1392 are voids in original core

samples: 370, 933-935,

937-939,1509, and 1641 are lost in mail